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Abstract: Due to the complexity of urban environments, localizing pedestrians indoors using mobile
terminals is an urgent task in many emerging areas. Multi-source fusion-based localization is
considered to be an effective way to provide location-based services in large-scale indoor areas.
This paper presents an intelligent 3D indoor localization framework that uses the integration of
Wi-Fi, Bluetooth Low Energy (BLE), quick response (QR) code, and micro-electro-mechanical system
sensors (the 3D-WBQM framework). An enhanced inertial odometry was developed for accurate
pedestrian localization and trajectory optimization in indoor spaces containing magnetic interference
and external acceleration, and Wi-Fi fine time Measurement stations, BLE nodes, and QR codes were
applied for landmark detection to provide an absolute reference for trajectory optimization and
crowdsourced navigation database construction. In addition, the robust unscented Kalman filter
(RUKF) was applied as a generic integrated model to combine the estimated location results from
inertial odometry, BLE, QR, Wi-Fi FTM, and the crowdsourced Wi-Fi fingerprinting for large-scale
indoor positioning. The experimental results indicated that the proposed 3D-WBQM framework
was verified to realize autonomous and accurate positioning performance in large-scale indoor areas
using different location sources, and meter-level positioning accuracy can be acquired in Wi-Fi FTM
supported areas.

Keywords: indoor localization; inertial odometry; Wi-Fi fine time measurement; MEMS sensors;
robust unscented Kalman filter

1. Introduction

Precise indoor positioning plays an important role in the field of urban navigation
by providing continuous location-based services (LBS) in urban areas covered by global
navigation satellite systems (GNSS). A range of indoor positioning technologies, such
as Wi-Fi [1], fifth-generation mobile communication technology (5G) [2], ultra-wideband
(UWB) [3], acoustic sources [4], light sources [5], Bluetooth Low Energy (BLE) [6], and
smartphone integrated sensors [7], have been developed to achieve the realization of
positioning performance with different levels of accuracy.

Wi-Fi-based indoor localization is more feasible for the indoor positioning of wide-
area targets due to its low cost, easy maintenance and wide coverage. Normally, a Wi-Fi
positioning system (WPS) contains two main approaches: ranging [8] and fingerprint-
ing [9]. IEEE 802.11-2016 improves the positioning ability of WPS by proposing the Wi-Fi
fine time measurement (FTM) protocol, which is estimated to achieve meter-level Wi-Fi
distance-measurement precision between different smart terminals and corresponding
wireless stations [10]. At this stage, only a fraction of Wi-Fi access points (APs) or mobile
terminals are updated with the FTM protocol; thus, the fingerprinting-based approach
is still important for providing location ability in large-scale indoor areas. Traditional
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Wi-Fi fingerprinting typically involves a point-to-point collection method, which is labor-
consuming and inefficient [11]. The crowdsourcing-based Wi-Fi fingerprinting collection
approach is developed using public daily-life trajectories, and the accuracy of the generated
navigation database is subject to the performance of raw collected trajectories [12], the
number of reference points [13], and the bias of different devices [14].

Micro-electro-mechanical system (MEMS) sensors can determine an accurate short-
term localization performance of pedestrians, while the positioning error can accumulate
over time. In addition, artificial interference can affect the performance of MEMS sensor-
based heading estimations and final location updates [15,16]. Wi-Fi FTM and fingerprinting
approaches can realize more consistent long-term accuracy, but they are susceptible to
inaccuracy in complex indoor scenes, including multipath propagation and non-line-of-
sight (NLOS). Therefore, to improve the precision of indoor pedestrian tracking, a multi-
source fusion approach is usually adopted to combine the superiorities of existing location
sources to achieve precision-controllable indoor localization performance through the
organic combination of different positioning sources [17–19].

To conquer the above challenges, this paper proposes an intelligent 3D indoor posi-
tioning framework based on the combination of Wi-Fi, BLE, QR code, and MEMS sensors
(the 3D-WBQM framework), which enables autonomous and precisely controlled indoor
positioning performance in large-scale indoor spaces. The contributions of this work are
summarized below:

(1) To enhance the performance of MEMS sensor-based dead reckoning, an enhanced
inertial odometry was developed that combines the inertial navigation system (INS)
mechanization with multiple-sensors-originated observations and can significantly
eliminate the effects of magnetic interference and external accelerations.

(2) Three different location sources (Wi-Fi FTM, BLE, and QR) were selected as the
landmark points that can provide an absolute reference for inertial odometry in
large-scale indoor environments, and a dynamic time-warping (DTW) method was
developed to further improve the performance of landmark detection and fingerprint-
ing database generation.

(3) An enhanced multilayer perceptron network (MLP) was proposed to perform an
autonomous error evaluation of crowdsourced trajectories by extracting the spa-
tiotemporal features of the collected trajectories, which can effectively improve the
efficiency of the final Wi-Fi fingerprinting database construction and enhance the
performance of database matching.

(4) Based on the results of inertial odometry, Wi-Fi FTM, crowdsourced fingerprinting,
and landmark recognition, the 3D-WBQM framework was proposed. A robust un-
scented Kalman filter (RUKF) was adopted to integrate all the location sources and
eliminate the effects of outliers. The combination of different integration models pro-
vides a continuous and accuracy-controllable positioning performance in large-scale
and multiple-scene contained indoor environment.

The general structure of this work is as follows. Section 2 presents related works.
Section 3 describes the MEMS sensor-based localization and optimization framework and
the MLP-based crowdsourced trajectories evaluation criteria. Section 4 presents the RUKF-
based 3D-WBQM framework. Section 5 introduces the evaluation performance of the
proposed 3D-WBQM framework. Section 6 summarizes this article.

2. Related Works

In this section, a comprehensive review of previous literature on MEMS sensors,
wireless signals, and multi-source fusion-based positioning solutions is presented and the
challenges faced by each kind of the localization approach are discussed.

2.1. MEMS Sensor-Based Positioning Solution

There are two main MEMS sensor-based localization methods targeting pedestrians:
INS and pedestrian dead-reckoning (PDR) structures. Both INS and PDR can obtain real-
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time position, velocity, and attitude (PVA) information about the user for localization
purposes. Normal PDR mechanization typically consists of four essential stages: gait
recognition [20], step-length update [21], heading calculation [22], and location update [23].
Typically, PDR mechanization is the most widely used solution for pedestrian navigation,
although the performance of PDR is limited by the cumulative errors of low-cost sensors,
complex handheld and motion patterns, and indoor magnetic disturbance [24,25]. An
alternative approach to pedestrian navigation is the strap-down inertial navigation system
(SINS), through which real-time 3D attitude and location can be obtained; however, the
accuracy of SINS is also constrained by sensor errors and SINS cannot be applied for a long
period of time [26].

To limit the cumulative and drifting errors of SINS, various methods have been applied.
The first applications of zero-velocity update technology (ZUPT) and zero-angular rate
update (ZARU) were in the foot-mounted positioning system (FPS), which can significantly
improve the accuracy of FPS. The performance of ZUPT and ZARU degrades when applied
to mobile terminals, due to variation in handheld and walking styles of pedestrians, so
other constraints are required in this case.

Wang et al. [27] analyzed the influencing factors of ZUPT performance and designed
corresponding simulations and experimental analyses, with final experimental results
demonstrating that the rate random walk of the gyroscope contributed most to the detection
performance. Zhao et al. [28] proposed a novel zero-velocity cycle detection algorithm,
which achieved ZUPT detection accuracy by extracting and removing pseudo-zero velocity
cycles and pseudo-motion periods of 87.24%.

The accuracy of the traditional PDR approach in the real world is usually constrained
by low accuracy with respect to walking speed, cumulative errors and heading deviations
due to magnetic disturbance, and changeable handheld modes. Previous researchers have
developed and carried out integrated experiments to reduce errors in the various components.

Tong et al. [22] developed a novel two-step traceless Kalman filter that performed
attitude error correction in two steps by estimating the magnetic vector and gravity vec-
tors. In addition, the hidden Markov model (HMM) was applied to enhance the iden-
tification accuracy of ZUPT cycles and realize more accurate heading estimation and
dead-reckoning performance.

Klein et al. [29] used a machine learning (ML) approach to classify changeable hand-
held modes of mobile terminals and to increase the precision of PDR by selecting appro-
priate gain values. Zheng et al. [30] focused on the pocket mode and swing mode of
smartphones and analyzed the relationship between rotational motion, walking states, and
heading information. An enhanced rotation method and a single-point algorithm were
developed for heading estimation in pocket mode and swing mode, respectively, which
effectively improved the final performance.

Guo et al. [31] proposed a novel algorithm for pedestrian walking-speed estimation by
considering four different handheld modes of smartphones. Feature vectors were extracted
from the collected motion data provided by the integrated sensors, and then the classified
handheld modes were tightly integrated using an adaptive gait-recognition approach. The
final experimental results proved that the presented framework realized a classification
precision of 98.85% and that speed-estimation error was less than 0.061 m/s.

2.2. Wireless-Signals-Based Positioning Solution

Wi-Fi and BLE localization systems, which usually contain approaches based on
wireless ranging and fingerprinting, are regarded as effective and practical approaches for
wireless positioning.

For BLE-assisted localization methods, additional BLE nodes are usually required
to be deployed due to the limited number of local stations. In addition, traditional BLE
RSSI-based ranging methods have degrading localization performance in large-scale indoor
spaces due to signal transmission power, and most mobile terminals do not support
combined methods such as the angle of arrival (AOA) and the angle of departure (AOD),



Remote Sens. 2023, 15, 1202 4 of 25

or the interface is not open. As a result, the BLE proximity detection approaches and the
fingerprinting approach are commonly applied as the positioning solutions in large-scale
indoor environments.

You et al. [32] analyzed the effect of pedestrian swing arms on PDR performance and
used an RSSI-based multipoint localization algorithm to decrease cumulative errors. Luo
et al. [33] proposed an integrated Wi-Fi and BLE positioning framework by using an influ-
ential BLE layout plan and hierarchical topological fingerprinting (HTF), which enabled
the proposed deployment strategy and HTF based on optimal localization performance.

Dinh et al. [34] developed a pedestrian-targeted indoor localization solution that used
BLE beacons and smartphone integrated sensors. A trilateration approach of improved RSSI
analysis provided the accurate initial location of PDR, and a light-weight fingerprinting
approach was proposed to decrease the orbital drift of the PDR. Yu et al. [6] presented a 3D
indoor localization framework based on the integration of BLE nodes and low-cost sensors,
which incorporates INS and PDR mechanization as well as quasi-static magnetic-field
recognition. A DTW-based BLE landmark recognition algorithm was applied to enhance
the detection performance, and the adaptive unscented Kalman filter was finally applied to
realize the meter-level positioning performance in selected experimental sites.

For Wi-Fi based localization methods, the crowdsourced fingerprinting approach is
considered to be an efficient way to autonomously construct a navigation database in large-
scale indoor areas; the performance of the generated crowdsourced navigation database
depends on the quality of the collected daily-life motion traces. Currently, the new Wi-Fi
FTM protocol is supported by a variety of mobile devices and wireless stations, and has
proven to be applicable to be a meter-level location source for large-scale indoor areas. The
combination of Wi-Fi fingerprinting and Wi-Fi FTM provides an autonomous and precisely
controllable solution for large-scale indoor localization.

Sun et al. [35] proposed a secure crowdsourced indoor-positioning scheme that incor-
porated an adversarial sample discriminator, BERT-AD, and an indoor positioning model,
BERT-LOC, to detect fake fingerprinting results and malicious beacons during the online
positioning phase.

Yu et al. [36] compared the major characteristics affecting the performance of Wi-Fi
ranging and designed the NLOS recognition model to decrease the influence of NLOS trans-
mission, and they further combined Wi-Fi FTM with multiple-motion-modes integrated
PDR mechanization and realized high accuracy in NLOS/LOS mixed indoor environ-
ments [37]. In addition, they extended the 2D scene to a 3D positioning scene and used a
traceless partial filter to combine the distance-estimation and landmark-detection results.
The final experimental results indicated that the meter-level localization performance was
stably acquired by the proposed 3D integrated framework [10].

In general, the traditional fingerprinting-based approaches require the off-line phase
of database generation, which is labor-consuming; the crowdsourcing-based algorithm can
provide a more efficient method of database construction, while the effective evaluation
and integration of crowdsourced trajectories is essential. The AOA and time-measurement-
based approaches can realize more automatic localization performance and higher accuracy,
thereby avoiding the time period required to build the navigation database; however,
additional local facilities and consumer terminals are needed to support the AOA or time-
measurement functions. Thus, to provide a more universal indoor-positioning function,
different positioning methods need to be adaptively integrated.

2.3. Multi-Source-Fusion-Based Positioning Solution

Integrated navigation techniques have become increasingly popular in complex indoor
environments, due to their improved robustness and precision, compared with single-
location sources. Existing integration approaches, such as the Kalman filter (KF), the
extended Kalman filter (EKF), and the particle filter (PF), are applied as typical integration
methods for multi-source integrated navigation and localization.
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For large-scale indoor positioning based on wireless signals and MEMS sensors, it
is a challenge to efficiently design integration models for different positioning sources
according to local environments. Furthermore, controlling the quality of each positioning
source and adaptively adjusting the fusion weights in the integration model are a problems
to be faced.

Li et al. [17] developed a robust dead-reckoning (DR)/Wi-Fi fingerprinting/magnetic
matching (MM) fusion framework using a three-step quality-control strategy to enhance the
localization performance from the signal-source level. The estimated experimental results
showed that the proposed approach significantly reduced the root mean square (RMS) of
the localization error by percentages between 13.3% and 55.2% in the tested environments
and motion modes.

Wu et al. [38] used a combination of a mobile-generated Wi-Fi navigation database
and a corner-based geomagnetic matching approach to improve localization precision.
Gauss–Newton algorithms were developed for trajectory optimization, and DTW and
the Pearson correlation coefficient (PCC) were proposed for corner-matching algorithms.
Finally, the proposed algorithm framework was evaluated on two open datasets, with good
performance.

Xu et al. [39] proposed a large-scale acoustic indoor localization system that applied
the integration of BLE nodes, acoustic modules, and MEMS sensors. They applied an
integrated acoustic propagation framework combining frequency-division multiple access,
time-division multiple access, and space-division multiple access, respectively, for acoustic
signal enhancement, and the information from BLE and the floor plan was further fused by
the enhanced PF.

Shi et al. [40] improved the performance of conventional PF by applying the optimal
estimation results in particle swarm to provide a particle selection reference for state-vector
estimation. In addition, an adaptive optimization firefly approach was presented to avoid
the local-optimum problem. The experimental results could realize an average positioning
error within 0.5 m.

Based on the current literature, multi-source fusion is regarded as an effective way to
implement LBS function in large-scale indoor areas, and existing multi-source-fusion-based
positioning systems suffer from the following limitations that need to be addressed: (1) The
MEMS sensor-based position and orientation system (POS) is affected by cumulative error
and magnetic interference in complex indoor environments; (2) Traditional fingerprinting-
based approaches require labor-consuming collection processes, while the performance of
crowdsourcing-based approaches is limited by the uncontrollable accuracy of crowdsourced
trajectories; (3) Effective and adaptive combinations of different location sources are needed
to maintain positioning accuracy in complex and large-scale indoor spaces.

In our work, Wi-Fi FTM, Wi-Fi fingerprinting, BLE, QR codes, and MEMS sensors are
intelligently integrated to provide a large-scale positioning solution aimed at complex and
various indoor scenes. Wi-Fi FTM is more suitably applied in indoor open areas to avoid
NLOS and multipath propagation, while the Wi-Fi fingerprinting approach is more suitable
for applications in narrow indoor areas than in open indoor areas. Thus, in our work, the
Wi-Fi fingerprinting database is autonomously generated using crowdsourced daily-life
trajectories; BLE, Wi-Fi FTM station, and QR codes are applied as the landmark points to
provide reference to crowdsourced daily-life trajectories; and MEMS sensors are applied as
the link between different location sources for more continuous positioning performance.

3. Mems Sensor-Based Localization, Optimization, and Evaluation Framework

MEMS sensor-based localization solutions can provide accurate short-term positioning
results by means of a heading projection method. In this section, an enhanced inertial
odometry is presented which utilizes a combination of different sensors’ information and
observations, and a global optimization algorithm is developed to increase the precision of
the forward trajectory. Furthermore, the optimized trajectories are autonomously evaluated
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by the proposed MLP-based trajectory evaluation algorithm in order to eventually generate
a crowdsourced navigation database.

3.1. Design of Inertial Odometry

Conventional MEMS sensor-based pedestrian tracking approaches typically incor-
porate PDR and INS mechanizations, which are susceptible to cumulative errors from
built-in sensors, indoor artificial interference, and complex motion modes. In this section, a
pre-integrated INS model is applied that takes into account the measurement biases of the
inertial sensors, and it is further combined with multi-level observations to obtain higher
trajectory-modeling precision.

(1) The measurement model for inertial sensors: Because of the low-cost nature of
MEMS sensors, the estimated biases of accelerometers and gyroscopes need to be compen-
sated in real time for error constraint. The modeled outputs for acceleration and angular
rate are described as [23]:{

a−(t) = a(t) + ba(t) + Rw(t)gw + na
w−(t) = w(t) + bw(t) + nw

(1)

where a−(t) and w−(t) represent a modeled real-time measurement of acceleration and
angular rate information; a(t) and w(t) represent ideal acceleration and angular rate data;
Rw(t) indicates the attitude matrix with timestamp t; and gw indicates the local gravity
value. na and nw are the measurement noises that are the derivatives of ba(t) and bw(t),
both following the Gaussian distribution. In this case, the biases of the accelerometer and
the gyroscope are modeled as the random walk procedure:{ .

ba(t) = nba , nba ∼ N(0, σ2
ba
)

.
bw(t) = nbw , nbw ∼ N(0, σ2

bw
)

(2)

(2) Pre-integration: For two adjacent sampling periods [tu, tu+1], the 3D location Pbu
bu+1

,

speed Vbu
bu+1

, and attitude φbu
bu+1

information can be updated based on the last moment of
motion information and estimated sensor bias:

Pbu
bu+1

=
∫ ∫

t∈[tu ,tu+1]
Rbu

t (a−(t)− ba(t))dt2

Vbu
bu+1

=
∫

t∈[tu ,tu+1]
Rbu

t (a−(t)− ba(t))dt

φbu
bu+1

=
∫

t∈[tu ,tu+1]
1
2 Ω(w−(t)− bw(t))φbu

t dt

(3)

where Rbu
t is the rotation matrix and Ω is described as:

Ω(w) =

[
−bw×c w
−wT 0

]
, bw×c =

 0 −wz wy
wz 0 −wx
−wy wx 0

 (4)

where w =
[
wx wy wz

]
indicates the three-axis angular velocity vector.

(3) Error correction: Following the sensor-bias-estimation procedure, the updated bias
is further applied to the model correction using first-order approximations:

Pbu
bu+1
≈ P̂bu

bu+1
+ JP

ba
δbau + JP

bw
δbwu

Vbu
bu+1
≈ V̂bu

bu+1
+ JV

ba
δbau + JV

bw
δbwu

φbu
bu+1
≈ φ̂bu

bu+1
⊗
[

1
1
2 Jφ

bw
δbwu

] (5)
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In the case of indoor artificial disturbances and complex motion modes, errors in the
corrected motion information also cumulate, so additional observations are required to
further minimize errors.

3.2. Observations and Trajectory Optimization

Limited by the cumulative errors from the built-in sensors of low-cost terminals,
a single pre-integrated INS cannot realize accurate 3D indoor positioning by itself. In
this section, multi-level observations are proposed to reduce the cumulative errors of
pre-integrated INS systems by comprehensively considering environmental factors.

(1) Quasi-static magnetic field (QSMF) recognition: In indoor scenes containing com-
plex artificial interference, detection of the disturbed local magnetic fields is required to
improve heading-estimation performance [24]. The local magnetic fields of pedestrians
during straight indoor travel are collected for QSMF detection:

Mn
refer = Cn

b,1 ·M
b
k,1 (6)

where Mb
k,1 denotes the first magnetic output epoch under the recognized QSMF period

and Cn
b,1 indicates the attitude matrix at the current moment. Mn

refer denotes the calibrated
local magnetic vector, applied as the reference magnetic field:

δzn
M = Cn

b,k ·M
b
k −Mn

refer (7)

where Mb
k indicates the magnetometer collected at other epochs of the detected QSMF

period and Cn
b,k indicates the pose matrix at other QSMF moments.

(2) External acceleration observation: In the case of complex motion models of pedestri-
ans, external acceleration can degrade the performance of roll- and pitch-angle estimation in
the calculated attitude matrix [25]. In this section, external acceleration values are modeled
as an observation equation:

δfn = fn − Ĉn
b f̃

b

≈ fn − (I− [ψ×])Cn
b fb + Cn

b na
= [ψ×]fn + Cn

b na
= [fn×]ψ+ Cn

b na

(8)

where fn represents the reference local gravity, f̃
b

represents the accelerometer output, and
ψ× indicates the skew-symmetric matrix derived from the error vector-attitude vector
φbu

bu+1
. The measurement noise na is adaptively adjusted to the context of the calculated

external acceleration:

na =


σa, γ ≤ v1
(γ2/P)σa, v1 < γ ≤ v2
∞, γ > v2

(9)

where γ =

√∣∣∣norm(fb)− g
∣∣∣ is the estimated external acceleration value, σa is the bias

stability of the accelerometer, and P is the covariance matrix in the RUKF. The parameter v1

is calculated by
√

σ2
ax + σ2

ay + σ2
az , σax , σay , and σaz represents the bias stability originated

from the accelerometer. The parameter v2 is calculated by s · |g| and the scale parameter s
needs to be turned according to the design requirement of the applications.

(3) The PDR mechanization can provide the relative step-length originated walk-
ing speed and the location increment to constrain the drift error of the pre-integrated
INS solution:

δzn
v = vn

Step − vn
INS

(10)
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where vn
Step represents the calculated gait length value provided in [6] and vn

INS
is the

velocity information provided by the pre-integrated INS solution. The observed residuals
of two vectors are described as:

δzn
p = pn

Step − pn
INS

(11)

where pn
Step represents the calculated 2D position results using PDR mechanization and

pn
INS

indicates the inertial mechanization based on location estimation result.
The attitude-estimation performance using inertial mechanization will accumulate

rapidly; thus, in this work, the barometer-originated observation is adopted for drift-error
constraint of altitude estimation:

δzn
h = hn

B − hn
INS

(12)

where hn
B indicates the height of the barometer origin presented in [6] and hn

INS
is the z-axis

location change estimated by inertial mechanization.
To further improve the accuracy of forward inertial odometry, a global optimization

module was designed in this work, aiming to reduce the cumulative and drift errors origi-
nated by the smartphone integrated sensors and the dead-reckoning algorithm. Forward–
backward smoothing filters were applied for location and attitude optimization, using the
forward-navigation information [12]:

x̂k−1|k = x̂k−1 + Pk−1φT
k (P

−
k−1

)
−1

(x̂k − x̂k
−) (13)

Pk−1|k = Pk−1 − (Pk−1φT
k (Pk

−)
−1

)(Pk − Pk
−) · (Pk−1φT

k (Pk
−)
−1

)
T

(14)

where x̂k and x̂k
− represent the updated state vectors recorded during forward inertial

ranging and the recorded predicted state values. P−
k−1

is the predicted covariance matrix
recorded during forward inertial odometry. φT

k is the state-update matrix for the current
moment and Pk−1 is the recorded updated covariance matrix. x̂k−1 and x̂k−1|k indicate
the smoothed state vectors for the current and last moments and Pk−1|k represents the
corresponding smoothed covariance matrix.

3.3. MLP-Based Crowdsourced Trajectories Evaluation Algorithm

After the optimized trajectories were processed and collected, the trajectory error
needed to be predicated for further trajectory selection and fusion. This section presents
an MLP-based trajectory-error-prediction model that uses only motion features extracted
from optimized trajectories to predict the accuracy of crowdsourced trajectories. Compared
with other classical structures, such as long short-term memory (LSTM) [41] and the
convolutional neural network (CNN) [42], MLP networks have a simpler structure and
are more efficient to train. In addition, MLP networks can effectively learn and extract
features from crowdsourced indoor trajectories and they are not limited by the length
of the input vector. To improve the precision of the MLP-based error-evaluation model,
different trajectory information features were extracted as input vectors in the MLP training
phase, including:

(1) The step length calculated in real time during each gait;
(2) Estimated heading result vk during each gait procedure;
(3) Cumulative numbers of steps ηk from the first moment;
(4) Cumulative change in heading, which is calculated as follows:

∆ϑ(k) =
n

∑
k=1

√
|vk

2 −vk−1
2| (15)

where ∆ϑ(k) indicates the cumulated heading difference and vk is the real-time heading information;
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(5) Ratio between used distance and total distance:

ξd(k) =

β

∑
k=1

Lk

n
∑

k=1
Lk

(16)

where n represents the recorded gait quantity of the specific trajectory and β indicates the
taken gaits;

(6) Ratio between used time and total time:

ξt(k) = T(k)/Ttotal (17)

where Ttotal represents the overall time period of specific trajectory and T(k) indicates the
current time used;

(7) The ratio of the number of steps taken to the total number of steps:

ξs(k) = step(k)/steptotal (18)

where steptotal represents the total gait detected under the selected route and step(k) indi-
cates the taken gait number at current moment.

The presented characteristics can adaptively simulate the accuracy of the selected
crowdsourced trajectory from different perspectives, which will further be constructed
as the input vector in the MLP model for training purposes; the input vector and output
vector of the MLP network is described in Figure 1.
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where ( )kϑ∆  indicates the cumulated heading difference and kϖ  is the real-time 
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where n represents the recorded gait quantity of the specific trajectory and β  indicates 
the taken gaits; 

(6) Ratio between used time and total time: 

( ) ( ) /t totalk T k Tξ =  (17) 

where totalT  represents the overall time period of specific trajectory and ( )T k  indicates 
the current time used; 

(7) The ratio of the number of steps taken to the total number of steps: 

( ) ( ) /s totalk step k stepξ =  (18) 

where totalstep  represents the total gait detected under the selected route and ( )step k  
indicates the taken gait number at current moment. 

The presented characteristics can adaptively simulate the accuracy of the selected 
crowdsourced trajectory from different perspectives, which will further be constructed as 
the input vector in the MLP model for training purposes; the input vector and output 
vector of the MLP network is described in Figure 1. 
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Figure 1. Structure of presented MLP network.

The loss function of the presented MLP is modeled as:

Loss(α, β) =
1

2m∑
x
‖g(x)− η‖2 (19)

where α and β represent the weight and bias vectors, g(x) indicates the calculated result
during each training phase, and η indicates the reference output vector. The stochastic
gradient descent (SGD) is adopted for model training, which is described as:

αk → αk = αk − ν
m ∑

j

∂Lossxj
∂αk

βl → βl = βl − ν
m ∑

j

∂Lossxj
∂βl

(20)
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where ν represents the set learning rate during training phase and αk and βl are the trained
weight and bias parameters, respectively. The trained model of the MLP is further applied
for the autonomous evaluation of crowdsourced trajectories.

4. Intelligent Integration Model of Wi-Fi/BLE/QR/Mems Sensors

This work provides an enhanced integration model of Wi-Fi/BLE/QR/MEMS sensor-
based location sources. In the off-line phase, the original trajectory is optimized based on
the Wi-Fi/BLE/QR-provided reference-points information, and the MLP-based trajectory
evaluation framework is further employed to construct a crowdsourced fingerprinting
database. In the online phase, the 3D attitude, speed, and location information provided
by inertial odometry are further integrated with the wireless-signal-based observations,
such as Wi-Fi RSSI- and FTM-based ranging results, Wi-Fi fingerprinting results, and
landmark-detection results through RUKF, and the navigation error is corrected through
a multi-source fusion procedure. The final 3D location, speed, and attitude are updated
with the aim of providing accurate location-based information in large-scale indoor spaces.
Figure 2 depicts the overall framework of the proposed 3D-WBQM algorithm.
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4.1. Wi-Fi/BLE/QR-Based Landmark Detection and Uncertainty Measurement

To autonomously generate a crowdsourced Wi-Fi fingerprinting database indoors,
reference to landmark points is required to provide absolute locations for the collected
crowdsourced indoor trajectories in order to further optimize the crowdsourced trajectories.
Based on the signal transmission characteristics of different localization sources, in order to
cover different indoor scenarios, Wi-Fi FTM-supported sites, BLE nodes, and QR codes are
mixed in this work in order to provide reliable landmark-detection information according
to different indoor-localization scenarios. Among them, QR codes are usually deployed
near the gate, BLE nodes are usually deployed at corridors or lifts, and Wi-Fi stations are
more suitable for deployment in open areas to improve landmark-detection performance.
The Wi-Fi/BLE/QR-based landmark detection is depicted in Figure 3.
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Figure 3 shows that the measurements acquired from the local wireless stations demon-
strate regular peaks during the passage of pedestrians. In this part, a universal wireless
landmark-recognition approach is presented for the accurate detection of BLE- and Wi-
Fi-based landmark points. For real-world scenes, the measured BLE RSS- or the Wi-Fi
FTM-based range results are affected by the multipath propagation and NLOS effects, so
that the range distribution collected in real time shows fluctuating results, with differences
compared to the ideal range-result distribution.

In order to improve the performance of the ground-marker category and reduce
the influence of environmental factors, this work developed DTW matching using the
calculated distances acquired from the Wi-Fi ranging and BLE RSSI. The real-time ranging
results from Wi-Fi ranging and BLE RSSI are described as:

Lobserved = LFTM + dN + drandom (21)

where Lobserved is regarded as a real-time modeled Wi-Fi distance measurement which
contains NLOS erroe dN and random error drandom, as well as the ground-truth value LFTM.

The BLE RSSI can also be applied to distance measurements, and the conversion
equation between the measured distance and the measured RSSI value is described as:

Lr(ς) = L0(ς0)− 10µlg(
ς

ς0
) + δ (22)

where Lr(ς) indicates the measured BLE RSSI at the range ς between the pedestrian
and BLE node, ς0 indicates the ground-truth distance, L0(ς0) is the reference RSSI at the
known distance d0, µ indicates the path loss index, and δ represents the random error of
measured RSSI.

In the procedure of the pedestrian walking past a local wireless landmark, normally
the measured distance set between smartphone and landmarks would generate regular
peaks. Normally, there exists an ideal distribution to describe this procedure, which
is generated using the constant walking-speed information and the calculated distance
between the pedestrian’s ideal position and the location of landmarks, as shown in Figure 3,
while the collected distance set is affected by the real-world environments. To decrease
the environmental effects, this paper proposed the DTW-assisted landmark recognition
algorithm based on the calculated similarity results of the real-time collected measurement
vector and the self-generated reference vector:

DTW(ξrefer, ξk)
= Dist(en, fm) + min[D(en−1, fm), D(en, fm−1), D(en−1, fm−1)]

(23)

where DTW(ξrefer, ξk) indicates the cumulated DTW indices of the real-time collected
measurement vector and the generated reference vector, ξrefer and ξk represent the corre-
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sponding distributions that contain the ranging values en and fm. D(en−1, fm) denotes the
calculated absolute value of the difference between the ranging values en−1 and fm.

4.2. Multi-Source Integration via Robust Unscented Kalman Filter

In this work, in order to cover a large-scale indoor space, hybrid measurements were
used as the observation model, including the Wi-Fi FTM- and BLE-based ranging results,
landmark-detection results, and MEMS sensor-based estimation results:

δzd =

 δz1,ranging
...

δzm,ranging

 =

 ζMEMS,1 − ζwi f i/ble,1
...

ζMEMS,m − ζwi f i/ble,m

 (24)

where δzm,ranging indicates the calculated observation residuals between MEMS sensor-
based distance-estimation results and the wireless-signal-based ranging results.

To provide a full range of observations, the landmark-detection results of Wi-Fi FTM
stations can also be served as the observed location for the MEMS-sensor approach:

δzn
r = rn

wi f i − rn
MEMS

= δr + nwi f i (25)

where rn
wi f i represents the location of the Wi-Fi FTM station obtained when the landmark is

detected; in this case, the uncertainty error of detected Wi-Fi landmarks can be described as:

nwi f i ∼
∂

∑
τ=0

vn
RUKF

(τ)dτ (26)

where vn
RUKF

(τ) represents the RUKF-provided speed information in the landmark-detection
procedure, τ indicates the recorded timestamp, and ∂ is the half-length of the DTW period.

BLE landmarks can also be identified when the DTW index meets a set threshold, and
the absolute 3D position provided by the recognized BLE landmark is described as:

δzn
p = pn

BLE − pn
INS

= δp + nBLE (27)

where pn
BLE indicates the 3D position of the recognized BLE landmark; the measurement

error of the detected BLE landmark is calculated as:

nBLE ∼
∂

∑
τ=0

vn
INS

(τ)dτ (28)

where vn
INS

(τ) represents the travel speed of the inertial ranging provided within the time
window applied, τ indicates the time epoch, and ∂ indicates the length-of-time window.

To improve the diversity of landmarks, the QR code is applied as a third kind of
landmark point, which also provides absolute 3D location information:

δzn
p = pn

QR − pn
INS

= δp + nQR (29)

where pn
QR indicates the 3D positioning information of the scanned QR code; the measure-

ment error of scanned QR code is calculated as:

nQR ∼
∂

∑
τ=0

vn
INS

(τ)dτ (30)

where vn
INS

(τ) represents the inertial odometry-provided walking speed during the time
period of camera scanning, τ indicates the time epoch, and ∂ indicates the recorded time
period of the camera scanning.
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To reduce the impact of gross errors in measurement-positioning sources, RUKF is
used to achieve accurate and stable multi-source fusion based on the indoor positioning
framework, as the ranging models based on Wi-Fi FTM and BLE RSSI are non-linear in
the multi-source fusion process; hence, there is a need to use UKF for effective fusion, and
the variance expansion parameter can effectively overcome the observed gross errors to
improve the final positioning accuracy. In this context, we proposed the variance inflation
parameter to adjust the weights of the measurement vectors accordingly:

λii =

 1,
∣∣∣ṽi

∣∣∣= ∣∣∣ vi
σvi

∣∣∣ ≤ c
|ṽi |

c ,
∣∣∣ṽi

∣∣∣> c
(31)

where vi represents the observed residuals of the corresponding location source and adap-
tively adjusts the weight according to the comparison ratio of the threshold c. In this case,
the threshold c is set as a constant value, which is within the range 1 to 1.5 according to the
real-world localization performance in corresponding indoor environments.

The other steps of proposed RUKF are as follows:

(1) Calculate the residual of the state vector:

VXk
= X̂k − Xk = X̂k − φk,k−1X̂k−1 (32)

(2) Calculate the observation residual at the current moment:

Vk = AkX̂k − Lk (33)

(3) Calculate the optimal state parameter that satisfies the minimum summation of the
state prediction error and the observational residual error:

Ωk = VT
k PkVk + αkVT

Xk
PXk

VXk
= min (34)

where Pk and Lk indicate the robust equivalent weight matrix and αk is the adap-
tive parameter.

(4) Update the optimal state vector:


AT

k PkVk + αkPXk
VXk

= 0
AT

k Pk(AkX̂k − Lk) + αkPXk
(X̂k − Xk) = 0

(AT
k Pk Ak + αkPXk

)X̂k = (AT
k PkLk + αkPXk

Xk)

X̂k = (AT
k Pk Ak + αkPXk

)
−1

(AT
k PkLk + αkPXk

Xk)

(35)

In which the related parameter αk is adapted as:

αk =


1,
∣∣∣∆X̃k

∣∣∣≤ c

c
|∆X̃k| ,

∣∣∣∣∆X̃k

∣∣∣∣> c
(36)

5. Experiment Results of the 3D-WBQM Algorithm

In this section, we describe a series of experiments that were designed to validate the
performance of inertial odometry, landmark detection, an enhanced MLP-based trajectory
evaluation framework, and the proposed 3D-WBQM algorithm. Two different indoor
scenes were used as experimental sites, one containing a corridor-based scene and the other
containing a 3D scene with two adjacent floors. Wi-Fi AP used Google Wi-Fi as the hardware
and software platform and applied Google Pixel 1–4 to track the user; it supported Android
10-based Wi-Fi FTM and enabled real-time distance measurement between smartphones
and surrounding Wi-Fi Aps. In addition, the sensors for the example accelerometer, the
gyroscope, and the magnetometer were integrated. The BLE node used TI’s CC2640 chip,
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which supported the Bluetooth 5.0 protocol. The sampling rates of the MEMS sensors,
Wi-Fi FTM, BLE, and Wi-Fi fingerprinting were 50 Hz, 5 Hz, 5 Hz, and 0.3 Hz, respectively.
Under the offline phase, the crowdsourced trajectories provided by different users were
evaluated and integrated together to autonomously generate the Wi-Fi fingerprinting
database. Under the online phase, the real-time-collected FTM ranging results, the BLE
RSSI, sensors data, and the Wi-Fi matching result were adaptively integrated in order to
provide accurate and continuous positioning results under large-scale and multi-scenes
contained indoor environments.

5.1. Accuracy Estimation of Inertial Odometry

The biggest problem with inertial odometry is the cumulative errors that occur when
using for a long time period, especially under magnetic-interference contained indoor
environments. In this work, to estimate the performance of the designed inertial odometry,
an indoor scenario with a long corridor was used as the experimental scenario, as described
in Figure 4. The tester began with point A, through to points B, C, D, E and F, and then
returned to point A. For the long-term positioning accuracy evaluation, this walking route
was repeated 12 times, and the total estimation period lasted more than 25 min. The
collected magnetic environment in this scene is shown in Figure 5.
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Figure 5. Description of indoor magnetic field.

As can be seen in Figure 5, the selected experimental site contained serious magnetic
interference that needed to be detected and eliminated. A comparison of the performance
between the inertial odometry originated heading, the gyroscope originated heading, and
the magnetic heading is shown in Figure 6.



Remote Sens. 2023, 15, 1202 15 of 25

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 25 
 

 

E

DC

BA

F

 
Figure 4. Experimental site of first scene. 

 
Figure 5. Description of indoor magnetic field. 

As can be seen in Figure 5, the selected experimental site contained serious magnetic 
interference that needed to be detected and eliminated. A comparison of the performance 
between the inertial odometry originated heading, the gyroscope originated heading, and 
the magnetic heading is shown in Figure 6. 

 

Figure 6. Comparison of heading estimation. 

Figure 6 shows that the magnetic heading can be seriously affected by indoor 
artificial interference and caused large fluctuations. The gyroscope heading showed 
cumulative error, with the heading error increasing over time. The odometry-provided 
heading maintains high accuracy and stability after long-term application and the 
estimated error was less than 2°. 

0 500 1000 1500
10

20

30

40

50

60

70

80

Time (s)

M
ag

ne
tic

 m
od

ul
us

 (G
)

 

 
Local Macnetic Field

0 500 1000 1500
-200

-150

-100

-50

0

50

100

150

200

Time(s)

A
ng

le
(d

eg
)

 

 
Gyroscope Heading
Magnetic Heading
Odometry Heading

Figure 6. Comparison of heading estimation.

Figure 6 shows that the magnetic heading can be seriously affected by indoor artificial
interference and caused large fluctuations. The gyroscope heading showed cumulative
error, with the heading error increasing over time. The odometry-provided heading
maintains high accuracy and stability after long-term application and the estimated error
was less than 2◦.

The positioning performance of the proposed inertial odometry approach was com-
pared with the improved step-length-based approach (ISL) proposed in [40]; to be fair,
the same inertial odometry-originated heading was adopted in this case, and the final
localization performance comparison is shown in Figure 7.
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Figure 7 shows that the inertial odometry approach demonstrated better localization
performance compared with the ISL approach; the cumulative positioning error maintained
a slower divergence. The evaluated localization errors for the inertial odometry approach
and ISL approach are compared in Figure 8.
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Figure 8. CDF error comparison.

Figure 8 shows that the estimated positioning error of the proposed inertial odometry
method in this work provides better localization accuracy than the ISL approach, with an
overall estimated positioning error during a time period of 25 min lower than 5.46 m in
75%, compared with the ISL approach with a positioning error of 9.08 m in 75%.

5.2. Accuracy Estimation of Landmark Detection and Trajectory Evaluation

This work employed three different landmark providers, including Wi-Fi FTM stations,
BLE nodes, and QR codes, which could cover large-scale indoor environments containing
different scenes. A DTW-based landmark-recognition approach was developed to imple-
ment a universal strategy for providing absolute location information to inertial odometry.
The raw-collected RSSI or the RTT information was transferred as a ranging distance, which
was modeled as the real-time distribution of the DTW algorithm, and the DTW algorithm
compared the deviations of the reference distribution and the real-time distribution and
found the nearest distance between the pedestrian and the landmarks. The results of the
comparison between the reference and real-time distributions are shown in Figure 9 and
the results of the DTW calculation are shown in Figure 10.
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In addition, we conducted a comprehensive comparison of our proposed DTW ap-
proach with two different BLE- and Wi-Fi-based landmark-detection algorithms—the
hybrid detection approach (HDA) [10] and critical point finding (CPF) approach [43]. The
comparison results of Wi-Fi- and BLE-based landmark detection are described in Figure 11.
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Figure 11. The Errors Comparison of Landmark Detection Algorithms.

Figure 11 shows that the DTW-based landmark detection approach provided better
recognition accuracy in the cases of both Wi-Fi- and BLE-detection. The overall detection
errors for both Wi-Fi- and BLE-based landmarks were below 0.25 m in 75% and 0.52 m in
75%, respectively.

We have provided a brief summary of the three different landmark-detection ap-
proaches. The general performance comparison of three kinds of landmark-detection
approaches is set out in Table 1.
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Table 1. Performance comparison of landmark detection approaches.

Landmarks Accuracy Time Cost

Wi-Fi Station 0.25 m (75%) Quick High
BLE Node 0.52 m (75%) Quick Medium
QR Code 0.76 m (75%) Slow Low

Table 1 shows that the Wi-Fi station provided the best landmark-recognition accuracy
due to the precise observation of Wi-Fi FTM. The BLE node had higher detection accuracy
than the QR code-based method, and both Wi-Fi and BLE were more costly when deploying
landmark points. The QR landmark-detection accuracy was estimated by calculating the
distance between the positions of different people, scanning the QR codes and the real
locations of the QR codes based on the statistical results collected from 105 different users.
In addition, other factors would also affect the performance of landmark detection, such
as the channel and the coherence time of the used bands and the signal-processing mode
of equipment manufacturers. In this case, we also tested the Wi-Fi APs with 5 GHz
and 2.4 GHz bandwidths, respectively, and the DTW matching algorithm was applied to
realize landmark detection by using a period of collected data instead of instantaneous
data, which would have decreased the effects of hardware difference; more effects of the
channel and the coherence time of the used bands could be further explored to improve the
landmark-detection algorithm.

In this work, the crowdsourced trajectories were autonomously evaluated by an
enhanced trained MLP error-prediction structure. During the training phase, the data were
collected from different indoor environments, inluding the office scene, the corridor scene,
and the shopping mall scene. A total of 105 trajectories collected from different scenes were
adopted as the training dataset, and after the training phase, the trained error-prediction
model was applied to evaluate the localization error of each step period on the same
trajectory. The final estimated accuracy of the error-prediction model was compared with
the raw MLP model proposed in [8] on the same testing dataset, as described in Figure 12.
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Figure 12. Accuracy of MLP error prediction.

As can be seen in Figure 12, the enhanced MLP model provided better trajectory
error-prediction performance, reaching 0.65 m in 75%. The overall trajectory error larger
than the set threshold was not considered in the procedure of the final crowdsourced
navigation database generation. To evaluate the accuracy of Wi-Fi fingerprinting based on
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the generated navigation database, the basic k-nearest-neighbors algorithm (KNN) and
the support vector machine (SVM) were applied for Wi-Fi fingerprinting classification. In
this case, we also compared the performance of two kinds of navigation database: the
proposed MLP-enhanced database (CED) and quality-evaluation-aimed database (QED) [9].
A comparison of the final localization accuracy using KNN and SVM is shown in Figure 13.
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Figure 13 shows that the proposed MLP-based database construction algorithm ef-
fectively improved the robustness of final generated database and obtained much better
positioning performance than other algorithms; the estimated positioning error was within
5.22 m in 75% using different database matching algorithms.

5.3. Experiment Results of the 3D-WBQM Algorithm

In this section, two adjacent floors containing the open area and corridor area were
adopted as the second experimental scenario, which is described in Figure 14. Three Wi-Fi
APs were deployed at the gates and the elevator entrance of the fourth floor and the BLE
nodes were deployed at the corridor scene; points L, O, R, W, Z, and the QR codes were
deployed at gate points K and P. The crowdsourced trajectories were collected during
a period of two days and an overall number of 46 trajectories provided by the different
pedestrians were selected and generated as the final crowdsourced navigation database.
For the accuracy evaluation of the 3D-WBQM framework, a cross-floor experiment was
conducted; the tester began with point A, proceeded across point B–Z, and finally returned
to point A. The specific route was A, B, C, D, E, F, G, A, D, E, H, I, F, G, J, K, L, M, N, O, N,
M, L, K, P, Q, W, X, Y, Z, Y, X, W, Q, R, S, V, U, T, S, R, Q, P, F, G, A. The estimated 2D and 3D
trajectories calculated by the inertial odometry- (IO) and RUKF-based multi-source fusion
frameworks using the different combinations of location sources are shown in Figure 15a,b.

Figure 15 indicates that that there was a cumulative error in inertial ranging as usage
time grew, especially when the pedestrians walked across floors. The proposed 3D-WBQM
framework significantly reduced the cumulative errors in inertial odometry by fusing
multi-source information using a universal fusion approach. A comparison of the CDF
errors between the two methods is shown in Figure 16.
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turning points of walking route, red arrows indicates the moving direction).

Figure 16 describes the significant improvement of 3D indoor-localization perfor-
mances using the 3D-WBQM framework compared with a single inertial odometry ap-
proach. The overall estimated localization error was within 4.4 m in 75%, using the
integration of IO, BLE, and QR; the overall estimated localization error was less than 3.55 m
in 75% using the combination of IO, BLE, and QR and crowdsourced Wi-Fi fingerprinting;
the overall estimated positioning error as within 1.66 m in 75% using the combination of IO,
BLE, and QR, crowdsourced Wi-Fi fingerprinting, and Wi-Fi FTM, especially in the Wi-Fi
FTM-supported indoor area, where the localization accuracy reached 1.08 m in 75%.

Finally, we performed a comprehensive comparison between the proposed 3D-WBQM
framework and the state-of-the-art WFS-F solution [44], which contained hybrid fingerprint-
ing of Wi-Fi FTM and RSSI. To be fair, the same constructed crowdsourced database was
adopted, and the FTM database was generated using the same crowdsourced trajectories
data. In addition, the same test routes were applied to the positioning-accuracy estimation.
The result of the comparison of the two algorithms is shown in Figure 17.
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Figure 15. (a) Estimated 2D trajectories using inertial odometry and RUKF; (b) estimated 3D 
trajectories using inertial odometry and RUKF. 
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Figure 16. Estimated CDF errors using inertial odometry and RUKF.
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Figure 17. Comparison result of the 3D-WBQM framework and the WFS-F.

It can be seen in Figure 17 that the presented 3D-WBQM structure achieved higher
positioning precision than the WFS-F approach, with the overall positioning accuracy of
the two algorithms reaching 1.66 m in 75% and 2.33 m in 75%, respectively. Therefore,
the proposed 3D-WBQM framework realized an autonomous and highly adaptive 3D
indoor-localization performance than those of other localization approaches, providing a
comprehensive solution for large-scale indoor localization.

Furthermore, there are some other factors that affect the performance of the overall
3D-WBQM framework. First, the number of extracted features and the trained trajectories
led to different performances of the final error-prediction model. The minimum amount
of trajectories applied needed to fulfil the requirement of model convergence; the specific
quantity depends on the structure of the deep-learning model and the training method
under comprehensive experiments. In addition, the landmark-detection algorithm can
provide reference locations for human motion; the farther the pedestrian is from landmarks,
the worse the detection performance. Thus, in the range where the RSSI attenuation is
small, normally not exceeding the effective distance of 1~3 m, the landmark-detection
algorithm can maintain accuracy and the DTW matching method can also be applied to
decrease the effects of the differences in indoor scenes.

6. Conclusions

To improve localization ability for large-scale indoor spaces, this paper proposed the
3D-WBQM framework, which mainly consists of four main sections:

(1) MEMS sensor-based inertial odometry, which contains the multi-level observations
and trajectory optimization modules;

(2) MLP-based crowdsourced trajectories evaluation strategy, which can autonomously
predict the error of each collected trajectory and improve the robustness of the final
generated navigation database;

(3) Three different kinds of landmark points and the DTW-based universal landmark-
detection algorithm, which provide accurate absolute locations for the MEMS sensor-
based approach; and

(4) Multi-source fusion-based localization using RUKF.

A universal model was proposed that adaptively integrates the different location
sources and adjusts the weight of each location source in real time.

The experimental results demonstrated that the presented 3D-WBQM framework is
capable of achieving autonomous and highly adaptive 3D indoor-positioning accuracy
for large-scale indoor areas, with a final evaluated positioning error lower than 1.66 m in
75% in complex and multi-floor contained indoor environments, and a final meter-level
positioning accuracy in indoor areas supported by Wi-Fi FTM.
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The advantages of the proposed 3D-WBQM framework are that daily-life trajectories
are autonomously evaluated and integrated for crowdsourced Wi-Fi fingerprinting database
generation using three different kinds of landmarks. In addition, the proposed multi-level-
observation-assisted inertial odometry can maintain high precision after long-term use
under magnetic interference in a contained large-scale indoor environment.

The proposed 3D-WBQM framework also has some disadvantages. First, the accuracy
of crowdsourced trajectories is limited by the navigation time and by complex and change-
able indoor scenes, and the positioning errors grow with time. Second, the performance
of MLP-based positioning error evaluations can be further improved by considering and
extracting more human motion and handheld-related features for a more intelligent fusion
and construction of a crowdsourced navigation database.

In the future, with the development of the Internet of Things and artificial intelli-
gence, mobile terminals will support more of the emerging positioning and perception
technologies such as light fidelity, light detection and ranging (Lidar), and RIS-assisted
mmWave networks, which will provide a more robust and accurate performance of indoor
positioning, mapping, perception, and communication.
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