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Abstract: Due to the absorption and scattering effects of light propagating through water, underwater
images inevitably suffer from severe degradation, such as color casts and losses of detail. Many
existing deep learning-based methods have demonstrated superior performance for underwater
image enhancement (UIE). However, accurate color correction and detail restoration still present
considerable challenges for UIE. In this work, we develop a dual-branch fusion network, dubbed the
DBFNet, to eliminate the degradation of underwater images. We first design a triple-color channel
separation learning branch (TCSLB), which balances the color distribution of underwater images by
learning the independent features of the different channels of the RGB color space. Subsequently, we
develop a wavelet domain learning branch (WDLB) and design a discrete wavelet transform-based
attention residual dense module to fully employ the wavelet domain information of the image to
restore clear details. Finally, a dual attention-based selective fusion module (DASFM) is designed for
the adaptive fusion of latent features of the two branches, in which both pleasing colors and diverse
details are integrated. Extensive quantitative and qualitative evaluations of synthetic and real-world
underwater datasets demonstrate that the proposed DBFNet significantly improves the visual quality
and shows superior performance to the compared methods. Furthermore, the ablation experiments
demonstrate the effectiveness of each component of the DBFNet.

Keywords: dual-branch; discrete wavelet transform; underwater image enhancement; residual learning

1. Introduction

Underwater robots are important tools for the development and utilization of marine
resources. They are of great importance in supporting resource detection and engineering
applications, such as wreck salvage, pipeline inspection, aquatic life observation, and
deep-water aquaculture operations. The underwater robot vision system is essential in the
working process, as it serves as the eyes of the underwater robot. Nevertheless, images cap-
tured underwater are affected by the selective attenuation of the light propagating through
the water, resulting in varying degrees of color deviation. Meanwhile, underwater images
are also affected by the scattering of particles in the water, such as gravel and plankton,
resulting in uneven haze effects and blurry details. Underwater image enhancement (UIE)
aims to obtain high-quality and clear images, so that the robot vision system can better
utilize them for analysis and decision-making.

Due to the complexity and variability of the underwater scene, the visual enhancement
of underwater images has always been a challenging issue. Recently, many UIE methods
have been developed, and they can be roughly classified into two types: traditional model-
based methods [1–3] and deep learning (DL)-based methods [4–11]. The traditional model-
based methods generally depend on a mathematical model of the underwater imaging
process, which estimates the model parameters through prior knowledge to produce a
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clear image. However, due to the influence of environmental factors such as the medium of
water and light propagation in water, traditional model-based methods have difficulties in
dealing with complex and variable underwater scenes.

Compared with the traditional methods that use manually designed features, the
data-driven DL-based methods that learn latent features from data and directly map
degraded images to clear images are more effective. Recently, DL technology has demon-
strated impressive performance in machine vision tasks, and many network modules
have been applied to UIE, such as attention mechanisms [4,5], residual learning [6,7],
encoder–decoders [8,9], and generative adversarial networks [10,11]. These methods can
enhance the visual quality of underwater images and achieve limited success in challenging
natural scenery.

However, the existing DL-based methods still face many challenges in complex under-
water scenes. The absorption of light in the process of propagation in water will lead to
color casts of underwater images. Most DL methods use the raw image as the input and do
not consider the different absorption coefficients of varying color channels; therefore, the
color correction of underwater images is not satisfactory. Meanwhile, many end-to-end
DL methods do not preserve the image details, resulting in blurred image details after
enhancement and affecting the visual quality.

To meet the aforementioned challenges, this paper proposes a dual-branch fusion
network, abbreviated as DBFNet. Underwater images are absorbed during the propagation
of light in water, and different channels have different absorption coefficients, which leads
to color casts, as shown in Figure 1a. To deal with this issue, we first design a triple-color
channel separation learning branch (TCSLB) inspired by [12], which divides the input
image into R, G, and B channels to learn the color distribution independently using a
multi-scale-based attention res-dense module (MSARDM). The MSARDM comprises a
residual dense block and a multi-scale channel attention sub-module. The learning of
residual information can contribute to improving the color mapping performance, and
the multi-scale attention module can enhance the acquisition of local context features. As
illustrated in Figure 1b, the color distribution of the enhanced image is well-balanced.
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Figure 1. An example of the color distribution of an underwater raw image and its corresponding
enhanced image: (a) raw image and its tricolor histogram and three-dimensional color distribution;
(b) enhanced image and its tricolor histogram and three-dimensional color distribution.

Another important factor affecting underwater image visuals is the detailed informa-
tion. To enhance the detail of the restored image, we propose a wavelet domain learning
branch (WDLB), which is mainly composed of a convolution block and a discrete wavelet
transform (DWT)-based attention res-dense module (DARDM) in an encoder–decoder struc-
ture. The DARDM can recover clear texture details by retaining sufficient high-frequency
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knowledge. Finally, we propose a dual attention-based selective fusion module (DASFM)
to integrate the latent features of the TCSLB and WDLB to obtain the reconstruction result,
which adaptively emphasizes the feature information from different modules to achieve
their reasonable fusion. We can obtain visually pleasing enhancement results with the
dual-branch fusion network.

We summarize the main contribution of this work as follows:

· We propose a dual-branch network termed the DBFNet for UIE. Our method is more
effective for color correction and detail restoration, thanks to the use of the triple-color
channel separation learning branch and wavelet domain learning branch;

· In the TCSLB, we design an effective MSARDM consisting of dense residual blocks
and a multi-scale channel attention sub-module, which can improve the color mapping
performance;

· In the WDLB, we design an effective DARDM consisting of dense residual blocks
and a DWT-based attention module, which can provide more detailed features in the
wavelet domain;

· We design the dual attention-based selective fusion module to achieve the feasible
fusion of TCSLB and WDLB output features, which can adaptively emphasize the
information parts of different latent results;

· We validate the effectiveness of the DBFNet by comparing it with recent DL-based and
model-based methods on different datasets. Moreover, we provide detailed ablation
experiments and visual and quantitative evaluations.

2. Related Work

The underwater robot vision system plays a significant role in exploiting marine
resources. However, it is very difficult for these systems to capture high-quality images due
to absorption and scattering. Before the emergence of DL-based methods, traditional model-
based methods were mainly adopted. Recently, convolution neural network (CNN)- and
transformer-based methods have achieved encouraging enhancement results. Considering
the model’s overall structure, these methods can be roughly classified into two types:
single-branch and multi-branch methods.

Single-branch methods: The single-branch methods usually use a single-path net-
work structure to map the original degraded underwater image to the clear one directly.
Liu et al. [6] proposed a residual learning model for the UIE tasks, while an asynchronous
training mode was used to boost the performance of the loss function. Chen et al. [13]
developed a UIE algorithm based on DL and the image formation model. They constructed
the backscatter estimation module and the direct-transmission estimation module using
the convolutional neural network’s operation and restored the image using the modified
imaging model. Gangisetty et al. [7] designed a novel CNN architecture that improves the
residual network structure by leveraging both global and local residual learning approaches.
Guo et al. [10] designed a multi-scale dense block for the generator under the framework of
generative adversarial networks. A U-shape transformer network was developed by [14],
which integrates a channel-wise multi-scale feature fusion transformer module and a
spatial-wise global feature modeling transformer module. Although the above methods
achieved satisfactory results for UIE, they did not comprehensively consider the complex
factors of underwater image degradation. These factors include the color casts caused by
absorption and the loss of image details caused by scattering during light propagation in
water, making it difficult to mitigate the degradation of complex scenes.

Multi-branch methods: Unlike the single-branch method, the multi-branch method
mainly fuses the feature information processed by different branches separately to obtain
comprehensive enhancement results. Xue et al. [15] developed a collaborative learning
network for luminance and chrominance, which redefines the UIE task as haze removal
and color correction sub-tasks by splitting the luminance and chrominance of underwater
images. In their subsequent work, Xue et al. [16] designed a multi-branch aggregation
network and trained the model to learn a degradation factor to simultaneously achieve
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color correction and contrast enhancement. Yan et al. [17] developed a multi-branch neural
network for the UIE task, which involved the design of an attention-guided dynamic
multi-branch block for learning feature representations from different branches. A novel
two-branch deep neural network was designed for UIE [18], which could remove the color
shifts and improve the visual contrast by fully using the valuable properties of the HSV
color space. Jiang et al. [19] considered the factors that affected degradation in underwater
images regarding turbidity and chromatism. The authors designed a multi-scale dense
boosted module and a deep aesthetic render module to enhance the visual contrast and
perform color correction, respectively. Although the aforementioned multi-branch methods
have made great progress in terms of visual enhancements, there are still many deficiencies
in complex underwater scenes.

DWT-based methods: The discrete wavelet transform technology has good local
characteristics in the wavelet domain, and is widely employed in image processing. In
recent years, many researchers have integrated DWT technology into DL models to gain
more diversified feature information in the wavelet domain. Jamadandi et al. [20] designed
an encoder–decoder network with wavelet pooling and unpooling units to solve the issue
of UIE. Aytekin et al. [21] developed a denoising network that applied a split convolutional
layer to each sub-band of the DWT. Huo et al. [22] proposed a multi-stage model to
ameliorate the hybrid degradations progressively, and decomposed the features through
the wavelet transform to enhance the details. A wavelet-based two-stream network was
designed by [23], which used the DWT to decompose the original signals into low-frequency
and high-frequency sub-bands to address the color cast and blurred details of underwater
images, respectively. The above-mentioned DWT-based DL network has been successfully
applied in image processing tasks, which provides an idea for the model construction in
our work.

3. Proposed Method

In this section, the proposed DBFNet framework is introduced in detail. First, an
overview of the DBFNet architecture is presented, which comprises three parts: the TC-
SLB, WDLB, and DASFM. Subsequently, the details of each component of our model are
described. Finally, the hybrid loss function adopted during the training of this framework
is introduced.

3.1. Overall Architecture

Underwater images inevitably suffer from scattering and absorption when light travels
in water, resulting in color casts and detail losses. The UIE task aims to obtain an image
with bright colors and clear details from a given input degraded image. However, the
underwater scene is intricate, and it is difficult to obtain satisfactory results with general
network architectures. As Figure 2 shows, this paper designs a dual-branch fusion ar-
chitecture. An MSARDM is proposed in the TCSLB, which is applied to the R, G, and B
channels, respectively, to learn effective color features. In the WDLB, the detailed features
are learned in the wavelet domain by the proposed DARDM. Finally, the two features are
reliably merged by the DASFM to produce an underwater image with bright colors and
clear details. Mathematically, the whole process can be formulated as:

Ioutput = ΦDASFM(ΦTCSLB(Iinput), ΦWDLB(Iinput)) (1)

where Iinput and Ioutput represent the degraded image and enhanced image, respectively.
The symbols ΦTCSLB(·), ΦWDLB(·), and ΦDASDM(·) represent the modules of the triple-
color channel separation learning branch, wavelet domain learning branch, and dual
attention-based selective fusion module, respectively.
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3.2. Triple-Color Channel Separation Learning Branch (TCSLB)

Since light is absorbed when traveling in water, different color channels have different
absorption coefficients that lead to an unbalanced color distribution, resulting in color casts.
To alleviate this issue, we design a TCSLB inspired by [12] that uses an MSARDM to process
three color channels. Consequently, the network can adapt to adjust the color distribution
of the different color channels. For the TCSLB, we use a residual structure and a series of
MSARDM groups, which can learn the feature representation according to the different
characteristics of the R, G, and B channels, and can adaptively emphasize the latent color
information of the three channels. Mathematically, the TCSLB can be formulated as follows:

Fi
in = ϕ(Ii) i ∈ {R, G, B} (2)

Fi
T = Conv(MSARDMn(MSARDMn−1 · · · MSARDM1(Fi

in)) + Fi
in) (3)

FT = Concat(FR
T , FG

T , FB
T ) + I (4)

where I denotes the input image, IR, IG, IB denote the R, G, and B channel of input
image, ϕ denotes the PReLU(Conv(·)) operation sequence, and Concat(·) denotes the
concatenation operation. The symbol MSARDMn(·) denotes the feature map through the
n-th MSARDM, and FR

T , FG
T , FB

T denote the feature maps obtained after feature extraction
for the R, G, and B channels, respectively.

Figure 3 illustrates the detailed structure of the MSARDM, which comprises a residual
dense block (RDB) and a multi-scale channel attention sub-module. Previous studies
have shown that the RDB has been available for feature extraction and can improve the
color mapping performance. As Figure 3 shows, the RDB consists of convolutional and
PReLU operation sequences. The first N convolutional layers and the PReLU operation
sequence aim to boost the number of feature maps, and the purpose of the last layer is to
concatenate all feature maps produced from the previous N layer. In our work, N is set
to four. A multi-scale channel attention sub-module is introduced at the end of the RDB
to enhance the local context feature-capturing ability. Specifically, we first carry out the
multi-scale scaling of the feature map fRDB obtained by the RDB, where the scale factors
are 1, 1/2, and 1/4. Subsequently, we use these factors in the channel attention to focus on
the context features at different scales. Finally, we carry out feature aggregation through
the upsampling operation. Given an input feature map fin and output feature map fout, the
MSARDM is represented as follows:

fRDB = RDB( fin) (5)
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fout = Conv(Concat(CA( fRDB), Up2(CA(Down1/2( fRDB))),
Up4(CA(Down1/4( fRDB))))) + fin

(6)

where Up∗ and Down∗ denote the upsampling and downsampling operations, respectively,
RDB(·) denotes the residual dense block operation sequence, and CA denotes the channel
attention consisting of the sigmoid(Conv(ReLU(Conv(GAP(·)))))⊗ · operation sequence.
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3.3. Wavelet Domain Learning Branch (WDLB)

The wavelet transform is extensively used in traditional image processing methods
for denoising and local feature extraction. Recently, deep learning methods based on
the DWT techniques have been widely applied in visual processing tasks, such as image
deblurring [24], image enhancement [25], and image denoising [26]. For two-dimensional
image signals, the horizontal and vertical filtering methods can be used to achieve two-
dimensional wavelet decomposition, which results in low-frequency and high-frequency
sub-bands. The high-frequency signals usually contain edge and texture information, and
the low-frequency signals contain image background information. The DWT can decom-
pose an image into a series of sub-band signals with different frequency characteristics.
These sub-signals can supply essential information for the subsequent feature represen-
tation and analysis of the model. In addition, the receptive field can be increased while
simultaneously preventing information loss, thanks to the reversibility and downsampling
properties of the DWT. In this work, we decompose an input using the Haar wavelet
transform, which consists of four filters as follows:

fLL =

[
1 1
1 1

]
, fLH =

[
−1 −1

1 1

]
fHL =

[
−1 1
−1 1

]
, fHH =

[
1 −1
−1 1

] (7)

Thus, given an input I, we can convolve it with the above filters followed by downsampling
to obtain four sub-bands: ILL, ILH , IHL, IHH, i.e., Ii = (I ⊗ fi) ↓ 2, i ∈ {LL, LH, HL, HH} .
According to the bi-orthogonal property of the DWT, the input I can be restored using the
IDWT. Therefore, the DWT can be regarded as a convolution operation with a kernel size of
2× 2, stride of 2, and fixed weights, while the IDWT is its transposed convolution operation.

Inspired by previous work [22,23,27,28], we designed a wavelet domain learning
branch (WDLB) to extract the wavelet domain feature, which uses an encoder–decoder
architecture and embeds the DARDM, as shown in Figure 2. Specifically, the WDLB contains
three stages: the encoder, bottleneck, and decoder. In the encoder stage, a convolution
block (convolution and PReLU) and the designed DARDM are employed to extract the
features. In addition, the size of the output feature maps in each encoding stage is halved
and the number of channels is doubled. After the encoder stage, a series of DARDMs are
cascaded to further refine the encoding features. Finally, in the last stage, a decoder is
introduced to restore the feature maps, which consist of a DARDM and a deconvolution
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block (deconvolution and PReLU). The encoder and decoder operations can be represented
as follows:

f i
en = DARDM(ϕ( f i−1

en )) i ∈ {1, 2, 3} (8)

f i
de = ϕ

′
(DARDM( f i−1

de )) + f 3−i
en i ∈ {1, 2, 3} (9)

where f i
en and f i

de are the latent features from the encoder and decoder at the i-th layer,
respectively; f 0

en represents the input image; f 0
de represents the output of the bottleneck

layer; ϕ′ represents the PReLU(DeConv(·)).
Figure 4 shows the detailed structure of the DARDM, which comprises a dense residual

block and a DWT-based attention module. Unlike the RDB in the MSARDM, this base
block of the dense residual block comprises a 3× 3 convolution layer, BatchNorm layer, and
PReLU activation function. In the WDLB, the dense residual block comprises four base
blocks and a 1× 1 convolution layer. Each prior base block is directly connected to the
current base block, and the 1× 1 convolution layer is used to handle the output information
adaptively. Next, a DWT-based attention module (DAM) is used at the end of the dense
residual block to encourage the network to learn the features in the wavelet domain, as
illustrated in Figure 4.
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Given an intermediate feature map Xin ∈ RC×H×W , the DWT decomposes into half-
resolution low-frequency sub-band (FLL) and high-frequency (FLH , FHL, FHH) sub-bands.
Next, these sub-bands are fed to the pixel attention [29] and spatial attention sub-modules,
respectively. The low-frequency signal mainly contains structural information, and we use
pixel attention to make the model concentrate more on the structural information features.
The high-frequency signal mainly contains texture and other details, and we can make
the model concentrate more on spatial information features by using spatial attention.
After the application of pixel and spatial attention, we can obtain feature maps F′LL and
[F′LH , F′HL, F′HH ], respectively. Subsequently, we can integrate and reconstruct these sub-
bands to the original size by performing the IDWT. Next, we can perform average pooling,
convolution, and PReLU operations on the input Xin to control the weights of various
channel-wise features. Subsequently, these features are passed through the 3 × 3 convolu-
tion layer and PReLU layer to obtain the residual feature Fr. Finally, the shortcut features
are summed to the residual feature Fr to obtain the output feature map Xout ∈ RC×H×W ,
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which has the DWT-based attention feature information. The mathematical process of the
DARDM is as follows:

[FLL, FLH , FHL, FHH ] = DWT(Xin) (10)

F′LL = sigmoid(Conv(ReLU(Conv(FLL))))⊗ FLL (11)

[F′LH , F′HL, F′HH ] = sigmoid(Conv([GAP([FLH , FHL, FHH ]);

GMP([FLH , FHL, FHH ])]))⊗ [FLH , FHL, FHH ]
(12)

Fd = IDWT([F′LL, F′LH , F′HL, F′HH ]) (13)

Fe = Fd ⊗ ϕ(Avgpool(Xin)) (14)

Xout = ϕ(Fe) + Xin (15)

where ϕ denotes the PReLU(Conv(·)) operation sequence, and GAP(·) and GMP(·) denote
the global average pooling and max pooling, respectively.

3.4. Dual Attention-Based Selective Fusion Module (DASFM)

In our model, the results from the TCSLB and WDLB contribute differently to the
acquisition of high-quality underwater images. In order to fuse these two branches, we
design a DASFM inspired by [19,30], which adaptively emphasizes the beneficial feature
information of the different branches. Figure 5 shows the corresponding structure. Specifi-
cally, the results FT and FW from the TCSLB and WDLB, respectively, are first fed into the
convolution layer to extract the shallow feature, i.e., Ft and Fw, and then concatenated to
obtain Fc. Second, the pixel attention, channel attention, and convolution layer (convolution
and PReLU activation function) are employed to extract the features and obtain the feature
maps Fcp. Third, we feed Fcp into the convolution layer and the sigmoid activation function
to obtain two attention maps Wt and Ww, which are used to adaptively adjust each branch.
Last, the feature maps from the dual branches are summed, and the fused feature map is
adjusted to the size of the output via a convolution operation. Mathematically, the DASFM
can be formulated as:

Ft = Conv(FT), Fw = Conv(FW) (16)

Fc = concat(Ft, Fw) (17)

Fcp = ϕ(concat(CA(Fc), PA(Fc))) (18)

Wt = sigmoid(Conv(Fcp)), Ww = sigmoid(Conv(Fcp)) (19)

Fout = Conv((Wt ⊗ Ft)⊕ (Ww ⊗ Fw)) (20)

where concat(·) denotes the concatenation operation; PA denotes the channel attention,
which consists of a Sigmoid(Conv(ReLU(Conv(·))))⊗ · operation sequence; and CA de-
notes pixel attention, which consists of a Sigmoid(Conv(ReLU(Conv(GAP(·)))))⊗ · oper-
ation sequence.
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3.5. Hybrid Loss Function

Our DBFNet is trained with the loss function Ltotal that combines the L1 loss Ll1 and
perceptual loss Lpre as follows:

Ltotal = Ll1 + λLpre (21)

where λ is set to 0.1 to balance different losses, and the details are presented in the ablation
study section. Concretely, the L1 loss evaluates the difference between the reconstructed
image Irecon and the corresponding reference image Ire f as:

Ll1 =
H

∑
x=1

W

∑
y=1

∣∣∣Irecon − Ire f

∣∣∣ (22)

The perceptual loss [31] is computed based on the VGG-16 network [32] pre-trained
on ImageNet. Let φj(·) be the j-th convolutional layer, then φj(I) will be a feature map
of shape Cj × Hj ×Wj when the image I is processed by φj(·). The perceptual loss is the
Euclidean distance between the reconstructed image Irecon and the corresponding reference
image Ire f , and is expressed as follows:

Lpre =
1

Cj HjWj

∥∥∥φj(Irecon)− φj(Ire f )
∥∥∥2

2
(23)

4. Experiments

In this section, the experimental implementation details are described; then, to verify
the performance of our DBFNet, we compare it with nine different recent methods through
the described experimental setup and implementation details, and present the visual and
quantitative results. Finally, the effectiveness of each component of our DBFNet is verified
by an extensive ablation study.

4.1. Experimental Implementation Details

Datasets: The effectiveness of the DBFNet is verified by experiments utilizing publicly
available synthetic and real-world underwater datasets. The synthetic dataset is generated
from [33], which contains ten water types, labeled as type 1, 3, 5, 7, 9, I, IA, IB, II, and III.
Each type consists of 1449 images from the RGB-D NYU-v2 datasets. In our experiments, we
select nine water type images as the training and testing datasets, excluding type 9, which is
too turbid. We randomly select 1100 samples from each water type. A total of 9900 samples
are employed for training, and the remaining 3141 samples are employed as the test set. For
the evaluation on real-world underwater images, 800 images from the UIEB are randomly
selected [34] for training, and the remaining 90 images are employed as the test set, denoted
as Test-90. In addition to 890 degraded–high-quality paired images, the UIEB dataset also



Remote Sens. 2023, 15, 1195 10 of 19

contains 60 challenge images for which no corresponding reference images are available.
We use these images as the test set, denoted as Test-C60. The resolution of the images is
unified both in the training and testing stages.

Experimental settings: The DBFNet is trained using Pytorch as the DL framework on
an Nvidia Tesla V100 GPU with 32 Gb of VRAM. Our proposed network is trained using
the Adam optimizer with a momentum rate of 0.9. The learning rate is changed according
to the cosine annealing strategy [35] with an initial value of 1 × 10−4. The batch size and
the number of epochs are set to 8 and 200, respectively. We empirically set the number of
MSARDMs and DARDMs to 5.

Evaluation metrics: For the test set of synthetic datasets and UIEB datasets, we choose
three full-reference evaluation metrics, including PSNR [36], SSIM [37], and MSE [38], and
two non-reference evaluation metrics, including UIQM [39] and UCIQE [40]. The PSNR
and MSE are employed to measure content similarities between the output and reference
images; a larger PSNR score or a smaller MSE indicates that the result is similar to the
reference image in terms of the contents. The SSIM is employed to measure the contrast and
structure similarity; a larger SSIM value indicates that the result is closer to the reference
image in terms of the texture and structure. Its definition is given by:

SSIM(x, y) =
(2µxµy + c1)(2σxσy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(24)

where µx and σx represent the mean and variance of x, respectively; µy and σy represent
the mean and variance of y, respectively; σxy represents the cross-correlation between x and
y; c1 and c2 are fixed constants.

The UIQM has a stronger correlation with human visual perception, which includes
three attribute measures, i.e., the underwater image color metric (UICM), underwater
image sharpness metric (UISM), and underwater image contrast metric (UIConM). Its
definition is given by:

UIQM = c1 ×UICM + c2 ×UISM + c3 ×UIConM (25)

where c1 = 0.0282, c2 = 0.2953, and c3 = 3.5753 are set according to [39].
The UIQM and UCIQE are employed to measure the non-uniform color shift and

contrast of output images; a larger UIQM value or a larger UCIQE value indicates a better
visual effect.

Comparison methods: The performance achieved by DBFNet is demonstrated by
comparing it with nine recent state-of-the-art (SOTA) methods, including traditional meth-
ods (UDCP [1], IBLA [2]) and DL-based methods (Shallow-UWnet [41], Chen et al.’s
method [13], UResnet [6], WaterNet [34], Deep-WaveNet [42], UGAN [43], Ma et al.’s
method [23]).

4.2. Comparisons on Synthetic Datasets

As reference underwater images are difficult to obtain, many researchers train and
test deep learning models using synthetic underwater image datasets. Table 1 presents the
quantitative results of the PSNR, SSIM, and MSE for underwater images of nine different
water types, where the bold and underlined scores show the optimal and sub-optimal
results. It can be observed that our DBFNet obtains the highest score for the PSNR,
SSIM, and MSE metrics in all water types. This shows that our DBFNet can effectually
enhance the image contrast, correct the image color, and perform well in detail retention.
In addition, in terms of these three evaluation metrics, our DBFNet is obviously superior to
the comparative method, with absolute advantages.
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Table 1. Quantitative comparison results of various UIE approaches on the synthetic underwater
dataset in terms of PSNR (dB), SSIM, and MSE (×103) values. We present the optimal and suboptimal
results with values in bold and underlined, respectively.

Types Metrics UDCP IBLA Shallow-
UWnet UResnet Chen

et al. WaterNet Deep-
WaveNet UGAN Ma

et al. Ours

1
PSNR 13.68 14.70 18.85 19.50 20.07 20.67 23.08 25.45 27.82 31.93
SSIM 0.6547 0.6881 0.7789 0.7158 0.7518 0.8361 0.8651 0.8874 0.8873 0.9165
MSE 3.3332 2.8291 1.3059 0.9665 0.8480 0.7702 0.4172 0.1914 0.1279 0.0464

3
PSNR 11.84 13.03 15.04 16.71 17.43 17.97 19.76 24.74 24.58 29.68
SSIM 0.5444 0.0639 0.6863 0.6492 0.6908 0.7825 0.7972 0.8616 0.8434 0.8962
MSE 4.9485 3.6553 2.2795 1.7687 1.4022 1.3724 0.9074 0.2353 0.3010 0.0895

5
PSNR 10.00 11.16 13.80 13.34 15.40 15.13 16.52 22.61 20.91 24.95
SSIM 0.3992 0.4531 0.6118 0.5079 0.6059 0.6955 0.6997 0.7863 0.7671 0.8356
MSE 7.4906 5.7544 3.0015 3.3493 2.1646 2.4177 1.7984 0.4646 0.7468 0.3420

7
PSNR 8.99 9.73 13.05 11.33 13.97 13.44 14.43 19.11 17.43 20.01
SSIM 0.2775 0.3197 0.5285 0.3884 0.5272 0.6025 0.5920 0.6322 0.6590 0.7185
MSE 9.7561 8.5102 3.5799 5.1834 3.0144 3.4888 2.8472 1.1833 1.6848 1.1682

I
PSNR 16.53 14.13 21.98 20.70 23.67 24.06 25.95 25.57 29.72 33.00
SSIM 0.7640 0.5591 0.8495 0.7374 0.8339 0.8847 0.9149 0.8934 0.9069 0.9247
MSE 1.6850 2.9865 0.5588 0.7715 0.3316 0.3295 0.1998 0.1856 0.0769 0.0353

IA
PSNR 16.72 14.37 22.14 21.22 23.74 24.16 26.03 25.63 29.90 32.89
SSIM 0.7747 0.5804 0.8554 0.7532 0.8405 0.8884 0.9197 0.8964 0.9106 0.9257
MSE 1.6099 2.9442 0.4847 0.6348 0.3161 0.3140 0.1940 0.1836 0.0740 0.0360

IB
PSNR 16.44 14.53 21.95 21.10 23.29 23.41 25.75 25.59 29.78 32.76
SSIM 0.7661 0.5998 0.8448 0.7479 0.8260 0.8770 0.9109 0.8951 0.9060 0.9231
MSE 1.7255 2.8851 0.5305 0.6578 0.3587 0.3832 0.2074 0.1842 0.0768 0.0372

II
PSNR 15.55 15.29 21.01 21.06 21.81 22.78 24.90 25.58 29.29 32.70
SSIM 0.7384 0.6763 0.8216 0.7494 0.7978 0.8657 0.8992 0.8957 0.9015 0.9227
MSE 2.1428 2.5699 0.7549 0.6544 0.5353 0.4471 0.2567 0.1843 0.0888 0.0380

III
PSNR 13.67 14.92 18.2 19.43 19.84 20.13 22.64 25.46 27.44 31.91
SSIM 0.6639 0.7035 0.776 0.7220 0.7578 0.8345 0.8681 0.8906 0.8869 0.9186
MSE 3.3143 2.5748 1.4835 1.0180 0.9028 0.8556 0.4515 0.1908 0.1392 0.0461

Figure 6 presents the visual results of our DBFNet versus the comparison method on
the synthesized underwater dataset. It can be observed that the UDCP and IBLA perform
poorly in terms of the image contrast improvement and color correction, and even aggra-
vate image degradation, which may be because these methods rely on prior knowledge.
Although DL-based methods can obtain relatively better results, a few methods, such as
Shallow-UWnet, UResnet, and Chen et al.’s method, are prone to artifacts and blurring. In
contrast, WaterNet, Deep-WaveNet, UGAN, Ma et al.’s method, and our proposed method
can achieve relatively good visual results. However, WaterNet and Deep-WaveNet show
poor color correction performance, as presented in the second column of Figure 6. It is
obvious that our result is similar to the reference image than the comparison methods, and
our DBFNet has good performance for color correction and detail preservation. Moreover,
as presented in Figure 6, our model produces the highest PSNR and SSIM scores among
the compared methods, which further demonstrates the effectiveness of the DBFNet.
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4.3. Comparisons on Real-World Datasets

Visual comparisons: Due to the absorption and scattering of light traveling through
the water, the image often produces color casts and suffers from a loss of detail. To verify
the performance of our DBFNet in color correction and detail restoration, inspired by [44],
we divide the images of the Test-90 dataset into five categories: bluish, greenish, yellow
tone, shallow water, and low-illuminated images, as present in Figures 7–11.
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From the perspective of the color correction performance, the UDCP and IBIA are
ineffective in eliminating the color offset and enhancing the visual contrast, which may be
due to the low robustness of the traditional methods in complex underwater images. The
Shallow-UWnet and UResnet methods slightly improve the color shifts, but do not eliminate
the severe color bias. In addition, UResnet introduces extra background noise. The other
methods have different color correction performances, but the WaterNet method can easily
over-enhance the color correction, and Chen et al.’s method, the Deep-WaveNet method,
the UGAN method, and Ma et al.’s method cannot completely eliminate the color casts.
Figures 7–11 show that our DBFNet can produce the best color correction performance.

From the perspective of the detail restoration performance, the UDCP, IBLA, and
Shallow-UWnet methods perform poorly due to the interference from color casts. The
UResnet is affected by the introduction of additional background noise, and the level of
detail is not clearly restored. The remaining methods affect the restoration of details to some
extent, although a few methods such as Chen et al.’s method, the WaterNet method, the
UGAN method, and Ma et al. method are affected by color offset and haze, rendering poor
results, as shown in Figures 7 and 9. The comparison results demonstrate that our DBFNet
produces the best detail restoration results and improves the brightness and saturation of
the underwater images.

The robustness of the proposed DBFNet is verified by conducting comparative experi-
ments on the challenging test set, i.e., Test-C60, whose visual effects are shown in Figure 12.
We can observe that the traditional methods perform poorly, the UDCP reduces the im-
age contrast, and the IBLA aggravates the color casts. The Shallow-UWnet has a slight
enhancement effect, UResnet gives rise to extra background noise, and Chen et al.’s method
result in over-enhancement. The UGAN method, Ma et al.’s method, and our method show
good enhancement performance. Out of these methods, our method performs better in
brightness improvement.

Quantitative evaluation: For the quantitative evaluation, we use the fully referenced
evaluation metrics and the non-referenced evaluation metrics for the fully referenced
images in the Test-90 and the non-referenced images in Test-C60, respectively. We calculate
the average scores of all images in the corresponding dataset, and the results are presented
in Tables 2 and 3. As Table 2 shows, our proposed DBFNet obtains the best PSNR, SSIM,
and MSE scores. Compared with the Deep-WaveNet (suboptimal method), our DBFNet
achieves gains of 8.2% and 0.8% in terms of the PSNR and SSIM metrics, respectively.
Table 3 presents the comparison results of non-referenced measures. It can be observed
that our DBFNet obtains third-best results with respect to the UISM, UIQM, and UCIQE
metrics. Although the UResnet and UGAN methods perform well for these metrics, from
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the perspective of visual results, there is serious background noise in the results obtained
using the UResnet, which is obviously unwanted. It should be noted that there is a certain
difference between the visual effects and the quantitative values in some cases, which
is also confirmed in [45,46]. Therefore, based on the combined visual comparison and
quantitative evaluation, our DBFNet achieves better performance.
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Table 2. Quantitative comparison results of various UIE approaches on the Test-90 dataset in terms
of PSNR (dB), SSIM, and MSE (×103). We present the optimal and sub-optimal results with values in
bold and underlined, respectively.

Methods PSNR↑ SSIM↑ MSE↓
UDCP 11.51 0.5212 5.1332
IBLA 15.81 0.6651 2.8412

Shallow-UWnet 17.79 0.7403 1.6002
UResnet 18.32 0.7175 1.1126

Chen et al. 21.32 0.8260 0.6588
WaterNet 20.88 0.8418 0.7840

Deep-WaveNet 22.34 0.8656 0.7030
UGAN 20.43 0.8255 0.6836

Ma et al. 20.04 0.8305 0.8495
Ours 24.18 0.8729 0.4054

Table 3. Quantitative comparison results of various UIE approaches on the Test-C60 dataset. We
present the best, second-best, and third-best results with values in bold, underlined, and double
underlined, respectively.

Methods UICM↑ UISM↑ UIConM↑ UIQM↑ UCIQE↑
UDCP 5.3511 3.8881 0.0472 1.4679 0.5364
IBLA 5.8522 4.3957 0.1627 2.0448 0.5685

Shallow-UWnet 2.0769 4.2078 0.2842 2.3172 0.4677
UResnet 6.7992 6.4352 0.1976 2.7986 0.5974

Chen et al. 4.5519 5.3269 0.2821 2.7099 0.5466
WaterNet 4.1166 5.2974 0.2620 2.6172 0.5698

Deep-WaveNet 4.2254 5.1885 0.2499 2.5450 0.5729
UGAN 5.4232 6.0859 0.2591 2.8766 0.6037

Ma et al. 3.8633 5.2574 0.2851 2.6809 0.5473
Ours 5.1320 5.5205 0.2678 2.7326 0.5827

4.4. Ablation Studies

In this section, we perform ablation studies on UIEB datasets, based on a Nvidia Tesla
V100 GPU with 32 Gb of VRAM. The same training and testing datasets and parameter
settings are used for all ablation studies.
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Parameter selection of the loss function: The validity of the parameters of the loss
function used in our work is verified by calculating the PSNR and SSIM values under
various values of λ on the Test-90 dataset, and the quantitative results are presented in
Figure 13. It can be clearly seen that the best performance is obtained when λ is equal to 0.1.
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Effectiveness of the network components: The validity of each of our developed
modules is verified by designing appropriate ablation studies. The visual and quantitative
results are presented in Figure 14 and Table 4, respectively. In these results, w/o WDLB,
w/o TCSLB, and w/o DARDM denote the proposed model without WDLB, without TCSLB,
and without DARDM, respectively. As presented in Table 4, our full model achieves the
highest score for all evaluation metrics for the ablated models. As shown in Figure 14,
especially in the red rectangular box, our full model achieves the best visual effect in terms
of detail preservation and color correction. It can be further observed from Figure 14 that
although the color can be mostly corrected when the WDLB, TCLSB, or DARDM is removed
from the full model, different degrees of haze are produced and the details are unclear.
Combining the quantitative and qualitative results, it can be observed that our proposed
components play a significant role in the performance of the full model.
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Table 4. Quantitative comparison results of the ablation study of the components of DBFNet in terms
of PSNR (dB), SSIM, and MSE (×103) values. Bold values indicate the best results.

Methods w/o WDLB w/o TCSLB w/o DARDM Full Model

PSNR 21.39 23.40 22.89 24.18
SSIM 0.8434 0.8573 0.8584 0.8729
MSE 0.6466 0.4501 0.5006 0.4054

Effectiveness of the fusion method: We verify the effectiveness of the DASFM by
comparing it with two other commonly used fusion methods, i.e., element-wise summation
and concatenation. As Table 5 shows, the DASFM gets the highest scores in terms of the
PSNR and SSIM metrics compared with the other fusion methods, while the MSE metric is
slightly weaker than the concatenated fusion method. As Figure 15 shows, especially in the
red rectangular box, compared with the other two fusion methods, the DASFM achieves
better visual performance, the result is similar to the reference image, and the interference
of blue haze can be effectively eliminated.

Table 5. Quantitative comparison results of ablation study of the dual-branch fusion methods in
terms of PSNR (dB), SSIM, and MSE (×103) values. Bold values indicate the best results.

Methods Summation Concatenate DASFM

PSNR 23.25 23.95 24.18
SSIM 0.8688 0.8710 0.8729
MSE 0.4446 0.3934 0.4054
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5. Conclusions

In this work, we developed a novel dual-branch fusion network for UIE, which
contains three components, including a triple-color channel separation learning branch, a
wavelet domain learning branch, and a dual attention-based selective fusion module. Firstly,
an MSARDM was designed to learn the color feature in three channels independently to
balance the color distribution. Secondly, a DARDM was designed to make the most of
learning the wavelet domain information, which can protect the details of the information.
Finally, a DASFM was designed to adapt the fusion the beneficial results from two branches.
Our extensive quantitative and visualization evaluations on synthetic and real-world
underwater datasets have demonstrated that the proposed DBFNet performs better than
other methods.

However, the DBFNet still has some limitations. The dual attention-based selective
fusion module we designed shows limited improvements compared with the concatenated
operation. In future studies, we hope to enhance the study of the fusion module for better
visual results.
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