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Abstract: Ebinur Lake is the largest brackish-water lake in Xinjiang, China. Strong winds constantly
have an impact on this shallow water body, causing high variability in turbidity of water. Therefore, it
is crucial to continuously monitor suspended particulate matter (SPM) for water quality management.
This research aims to develop an advanced spatiotemporal fusion model based on the inversion
technique that enables time-continuous and detailed monitoring of SPM over an intermontane lake.
The findings shows that: (1) the enhanced spatial and temporal adaptive reflectance fusion model
(ESTARFM) fusion in blue, green, red, and near infrared (NIR) bands was better than the flexible
spatiotemporal data fusion (FSDAF) model in extracting SPM information; (2) the inversion model
constructed by random forest (RF) outperformed the support vector machine (SVM) and partial least
squares (PLS) algorithms; and (3) the SPM concentrations acquired from the fused images of Landsat
8 OLI and ESTARFM matched with the actual data of Ebinur Lake based on the visual perspective
and accuracy assessment.

Keywords: Ebinur Lake; suspended particulate matter (SPM); water quality monitoring; enhanced
spatial and temporal adaptive reflectance fusion model (ESTARFM)

1. Introduction

Inland lakes provide an important freshwater supply for agricultural activities and
domestic water usage [1]. Especially in arid regions, as a primary water supply, lakes
deserve thorough study to comprehend water quality variables and processes to facilitating
sustainable water usage [2,3]. Suspended particulate matter (SPM) is one of the key
indicators for assessing a lake’s water quality [4]. SPM influences water transparency
and turbidity, which serves as the carrier of oxygen, carbon, heavy metals, and nutrient
substances [5,6]. Therefore, it is crucial that SPM concentrations be regularly monitored for
effective lake management.

With the rapid development in water color remote sensing technologies, SPM concen-
trations and dynamic processes can be easily and effectively captured [7]. Spectral data
from satellite sensors are commonly applied to reflect the water’s optical properties indi-
rectly using inversion techniques that were developed based on the concentration of SPM
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components in water bodies [8]. At present, empirical, analytical, and semi-empirical/semi-
analytical are three major approaches of SPM satellite-based extraction [9]. The statistical
relationship between the spectral data and the observed SPM concentration serves as the
foundation for the empirical model development [10]. Generally, a regression model is
constructed by selecting a single band or different bands combination [11]. The analyti-
cal method has high inversion accuracy and theoretical generality. However, it requires
more sophisticated and expensive optical instrumentation to measure a water body’s
intrinsic optical parameters, which restricts its practical applications [12]. Various semi-
empirical/semi-analytical methods such as the quasi-analytical algorithm (QAA) and water
color simulator (WASI) can better tackle the complex relationships between remote sensing
reflectance and water color parameter concentration [13]. In general, machine-learning
techniques such as neural network, support vector machine (SVM) and random forest (RF)
are included in semi-empirical methods [14]. The machine-learning method is more time
and computationally effective. In contrast to SVM and RF, which are better suited for small
samples, a neural network needs a large number of training samples [15]. Many studies
have proven that RF is better than SVM in dealing with noise and outliers [16]. RF is also
more amenable to interpretation and can provide solutions to the inversion problems [17].
Hence, this study has adopted RF to build the SPM concentration inversion model.

The acquisition of remote sensing data has been greatly improved. However, obtain-
ing remote sensing data with high spatial and temporal resolution is still difficult [18].
At present, many spatiotemporal fusion models have been developed to enhance data
quality and resolve the problem of missing remote sensing data [19]. Basically, these mod-
els are divided into four categories: transformation, filtering, unmixing, and dictionary
learning [20]. The transformation model uses principal component analysis and wavelet
transformation [21]. The filtering method predicts high-resolution images by introduc-
ing neighborhood information [22], including STARFM (spatial and temporal adaptive
reflectance fusion model) [23], ESTARFM (enhanced spatial and temporal adaptive re-
flectance fusion model) [24], and STNLFFM (spatial and temporal non-local filter-based
fusion model) [25]. The unmixing methods are USTARFM (unmixing-based STARFM) [26]
and FSDAF (flexible spatiotemporal data fusion) [27]. The most representative sparse
representation is based on the spatiotemporal reflectance fusion model (SPSTFM) [28]. Two
major applications of spatiotemporal fusion models are land surface dynamic monitoring
and land cover classification [29]. Some researchers have utilized ESTARFM to examine the
water quality and area changes of freshwater lakes [30]. Therefore, ESTARFM was selected
for the lake image fusion of Ebinur Lake in this paper.

To date, most studies have focused on inland lakes, while shallow saline lakes have
received very little attention. Hence, the objectives of this study are to: (1) establish an SPM
inversion model, focusing on the main characteristics of a shallow brackish lake with highly
turbid water; (2) invert SPM using ESTARFM fusion images; and (3) assess the applicability
of the developed spatiotemporal fusion model in SPM inversion for intermontane lakes.
The model can be applied in other intermontane lakes to assist relevant scientists and local
authorities to better characterize the spatiotemporal patterns of SPM. This study will act
as a research basis for others’ water quality parameters for inversion methods and water
resources management.

2. Materials
2.1. Study Area

Ebinur Lake is located in the inland intermontane Ebinur Lake Basin in the northwest
part of Xinjiang (44◦05′~45◦08′N, 82◦35′~83◦16′E) (Figure 1), surrounded by mountains
in the north, west, and south of the basin. This arid landscape is located in the interior
heart of Eurasia, is distant from the sea, and has irregular and erratic precipitation, high
potential evapotranspiration, and a lot of solar radiation and heat. Subsumed under a
typical continental climate, Ebinur Lake has an average temperature of 6.6~7.8 ◦C and
annual precipitation of merely 116.0~169.2 mm. The northwest of the basin is renowned
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for a mountain wind gap known as the Alashan Pass. The annual wind (≥17.2 m/s) days
amount to 164 d, and the maximum wind speed can reach 55.0 m/s. The average depth
for the lake body is 1.4 m, the surface water density is 1.079 g/cm3, the pH is 8.49, and the
salinity is 112.4 g/L. The lake surface area fluctuates considerably throughout the year, and
the water tends to remain highly turbid [31].
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Figure 1. Location of study area: (a) The location and general relief of the Ebinur Lake Watershed in
northwest Xinjiang, China; (b) The location of Ebinur Lake at the center of the Ebinur Lake Watershed;
(c) Ebinur Lake with the locations of five sampling points; and (d,e) Ground photographs of Ebinur
Lake and its arid landscape environs taken in May 2017.

2.2. Data Acquisition and Processing

Observed SPM data from five monitoring sites well distributed across the Ebinur
Lake were collected in May, June, September, and October 2017 (Figure 1c). The SPM
concentration collection and measurement were completed according to the standard
GB11901-89 (1989) [32]. Table 1 lists the statistical characteristics of the collected SPM
samples. The matching time between observed SPM and satellite images should be within
the time window >±7 days [33], so a total of 42 samples, as shown in Figure 2, have been
effectively matched and can be used for the next analysis.

Table 1. Statistical characteristics of SPM samples.

Max
(mg/L)

Min
(mg/L)

Mean
(mg/L)

Std
(mg/L)

SPM (n = 42) 8350.00 18.50 1395.32 2376.33
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Figure 2. Ebinur Lake’s multitemporal Landsat dataset with sampling time window; 73% represents
the proportion of time window less than or equal to three days, and 27% represents more than three
days, for a total of 42 sample points. (The shortest column indicates that the time window is 0).

Landsat ETM+/OLI and MOD09GA were downloaded from the Geospatial Data
Cloud (http://www.gscloud.cn/ (accessed on 15 December 2021)). The fast line-of-sight
atmospheric analysis of spectral hypercubes (FLAASH) module of ENVI 5.5 was used for
atmospheric correction, adopting the MODTRAN4 radiative transfer model that has been
recognized as the best [34]. The Normalized Difference Water Index (NDWI) served as
the land mask to obtain the reflectance image of Ebinur Lake [35]. MOD09GA for MODIS
rasterized two levels of product data, using the GEE (Google Earth Engine) Cloud Remote
Sensing Platform (https://earthengine.google.com/ (accessed on 24 December 2021)) to
download. The data were cut according to the study area, filtered by time and band, and
reprojected into the UTM-WGS 84 geographical coordinate system with a 30 m resampling.
Landsat and sampling time synchronization dates covering the study area are shown in
Figure 2. The spatiotemporal fusion data pairs of Landsat and MODIS are shown in Table 2.

Table 2. The spatiotemporal resolution of the Landsat and MODIS data for Ebinur Lake and the
corresponding dates.

Landsat 8 Spatiotemporal
Resolution MOD09GA Spatiotemporal

Resolution Prediction Time

2017-05-08
30 m/16 d

2017-05-08
500 m/1 d 2017-08-28 (30 m)2017-08-28 2017-08-29

2017-10-15 2017-10-14

The GPS coordinates of sampling points were discretized into space, and the sampling
points were overlaid with Landsat 8 images of Ebinur Lake. The reflectance values of
B2–B5 (Blue, Green, Red, NIR) bands of Landsat 8 at the sampling points were extracted by
ArcGIS. The extracted reflectance values and the observed SPM concentrations were used
for inversion model construction and validation.

http://www.gscloud.cn/
https://earthengine.google.com/
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3. Methods
3.1. ESTARFM Algorithm

The enhanced spatiotemporal fusion algorithm (ESTARFM) was used to generate fused
images of Ebinur Lake’s surface [24]. The algorithm considers the problem of changing
reflectivity over time and is suitable for the changing characteristics of the high SPM in
Ebinur Lake. It required the Landsat and MODIS image pairs of two periods of time. The
Landsat image was fused by calculation processes shown in Figure 3 [20].
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Pre-processing

Figure 3. The calculation processes in realizing the ESTARFM model.

The ESTARFM model took into full account the spatial heterogeneity of MODIS
(coarse spatial, high temporal resolution images) pixels and introduced conversion factors
to improve the fusion simulation results. A moving window of a given size was constructed
by taking the simulated pixel as the central pixel. The homogeneous pixel, whose spectral
features are similar to the central pixel, was calculated and selected within the moving
window to assign weights. Finally, the central value was calculated. The central image
element value was expressed by Equation (1) [24]:

Lb(x w′
2

, y w′
2

, T) = Lb(x w′
2

, y w′
2

, T′) + ∑n
i=1 Wi × vi ×

(
Mb(xi, yi, T)−Mb

(
xi, yi, T′

))
(1)

where Lb and Mb are Landsat (fine spatial, low temporal resolution images) and MODIS
data in band b; w′ is the moving window size; (xw′/2, yw′/2) is the simulated image position;
T, T′ is time; Wi is the weight of the ith image similar to the simulated image spectrum; vi
is the conversion factor of the ith image similar to the simulated image spectrum; n is the
number of images similar to the simulated image spectrum; and (xi, yi) is the position of
the first image similar to the simulated image spectrum.

The Landsat and MODIS data of t1, t3 and MODIS data of t2 were used to simulate
the Landsat data of t2 before and after time and MODIS data of t2 in the intermediate time:
Lb,t(xw′/2, yw′/2, t). The simulated t1, t3 moment fine data of the t2 moment were weighted
to obtain the more accurate t2 moment simulated data, and the weight εt was calculated as
shown in Equation (2). The simulated central pixel value was calculated from Equation (3)
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to obtain the simulated remote sensing data with a high spatial and temporal resolution for
Ebinur Lake [27].

εt =

1∣∣∣∑w′
j=1 ∑w′

i=1 Mb(Xi ,Yj ,t)−∑w′
j=1 ∑w′

i=1 Mb(Xi ,Yj ,t2)
∣∣∣

∑t

(
1∣∣∣∑w′

j=1 ∑w′
i=1 Mb(xi ,yj ,t)−∑w′

j=1 ∑w′
i=1 Mb(xi ,yj ,t2)

∣∣∣
) , t = t1, t3 (2)

Lb(x w′
2

, y w′
2

, t2) = ∑
t

εt × Lb,t

(
x w′

2
, y w′

2
, t
)

, t = t1, t3 (3)

3.2. SPM Inversion Algorithm

Based on the literature, several methods were selected to construct the inversion
model for SPM. The PLS method assesses the degree of influence of the overall sample
on predicted values, thus the combined effect of the individual factors on the prediction
can be fully considered [36,37]. The partial least squares (PLS) method is more efficient
than the general multiple regression method and has more relaxed sample requirements.
PLS is a regression analysis method based on statistical principles. It adopts the idea of
high-dimensional projection to seek the best fitting effect of a linear regression model by
extracting principal components and projecting observed variables and predictive variables
into a new recessive space [38]. The PLS regression model not only contains the advantages
of principal component regression, but also has the characteristics of canonical correlation
analysis. This can effectively solve the problem of multiple correlations between variables,
and can also find the optimal model through the minimum sum of squares algorithm. It
is often used for establishing regression models with fewer observation data but more
variables [39]. The basic steps of PLS model establishment are as follows [40]:

(1) Standardized data matrix X and Y of dependent variable were processed, and the
obtained standardized matrices were expressed as E0 and F0, respectively.

(2) The first pair of components of E0 and F0, t1 and u1, are linear combinations of
standardized variables E0 and F0, respectively, and t1 requires maximum correlation
to u1; then, the regression equations of E0 and F0 on t1 are obtained, and the residual
matrix E1 and F1 of the regression equation can be obtained. E0 is replaced by E1,
and F0 is replaced by F1. The second principal component t2 is obtained by the same
method, and the nth principal component (n is less than the rank of matrix X) can
be obtained.

(3) Convergence is checked to determine the number of principal components extracted.

SVM is a more commonly used method [41]. The implementation principle involves
constructing a hyperplane as the optimal classification surface to maximize the isolated
edges. Compared with traditional empirical learning algorithms, SVM can better handle
dimensional disasters and local minima. RF is a machine-learning technique, a decision
tree—based learner to build bagging integration using the random selection principle for
decision tree growth [42].

RF is an integrated learning method for regression and classification, which com-
bines the bagging method, the random subspace method, and the decision tree method
to improve prediction performance by integrating multiple decision trees to solve the
bottleneck problem of overfitting of single decision trees [43–45]. This algorithm incorpo-
rates the bootstrap aggregating method to generate subsets, i.e., M training sample sets
Dm (m = 1, 2, 3, . . . , n) of the same size as the original sample set are randomly selected
from the original sample set D by bootstrap with put-back, and multiple decision trees
are constructed accordingly. When splitting each node of the decision tree, a random
subspace method is introduced to draw a subset of features uniformly and randomly from
all K features, and an optimal split feature is selected from this subset [46]. Finally, using
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multiple decision trees in parallel, the mean value of the results of multiple decision trees is
obtained as the final prediction result, which can be briefly expressed as:

f̂ =
1
B ∑B

b=1 fb(x) (4)

where f̂ denotes the final prediction result; B is the number of decision trees; fb denotes the
regression function; and x denotes the training sample value.

The advantages of random forest include the use of bootstrapping to alleviate the
problem of high variance and weaken the correlation between decision trees; to take
advantage of the randomness of selecting features by the random subspace method to
enhance the model generalization capability; to average the predicted values of multiple
decision trees to improve the prediction accuracy; and to achieve accurate classification and
prediction of data. The random forest method is simple and efficient, and only needs to
adjust the number of trees in the forest (ntree) and the number of features per node (mtry)
to generate a reasonable model quickly and effectively. Compared with other machine-
learning methods, random forests are highly resistant to overfitting, have a high tolerance
for outliers and noise, and have significant advantages in variable ranking, parameter
optimization, and variable analysis and interpretation [47].

3.3. SPM Inversion Model Construction

The PLS, SVM, and RF inversion models were constructed using Landsat images. The
key features and advantages of the RF inversion model can be highlighted by comparing
the model with the traditional PLS or SVM models. In general, the inversion model
construction can be divided into three major steps as follows [3,5,9]:

Firstly, the scikit-learn tool in Python was selected to implement the RF algorithm, in
which 70% of the sample points were randomly selected as training samples for parameter
search and model construction. The remaining 30% of the samples were used for model
validation. Compared to machine-learning methods such as PLS and SVM, the RF algorithm
is relatively simple in principle and easy to use since it involves only a few parameters.

Secondly, in the scikit-learn’s RF library, the algorithm determines three main pa-
rameters: n_estimators, max_features, and random_state. The number of decision trees
(n_estimators) in bagging framework parameters is obtained by bootstrap resampling.
The use of a small number of decision trees can easily lead to underfitting. Therefore, the
accuracy of the model is often improved by increasing the number of trees. However, when
that number increases to a certain limit, the performance improvement of the model tends
to be stable. Too few features may reduce the models’ predictive power, whereas too many
may reduce its generalization effect and increase the computational effort needed. The
random_state parameter is a random seed. When its value remains unchanged, the same
result can be obtained when the tree is built with the same training set. However, changing
its value will generate different results.

Finally, the parameters of the RF model were set as: random_state at 64, n_estimators
optimal result at 12, and max_features at auto. PLS was set according to the default
parameters. SVM used a linear kernel function, and other parameters were set by default.

3.4. Evaluation of Spatiotemporal Fusion Image Accuracy

The degrees of superiority and inferiority of the spatiotemporal fusion image and
real image quality were evaluated quantitatively. This step was achieved by the Python
image processing function library scikit-image tool for accuracy evaluation analysis. RIF

2,
the normalized root mean square error (NRMSE), the peak signal-to-noise ratio (PSNR),
and the structural similarity index (SSIM) were selected as image quality evaluation
indicators [48,49]. We understood the size of the real image I as m × n, F as the spa-
tiotemporal fusion image, I(i,j) as the real image pixel value, and F(i,j) as the spatiotemporal
fusion image pixel value.
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RIF
2 evaluated the degree of consistency between spatiotemporal fusion images and

real images:

RIF
2 =

 ∑m
i=1 ∑n

j=1

(
I(i,j) − I

)(
F(i,j) − F

)
√

∑m
i=1 ∑n

j=1 (I(i,j) − I)2
√

∑m
i=1 ∑n

j=1

(
F(i,j) − F2

)


2

(5)

NRMSE normalized the value of RMSE to between (0,1) in order to facilitate the
accuracy evaluation of different methods. RMSE is the square root of the deviation of the
reflectance value of the spatiotemporal fused image and the real image from the square
root of the image matrix ratio. The equation is:

RMSE =

√
∑m

i=1 ∑n
j=1 (I(i,j) − F(i,j))

2

mn
(6)

NRMSE =
RMSE

o
(7)

The peak signal-to-noise ratio (PSNR) evaluates the information in the fused image. A
larger value means less image information loss. The mean square error (MSE) is defined as:

MMSE =
1

mn ∑m−1
i=0 ∑n−1

j=0 [I(i, j)− F(i, j)]2 (8)

PSNR = 10 · log10

(
MAX2

(i,j)

MSE

)
(9)

where MAX(i,j) is the maximum image element of the image.
The structural similarity index (SSIM) evaluated the degree of structural similarity

between the spatiotemporal fused images and real images:

SSIM =
(2uIuF + C1)(2σI·F + C2)

(uI2 + uF2 + C1)(σI2 + σF2 + C2)
) (10)

where uI and uF represent the mean values, σI and σF represent the variance between real
images and fused images, respectively, and σI·F represents the covariance between these
two images. The C1 and C2 are the two closest-to-0 constants that are used to stabilize the
results. A SSIM close to 1 indicates a higher structural similarity between the two scenes.

3.5. Inversion Model Stability and Accuracy Evaluation

The Python statistical function library scipy.stats was used for statistical analysis.
Three metrics, namely R2, RMSE, and mean absolute error (MAE), tested whether the
simulated and real measured values were consistent. The calculation principles of R2 and
RMSE have been explained in Section 3.3. MAE represents the mean of the absolute value of
the deviation between the predicted value and the true value. Recognition-primed decision
(RPD) characterizes the ratio of standard deviation to RMSE, which is an important index
to evaluate the model’s predictive ability.

Therefore, MAE was used as an index to evaluate the reliability of the RF model with
two equations [50,51]:

MAE =
1
n ∑n

i=1|yi − yi| (11)

RPD =
SD

RMSE
(12)

In Equation (11), yi denotes the predicted value and yi
′ represent the measured value.

In Equation (12), SD represents the standard deviation, and RMSE is the root mean square
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error. RPD > 2 indicates that the model has an excellent predictive ability; if 1.4 < RPD < 2,
the model offers a rough estimate; if RPD < 1.4, the model is extremely poor and cannot
make accurate predictions [52,53].

4. Results and Analysis
4.1. Performance Evaluation of the Spatiotemporal Fusion Model

The predicted 30 m spatial resolution image of Ebinur Lake taken on 29 August 2017,
was enlisted as a research example. The ESTARFM model was adopted as the main model,
while the FSDAF model was used for comparison to verify model accuracy and feasibility.
Interactive data language (IDL) was used to implement the algorithm. Landsat 8 and
MODIS on 8 May 2017, Landsat 8 on 15 October 2017, and MODIS on 14 October 2017 were
first used as the input image pairs for the ESTARFM model. Then, the Landsat 8 image
taken on 29 August 2017 was predicted. Secondly, the Landsat 8 and MODIS images of
8 May 2017 were used as the inputs of the FSDAF model, and the MODIS of 29 August 2017
was used to predict the fused FSDAF image of the same date. Finally, the fused ESTARFM
and FSDAF images were compared, analyzed, and validated with the Landsat 8 image
taken on 29 August 2017.

Figure 4 compares the ESTARFM and FSDAF fusion images with the real Landsat
8 images. The NDWI index extracted the lake surface. The visual interpretation was
corrected for the lake coverage to achieve the study’s required accuracy. Blue, green, and
red true color bands displayed the lake image, which could visually discriminate the
spatiotemporal fusion model to better generate predicted date images. The quality of the
fused images and the retention of spectral information were quantitatively evaluated by
four metrics, namely R2, NRMSE, PSNR, and SSIM (Table 3 and Figure 5). The quality of
the ESTARFM fused image was better than that of the FSDAF model. The four evaluation
metrics in the green and red bands indicated that the ESTARFM and FSDAF models’
fusion image quality was relatively consistent. However, in the blue and NIR bands,
the FSDAF model fusion image quality was poorer, with a R2 of 0.46, NRMSE of 0.59,
PSNR of 46.22, and SSIM of 0.45, which were lower than the accuracy of ESTARFM fusion
images. Therefore, the ESTARFM model was chosen to fuse the images for the ensuing
SPM inversion study.
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Table 3. The evaluation of fusion image accuracy for the ESTARFM and FSDAF models.

Band
R2 NRMSE PSNR SSIM

ESTARFM FSDAF ESTARFM FSDAF ESTARFM FSDAF ESTARFM FSDAF

Blue 0.70 0.66 0.13 0.21 48.26 44.02 0.61 0.53
Green 0.82 0.83 0.08 0.08 48.44 48.48 0.70 0.70
Red 0.85 0.85 0.12 0.13 48.22 47.64 0.75 0.71
NIR 0.72 0.46 0.42 0.59 49.23 46.22 0.62 0.45
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4.2. SPM Inversion Model
4.2.1. Screening of Sensitive Bands

The absorption and scattering characteristics of light radiation by various substances
in lake water determine its spectral reflection characteristics. When the SPM content in
Ebinur Lake changes, its spectral reflection properties will change correspondingly, leading
to correlations between different bands of image and SPM.

The Landsat 8 and MODIS fusion images had poor consistency on B11 and B12 in the
short-wave infrared band. This issue could affect the fusion image quality and cause a large
error in the inversion of SPM. Thus, more variables were required for the satellite-based
SPM measurement, and it was not possible to rely on a single image band such as the NIR
band. Instead, multiple bands are required for satellite-based SPM inversion modeling.
The reflectance of the B2 to B5 bands of Landsat 8 and the measured value of SPM for
Pearson correlation analysis were selected. The sensitive band of SPM was obtained with
the aid of correlation analysis following the principle of retaining the maximum amount of
information (Figure 6) to ensure the best fitting effect of the RF model.

4.2.2. SPM Inversion Model Performance

Then, the inversion models were trained and built, and their predictive power and
model accuracy were evaluated. The analysis in Table 4 shows the inversion models (PLS,
SVM, and RF) built on Landsat imagery. The R2, RMSE and MAE of the RF inversion
model were significantly better than those of PLS and SVM for Landsat images. Moreover,
the relative analysis error (RPD) of the RF inversion model can be rated as very good.
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Considering the accuracy and stability indicators, the RF inversion model offered the best
option for predicting the high SPM in Ebinur Lake.
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Table 4. Evaluation of the accuracy by PLS, SVM, and RF inversion models.

Remote Sensing
Image

Evaluation
Indicator

PLS SVM RF

Training Set Verification Set Training Set Verification Set Training Set Verification Set

Landsat 8

R2 0.79 0.57 0.65 0.50 0.92 0.78
RMSE 1420.90 2530.50 1873.64 2750.76 870.75 1823.64
MAE 1175.51 1495.02 1072.62 1448.06 587.39 1026.36
RPD 1.55 1.41 2.13

4.3. SPM Inversion Performance of Spatiotemporal Fusion Images

The RF Landsat inversion model was used to analyze the SPM concentrations from
Landsat 8 and ESTARFM fusion images taken on 29 August 2017. Figure 7 denotes the
SPM distribution in Ebinur Lake, indicating an overall high concentration at an average
of 498.73 mg/L for Landsat 8 and 535.98 mg/L for ESTARFM. A sharp SPM increase was
induced in the near-shore area with vigorous interactions between wind-agitated lake
water and lake-bottom sediments. In the lake’s small northern enclave north of the neck
(the constricted portion), the lake bottom was affected by a high amount of salinization
during the water-scarce season. High salinity causes coagulation or flocculation, which
leads to low SPM concentrations during the dry season. In the central neck of the lake, the
SPM level was elevated due to the large influx of water from the main southern portion
into the northern enclave, creating the scouring effect.
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(a) Landsat 8_SPM; (b) ESTARFM_SPM.

The spatial distribution of SPM between the Landsat and ESTARFM inversions was
similar, as shown in Figure 7. SPM concentrations were mainly constant in the main
lake, northern enclave, and lake neck areas. To quantitatively assess the Landsat and
ESTARFM inverse SPM concentrations, a validation procedure was conducted using the
data measured on 3 September 2017. The results are summarized in Figure 8, which
shows that the Landsat inverse SPM (Landsat 8_SPM) strongly correlated (R = 0.88) with
the measured SPM. The ESTARFM inverse SPM (ESTARFM_SPM) correlated with the
measured SPM at R = 0.88, and Landsat8_SPM with ESTARFM_SPM at R = 0.96.
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A total of 1000 random points were selected from the Landsat SPM inversion map and
the ESTARFM fused image inversion map to measure the reliability of ESTARFM fused
image inversion of SPM concentrations. Point determination followed the principle of
using the minimum allowable distance (30 m) when using the random points creation tool
in ArcGIS. Figure 9 indicates that the correlation between the two reached R = 0.65 with
p < 0.01 significance level. This result further illustrates the accuracy and feasibility of
ESTARFM fusion image inversion of SPM.
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5. Discussion

Currently, spatiotemporal fusion models have been applied to mainly terrestrial
features with strong spectral reflection information, such as land use cover, vegetation, and
soil [54]. However, few studies focus on water bodies. The relevant cases include the use of
spatiotemporal fusion models to study water level changes, such as chlorophyll-a (Chl-a)
and chemical oxygen demand (COD), in freshwater lakes [55]. The inversion study of
SPM in Shenzhen Sea using a spatiotemporal fusion model has achieved good results [33].
However, the above studies were conducted on freshwater lakes and coastal regions [56].
There is a lack of relevant studies on brackish lakes in inland drylands. Therefore, this
paper applied a spatiotemporal fusion model to assess the high and variable SPM in Ebinur
Lake. After comparing and analyzing the FSDAF and ESTARFM models, the former, which
has more accurate results, was adopted. The feasibility of applying this spatiotemporal
fusion model to the inversion of SPM in water bodies was further verified by a time series
MODIS SPM inversion experiment for Ebinur Lake. A large accuracy difference was found
between the fused visible band and the NIR, which is most likely due to the absorption
of NIR by water, resulting in a weaker signal and low fusion accuracy. In the future, SPM
concentration inversion followed by fusion research can be considered, which will improve
the accuracy.

The most common SPM inversion models in the literature are regression models; how-
ever, because our work exclusively focuses on specific linear relationships, these models are
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less appropriate [57,58]. The accuracy of PLS is lower than that of RF models. Other tech-
niques, such as SVM and artificial neural network models, cannot mechanically elaborate
the complex internal structure of the model and suffer from various limitations, such as
overfitting and computational overload [59]. Therefore, we considered alternative schemes
and found that RF models have relative advantages in terms of flexibility, robustness, pa-
rameter optimization, and explanatory analysis [60]. The findings show that the correlation
coefficient and model prediction accuracy of RF for SPM are significantly better than PLS
and SVM. This model applies to remote sensing monitoring of SPM in Ebinur Lake and
similar brackish lakes in inland arid regions, but we still need to collect sample points from
other lakes to validate the model. We also need to compare these results with freshwater
lakes to highlight the similarities and differences between them.

In this research, a spatiotemporal fusion algorithm is used to generate remote sensing
images of a lake’s surface for the inversion of the target water quality parameters. The
quality and temporal differences of the input image pairs require different computational
methods to build the spatiotemporal fusion model [61]. The overall trend of the ESTARFM
fused SPM concentration map and the SPM concentration map of Landsat 8 inversion
are consistent in performance, but there are still significant differences in the details, e.g.,
(1) the differences in the shooting time of the MODIS images involved in the fusion; (2) the
imperfections of the fusion algorithm itself; and (3) the accuracy of the inversion model,
which needs to be further improved. These differences may be caused by a variety of
reasons, indicating that for spatiotemporal fusion in water bodies, a momentarily changing
object, there is still a certain degree of difficulty, and time and space requirements are
very high [62]. We also found that the accuracy of the fused SPM concentration map
was lower than that of the original SPM concentration map when we performed accuracy
validation [63]. However, the validation sample points are evenly distributed in the 1:1
line, indicating that it is possible to further improve the accuracy in future studies [64].
Using the optimal inversion algorithm combined with the spatiotemporal fusion model,
the inversion study of water quality parameters with high spatiotemporal resolution is
very promising.

6. Conclusions

This research aims to develop an advanced spatiotemporal fusion model of SPM for an
intermontane lake. In general, the study extracted SPM information from Landsat images
for the period of 2011–2017. After careful analysis, the RF inversion model was chosen to
retrieve the SPM concentrations in Ebinur Lake. The conclusions are as follows:

(1) The overall results of the blue, green, red, and NIR bands generated by ESTARFM
were better than FSDAF when compared with the real images.

(2) The RF inversion models based on Landsat images were proven to be better than PLS
and SVM.

(3) The visual perspective and accuracy assessment showed some consistency in the SPM
concentration retrieved from the fused images of Landsat 8 and ESTARFM.

In the future, we will select analytical or semi-analytical and other algorithms com-
bined with the improved spatiotemporal fusion model for inversion studies of water
quality parameters that require high spatiotemporal resolution. We believe this will achieve
better accuracy.
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