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Abstract: Change detection (CD) is an important research topic in remote sensing, which has been
applied in many fields. In the paper, we focus on the post-processing of difference images (DIs),
i.e., how to further improve the quality of a DI after the initial DI is obtained. The importance of
DIs for CD problems cannot be overstated, however few methods have been investigated so far for
re-processing DIs after their acquisition. In order to improve the DI quality, we propose a global
and local graph-based DI-enhancement method (GLGDE) specifically for CD problems; this is a
plug-and-play method that can be applied to both homogeneous and heterogeneous CD. GLGDE
first segments the multi-temporal images and DIs into superpixels with the same boundaries and
then constructs two graphs for the DI with superpixels as vertices: one is the global feature graph
that characterizes the association between the similarity relationships of connected vertices in the
multi-temporal images and their changing states in a DI, the other is the local spatial graph that
exploits the change information and contextual information of the DI. Based on these two graphs,
a DI-enhancement model is built, which constrains the enhanced DI to be smooth on both graphs.
Therefore, the proposed GLGDE can not only smooth the DI but also correct the it. By solving the
minimization model, we can obtain an improved DI. The experimental results and comparisons on
different CD tasks with six real datasets demonstrate the effectiveness of the proposed method.

Keywords: change detection; difference image; smoothness; graph; heterogeneous data

1. Introduction
1.1. Background

The change detection (CD) of remote sensing images is a technique to extract change
information by comparing multi-temporal images acquired over the same geographical
area but at different times [1]. Earth observation technology can provide long-term, wide-
area, periodic observations of the Earth’s surface; CD is also one of the earliest and most
widely used research areas of remote sensing [2], which has also achieved very successful
applications in many practical tasks, such as environmental monitoring [3], agricultural
surveys [4], urban studies [5], and disaster assessment [6].

Up to now, numerous CD algorithms have been investigated and one can refer to the
latest review articles [7–10]. Generally, there are different ways to classify CD algorithms.
For example, (1) according to the detection and analysis granularity, it can be divided into
pixel-level-, object-level-, and scene-level-based CD; (2) according to the type of output
result, it can be divided into binary and multiple CD; (3) depending on the usage of
label data, it can be classified as supervised, semi-supervised, and unsupervised CD;
(4) according to whether deep neural networks are used, it can be divided into traditional
methods and deep learning-based methods; (5) depending on the source of the input
images, it can be divided into homogeneous and heterogeneous CD; (6) and, according
to the technology used, it can be also divided into spectral change identification methods,
post-classification comparison methods, direct multi-temporal classification methods, and
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hybrid methods. In this paper, we focus on the homogeneous CD of optical images,
homogeneous CD of synthetic aperture radar (SAR) images, and heterogeneous CD.

The CD process can usually be divided into three main sequential steps [11,12]: image
preprocessing, differential image (DI) generation, and change extraction by analyzing the
DI. In the preprocessing, radiometric correction and geometric coregistration are usually
required, which enables pairwise images to correspond to the same geographic area. Then,
it compares the two aligned images to obtain the DI in the second process, which is aimed
at enhancing the contrast between the changed and unchanged regions. Finally, it classifies
the DI to extract the changed region and obtain the change map (CM) in the third process.

DI generation has a significant impact in the CD process for the following reasons.
(1) DIs have a direct influence on the accuracy of CM. A high-quality DI is highly discrim-
inative between the changed and unchanged classes and, thus, only a simple threshold
segmentation or clustering is needed to classify the DIs for obtaining CM [13–15]. (2) DIs
provide richer change information. Compared to the binary CM, which can only provide
certain change/unchange information, DIs are able to provide the probability of change.
For some difficult problems or problems that must be handled with caution, such DIs that
provide uncertainty results may be more valuable for assisting experts [11]. (3) DIs could be
used to support other unsupervised CD methods. For example, DIs could assist the train-
ing process or build pseudo-training labels for some deep learning-based methods [16,17].
Therefore, we focus on how to improve the quality of DIs in the paper, while, for the final
CM, we only use a simple thresholding method on DIs to obtain it.

1.2. Related Work

Here, we review some methods for obtaining DIs in different CD tasks. Define X and
Y to be the multi-temporal images to be compared and let x and y be the data extracted
from the same positions of X and Y, respectively, which can be individual pixels, square
patches or superpixels, depending on the granularity of the detection analysis. According
to the sources of X and Y, we review some relevant algorithms for calculating DIs.

1.2.1. DI of Homogeneous Optical Images

For the homogeneous CD of optical images, the image differencing (e.g., ‖x− y‖) is
the simplest way to calculate DIs, which is based on the assumption that the noise in optical
images is usually additive. Change vector analysis (CVA) [18] calculates the change vectors
by comparing the spectra of two images, which can provide both change magnitude and
change direction. Based on the canonical correlations analysis, the multivariate alteration
detection method (MAD) [19] and iteratively reweighted MAD method (IRMAD) [20]
have been proposed, which is invariant to separate linear (affine) transformations of the
spectra. Therefore, they can significantly reduce false alarms due to differences in device
gain or linear radiation and atmospheric correction schemes. Lv et al. [15] have proposed
an adaptive spatial–contextual extraction method (ASE) for CD of very high resolution
optical images, which first adaptively selects a suitable local area for each pixel to exploit
the contextual information and then uses a defined band-to-band (B2B) distance metric to
calculate the change magnitude. By exploiting the convolutional neural network (CNN),
Saha et al. [21] have combined CVA with deep neural networks and proposed deep change
vector analysis (DCVA), which calculates the deep change vectors and extracts richer
contextual information by utilizing the features from different layers of CNN. Finally, the
binary and multiple CM are computed by analyzing the deep change vector. Du et al. have
extended the slow feature analysis (SFA) [22] to the deep network and proposed a deep
slow feature analysis (DSFA) for unsupervised CD [23]. DSFA first uses the CVA to find
unchanged pixels to construct a pseudo-training set and then utilizes two symmetric deep
networks to project the multi-temporal images into the latent feature space, where SFA is
employed to identify changed and unchanged regions, and, finally, the DIs are computed
using the chi-square distance metric and the CM is obtained using the thresholding method.
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1.2.2. DIs of Homogeneous SAR Images

For the homogeneous CD of SAR images, it is difficult to detect the changes using
an image differencing operator due to the inherent multiplicative speckle noise of SAR
images. Alternatively, the ratio [24], log-ratio [25], and mean-ratio [26] operators are the
commonly used DI calculation methods. Nar et al. [27] have proposed a sparsity-driven
change detection (SDCD) method, which can reduce the influence of speckle noise on
the DI by using an `1-norm-based total variation regularization. Sun et al. [28] have
proposed a nonlocal low-rank- and a two-level clustering-based method, which jointly
employs the nonlocal despeckling method for computing the DI and the cascade clustering
strategy for calculating the binary CM. In [29], an adaptive Contourlet fusion clustering
(CFC)-based CD method has been proposed, which combines the log-ratio and mean-ratio
images to generate a new DI by using the adaptive Contourlet fusion and then segments
the fused DI by using a fast non-local clustering algorithm to reduce the impact of the
noise. A hierarchical heterogeneous graph-driven CD method has been proposed in [30],
which combines two inter-connected pixel-based and superpixel-based graph layers to
fully exploit the structure information of images and then uses the graph cuts to separate
the DI to obtain CM. A log cumulants and stacked autoencoder-based method has been
proposed for detecting changes caused by fires using SAR images acquired by Sentinel-1
in [31], which extracts the features by using a tunable Q wavelet transformation with higher
order log-cumulants statistics and uses the stacked autoencoder to classify the changed
and unchanged regions. Zhang et al. [32] have proposed a spatial–temporal gray-level
co-occurrence aware network (STGCNet) to suppress the influence of speckles on detecting
changes, which first uses the log-ratio operation to generate an initial DI and uses the fuzzy
c-means (FCM) clustering to select the reliable changed and unchanged training samples
and then trains the two-stream STGCNet to mine the spatial–temporal information. A
dynamic graph-level neural network (DGLNN) is proposed in [33], which builds a dynamic
graph on the three-channel pixel neighborhood block constructed from the initial log-ratio-
based DI and multi-temporal SAR images and learns discriminative representations for
each block by using feature propagation and node aggregation in the graph.

1.2.3. DI of Heterogeneous CD

For the heterogeneous CD, the compared multi-temporal images are acquired by
different sensors and characterize different physical quantities, so it is impossible to ob-
tain the DI by directly comparing the heterogeneous images. Therefore, it is essential to
transform heterogenous images into the same metric space for comparison. Liu et al. [13]
have proposed the homogeneous pixel transformation (HPT) method, which uses the
labeled unchanged pixel pairs to transform one image (e.g., X) to the domain of the other
images (Y) with kernel regression functions and then compare the regression image (Y′)
and original image (Y) in the same domain using image differencing (‖Y− Y′‖). To over-
come the dependence on labeled samples, some unsupervised regression methods have
also been proposed for heterogeneous CD. In [14], an affinity matrix distance (AMD) is
used to pick samples that have a high probability of being unchanged and then four tradi-
tional regression functions are trained based on the pseudo-training set. Furthermore, the
AMD has also been used to train deep regression networks as the prior change not only
to construct training samples [17] but also to assist in the training process [16]. Mignotte
proposed a fractal projection and Markovian segmentation-based algorithm (FPMS) for
heterogeneous CD [34], which consists of a fractal encoding step that encodes the pre-event
image and a fractal decoding step that projects the pre-event image to the domain of a
post-event image and then computes and segments the DI using Markovian segmentation
algorithms. Based on the structure consistency, Sun et al. proposed several graph-based
heterogeneous CD methods. For example, they proposed the structure regression-based
methods that constrain the structures of original images and regression images that are the
same and causes the changed image to be sparse [35–37]; they also proposed the structure
comparison-based methods that first construct two graphs of heterogeneous images to
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capture the structure information and then compare the structures using graph projec-
tion [11,38,39]. Recently, they have also proposed a heterogeneous CD framework based on
graph signal processing [40] and analyzed the heterogeneous CD problem from the vertex
and spectral domains of the graph, respectively.

According to the introduction of the above-related methods, we have the follow-
ing findings.

• Different CD problems face different challenges. (1) For the CD of homogeneous
optical images, its difficulty lies in that, when the image resolution is very high,
the great intraclass variation and low interclass variance as well as the influence of
illuminations and seasons can lead to a lot of salt-and-pepper noise [7]. (2) For the
CD of homogeneous SAR images, its difficulty lies in the inherent speckle noise and
high intensity variation that can lead to difficult trade-offs between noise removal and
geometrical detail preservation in the DI. (3) For the heterogeneous CD, the key lies in
how to construct relationships between heterogeneous images so that incomparable
images can be compared; it also faces the challenges of both the homogeneous CD of
optical images and SAR images.

• How to obtain high-quality DI is one of the keys to the CD problem. After gener-
ating the difference maps, most of these methods treat them as conventional image
segmentation problems to obtain the final CM, such as [13–15,17,21,27,39].

1.3. Motivations

Notwithstanding that the DI quality is very important for the performance of CD,
few methods have been investigated so far for re-processing DI after its acquisition. The
benefits of post-processing the DI are self-evident, as it can further enhance the quality
of the DI, either for the next step of computing CM with segmentation or for assisting
other methods.

In order to reduce the influence of speckle noise on DIs of homogeneous SAR images,
Zheng et al. [41] have combined the mean filter and the median filter to obtain a better DI,
which uses the mean filter on the DI computed using the image differencing operator for
smoothing and uses the median filter on the DI computed using the log-ratio operator for
preserving edge information. In [42], the DIs generated using a Gauss-log ratio, the log-ratio
operators are fused using a discrete wavelet transform, and then the fused DI is filtered
using the nonsubsampled contourlet transform model, which can reduce the noise of the DI
and keep the edge information of the changed regions. In [14,17], after obtaining the DI, the
authors have removed the outliers in DI, i.e., clipping the pixels whose values are beyond
a few standard deviations from the mean value of DI, and then used the fully connected
conditional random field model (CRF) proposed in [43] to filter the DI, which exploits the
spatial context information to improve the quality of the DI. By drawing on the convolution
and pooling operations in CNN, Zhang et al. [44] have proposed a weighted average filter
for the DI generated using a log-ratio operator, which can suppress the speckle influence
and enhance the edges of the DI. A graph signal smoothness representation method has
been proposed in [45], which uses the smoothing property of the changed signal on the
fused graph to smooth the DI.

Although the above methods can improve the quality of the DI to some extent, espe-
cially in reducing the noise influence, they still have the following two shortcomings.

• Most of these methods are for the conventional denoising and smoothing of DI and
they only exploit the information of the DI itself, such as the change information (pixel
value) and spatial context information, while ignoring the specificity of the change
detection task and neglecting the information in the original multi-temporal images,
which limits their performance.

• Most of the methods only serve as “icing on the cake” for smoothing the DI, but cannot
further correct the DI. For example, when there is an overall error in the local area in
the DI, i.e., when the pixel values of the entire local area that really changed are all 0 in
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the DI or when the pixel values of the entire local area that really unchanged are all 1,
it is difficult to correct this error based on the spatial smoothing or filtering operations.

In order to address the above challenges, in this paper, we propose a global and local
graph-based DI-enhancement method (GLGDE) for CD problems. It is a plug-and-play
approach for the post-processing of DI, which can be applied to the homogeneous CD of
optical images and SAR images and heterogeneous CD. Specifically, once the initial DI
is obtained, e.g., a coarse DI is obtained by using the methods introduced in the related
work, we smooth and correct the DI by the following steps. Firstly, we co-segment the
DI and multi-temporal images into superpixels with the same shape and boundaries
and then extract the features of the images. Second, we construct two graphs for the
DI with superpixels as vertices; one connects each vertex and its similar vertices in the
multi-temporal images to exploit the association between the similarity relationships of
the multi-temporal images and the changing states of the DI and the other connects each
vertex and its neighboring vertices in the local spatial neighborhood to capture the local
structure information of the DI. In the constructed graphs, the edge weights not only
exploit the change information and contextual information of the DI but also the correlation
information of the original multi-temporal images, which is crucial for correcting and
smoothing DIs. Third, based on the constructed graphs, we propose a DI-enhancement
model that contains three constraint terms: a global feature graph-smoothing regularization
term, a local spatial graph-smoothing regularization term, and a change data-regularization
term. By solving the minimization model, we can obtain the improved DI. Finally, the
binary CM can be easily obtained using threshold segmentation.

1.4. Contributions

The main contributions of this paper can be summarized as follows.

• First, we have designed a DI-enhancement algorithm specifically for the change detec-
tion task, which is a plug-and-play approach for DI post-processing. This is a rarely
found work specifically designed for smoothing and correcting DIs in CD problems.

• Second, the proposed DI-enhancement algorithm, named GLGDE for short, not only
can smooth the DI but also correct it by using the constructed global feature graph
and local spatial graph, which can fully fuse and utilize the change and contextual
information in the DI and correlation information in the multi-temporal images.

• Third, due to using superpixels as vertices, the scale of the model is small. The
algorithm achieves DI improvement with low computational complexity, which would
be of great practical value. Extensive experiments in different CD scenarios, i.e.,
homogeneous CD of SAR and optical images and heterogeneous CD, demonstrate the
effectiveness of the proposed method.

1.5. Outline

The rest of this paper is structured as follows: Section 2 describes the proposed global
and local graph-based DI smoothing and correction method, and Section 3 provides the
experimental results. Finally, Section 4 concludes this paper.

2. Global and Local Graph-Based DI Enhancement

With two co-registered multi-temporal images acquired using the same (homogeneous)
or different (heterogeneous) sensors, denoted as X ∈ RM×N×Cx and Y ∈ RM×N×Cy , and
the initial coarse DI obtained from other methods, denoted as D ∈ RM×N , the goal of
this paper is to improve the quality of the DI to obtain an enhanced DI, which has a great
discrimination between changed and unchanged classes. We denote the pixels of the images
as x(m, n, c), y(m, n, c) and d(m, n), respectively, and suppose that the DI is normalized, i.e.,
0 ≤ d(m, n) ≤ 1, and that a larger value of d(m, n) indicates a higher probability of change
in the region represented by (m, n).
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Next, we describes the proposed DI-enhancement method in detail, which contains
three main steps: pre-processing, constructing the global and local graphs, and solving the
GLGDE model. Figure 1 shows the framework of the proposed DI-enhancement method.

Figure 1. Framework of the proposed GLGDE.

2.1. Pre-Processing

As aforementioned, we use the graphs to capture the structure information of images.
We choose to use superpixels instead of individual pixels or square patches as graph
vertices, which provides two benefits. First, the size of the graph is greatly reduced, e.g., for
a 1000× 1000 image with individual pixels as vertices, the size of the graph is 106, which
results in a heavy computational burden for the algorithm. On the contrary, when using
superpixels as vertices, the size of the graph is only related to the number of superpixels,
which will greatly reduce the complexity of the algorithm. Second, the superpixel contains
rich contextual information and is able to preserve the shape and edges of the object, which
is very important for the CD problem with very-high-resolution images.

In order to segment multiple images (i.e., X, Y, and D) into superpixels with the
same boundaries, we first construct a false RGB image Z ∈ RM×N×3. The first and second
channels of Z are the normalized grayscale images of X and Y, respectively, and the third
channel of Z is the initial DI of D. Note that if there is an SAR image in the multi-temporal
images, e.g., X, the corresponding channel of Z is the normalized log-transformed SAR
image, which can convert the multiplicative noise of the SAR image into additive noise,
thus facilitating the distance calculation in the subsequent superpixel segmentation. Then,
the Gaussian mixture model-based superpixel segmentation method (GMMSP) [46] is
employed to segment Z into NS regions, in which each superpixel is associated with a
weighted sum of Gaussian functions. GMMSP can efficiently generate superpixels that
adhere to the boundaries of an object. We define the superpixel co-segmentation map as Λ,
then we can obtain the segmented superpixels of Xi, Yi, and Di by projecting the map Λ to
the multiple images (i.e., X, Y, and D) as:

Xi = {x(m, n, c)|(m, n) ∈ Λi, c = 1, · · · , Cx}
Yi =

{
y(m, n, c)|(m, n) ∈ Λi, c = 1, · · · , Cy

}
Di = {d(m, n)|(m, n) ∈ Λi}

(1)

Then, Xi, Yi, and Di represent the same region. More importantly, the pixels inside each
superpixel obtained through co-segmentation are mostly internally homogeneous, i.e., they
represent the same kind of objects, so the pixels inside each superpixel are likely to belong
to the same class of labels, i.e., all changed or unchanged. In this way, the computational
complexity can be reduced by using superpixels and the interference caused by inconsistent
internal pixel labels can be avoided by using contextual information.

Once the co-segmentation superpixels are obtained, different features can be extracted
to capture the different information of superpixel, such as the intensity (spectra) and textual
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and structure information. In this paper, we simply use the mean, median and variance
from each band of Xi and Yi as the superpixel feature. Naturally, some other features are
also available. Then, we can obtain the feature matrices of the images X and Y, denoted
as X̃ and Ỹ, respectively, where each column corresponds to the superpixel feature vector.
We define the index set as I = {1, · · · , NS}, the feature distance between Xi and Xj as

distx
i,j =

∥∥X̃i − X̃j
∥∥2

2, and the feature distance between Yi and Yj as disty
i,j =

∥∥Ỹi − Ỹj
∥∥2

2, we

denote the i-th distance vectors as distx
i =

{
distx

i,j|j ∈ I
}

and disty
i =

{
disty

i,j|j ∈ I
}

, and
we define the labels of the i-th superpixel as Li, with Li = 1 indicating changed and Li = 0
indicating unchanged.

2.2. Global Feature Graph

We construct two graphs for the DI, which can capture the change information and
contextual information in the DI and utilize the relationships between the multi-temporal
images to enhance the DI.

We define the global feature graph as G f =
{

Vf , E f , w
}

, which sets each superpixel
of DI as the vertex, i.e., Vf = {Di|i = 1, · · · , NS}, and connect each superpixel with the
superpixel corresponding to its K-nearest neighbor (KNN) in the original multi-temporal
images, that is, for the i-th and j-th superpixels of Di and Dj; if Xj is the KNN of Xi or Yj is
the KNN of Yi, then Di and Dj are connected by the edge E f , defined as:

E f =
{
(i, j)|i ∈ I , j ∈ N x

i ∪N
y
i

}
(2)

where N x
i and N y

i denote the position sets of KNN of Xi and Yi, respectively. Furthermore,
the KNN sets of N x

i and N y
i are computed as: if and only if distx

i,j belongs to one of the

K-smallest elements of the distance vectors of distx
i or distx

j , then j ∈ N x
i ; for the N y

i ,
we have a similar definition. Next, we investigate the association between the similarity
relationships of connected vertices in the multi-temporal images and their changing states
in DI.

First, we consider the i-th vertex and j-th vertex using j ∈ N x
i . Since Xj is the KNN of

Xi, we have that Xi and Xj have a high probability of belonging to the same kind of object,
e.g., road. However, for the corresponding Yi and Yj in the post-event image connected by
this edge (i, j), j ∈ N x

i , we have two different states.
State #1, if Yi and Yj also belong to the same kind of object, then we have that the

labels of the i-th and j-th superpixels should be same. That is, Li = Lj = 1 when Yi and
Yj also belong to the same kind of object as Xi, e.g., road, and Li = Lj = 0, when Yi and Yj
belong to the same kind of object that is different from Xi, e.g., water. In state #1, we have
Li = Lj, that is, the pixel values of Di and Dj in the DI should be very close (all large or all
small).

State #2, if Yi and Yj belong to the different kinds of objects, then we have that the
labels of the i-th and j-th superpixels should be different. That is, (1) Li = 1, Lj = 0 when
Yi belongs to the object of the same kind as Xi while Yj belongs to the object of the different
kind as Xi (e.g., water); (2) Li = 1, Lj = 0 when Yi belongs to the object of the different
kinds as Xi (e.g., water) while Yj belongs to the object of the same kind as Xi. In state #2, we
have Li 6= Lj, that is, the pixel values of Di and Dj in the DI should be very different (one
is large, the other is small).

We define pi as the probability that the i-th superpixel belongs to the changed class.
In these two states, we can find that the value of

(
pi − pj

)2, j ∈ N x
i is determined by the

probability of whether Yi and Yj, j ∈ N x
i belong to the same kind of object. The latter can

be measured using the following Gaussian kernel function as:

f y
i,j = exp

(
−2disty

i,j + minm∈N y
i

{
disty

i,m

}
+ minm∈N y

j

{
disty

j,m

})
, j ∈ N x

i (3)
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Then, we have that the larger the value of f y
i,j, the more likely it is that Yi and Yj belong to

the same kind of object, the smaller the distance of
(

pi − pj
)2. On the contrary, the smaller

the value of f y
i,j, the more likely it is that Yi and Yj represent different kinds of objects, the

larger the distance of
(

pi − pj
)2.

Second, we consider the i-th vertex and the j-th vertex with j ∈ N y
i . Since Yj is the

KNN of Yi, we have that Yi and Yj have a high probability of belonging to the same kind of
object. However, for the corresponding Xi and Xj in the pre-event image connected by this
this edge (i, j), j ∈ N y

i , we also have two different states, similarly to state #1 and state #2.
State #3, if Xi and Xj also belong to the same kind of object, then we have that the

labels of the i-th and j-th superpixels should be same, i.e., Li = Lj.
State #4, if Xi and Xj belong to the different kinds of objects, then we have that the

labels of the i-th and j-th superpixels should be different, i.e., Li 6= Lj.

Similarly, the value of
(

pi − pj
)2 is determined by the probability of whether Xi and

Xj belong to the same kind of object, which can be measured using the following function:

f x
i,j = exp

(
−2distx

i,j + minm∈N x
i

{
distx

i,m
}
+ minm∈N x

j

{
distx

j,m

})
, j ∈ N y

i (4)

We also have that the larger the value of f x
i,j, the smaller the distance of

(
pi − pj

)2 and the

smaller the value of f x
i,j, the larger the distance of

(
pi − pj

)2.
By using Equations (3) and (4), we can set the edge weight of the graph G f as:

W f
i,j = f x

i,jδ
(

j ∈ N y
i

)
+ f y

i,jδ(j ∈ N x
i ), ∀(i, j) ∈ E f (5)

where δ(·) is the discriminant function: when the condition in parentheses holds, it adopts
the value of 1; otherwise, it adopts the value of 0.

In the graph G f , the i-th and j-th superpixels of Di and Dj are connected by the edge

of (i, j) ∈ E f with the weight W f
i,j of (5). We can find that the edges are constructed in the

global feature space of the multi-temporal images and the weights are determined based
on the relationships between the multi-temporal images.

Based on the above analysis, we have the following regularization:

min
p∈RNS

∑
(i,j)∈E f

W f
i,j
(

pi − pj
)2

(6)

By defining the Laplacian matrix of graph G f as L f , the regularization (6) can be rewritten
as:

min
p∈RNS

2pTL f p (7)

Then, we can find that it requires the DI to be smooth on the graph G f . This global
feature graph-induced change-smoothness-based regularization has two advantages: first,
it characterizes the association between the similarity relationships of the connected vertices
in the multi-temporal images and their changing states in DI, which can be used to smooth
the DI globally, i.e., to correct the DI, as it exploits information in the global feature space
rather than the local spatial information. Second, this change smoothness is widespread
because we make no other qualifying assumptions on the CD problem in the derivation,
so it can be applied to the both homogeneous and heterogeneous CD problems and it
can also be applied to other methods as a constraint on the change, such as the image
regression-based CD methods [35,36,47].

2.3. Local Spatial Graph

We define the local spatial graph as Gs = {Vs, Es, w}, which sets each superpixel of
the DI as the vertex, i.e., Vs = {Di|i = 1, · · · , NS}, and connected each superpixel with



Remote Sens. 2023, 15, 1194 9 of 24

its spatially close neighbors, defined as R-adjacent neighbors. That is, two superpixels
of Di and Dj are connected by the graph Gs as long as their boundaries intersect or the
distance between their center points is less than R, denote as i ∈ N R

j or j ∈ N R
i . Since the

average pixel number of the co-segmented superpixels is MN/NS, we set R = 2
√

MN/NS
for simplicity. Then, we have:

Es =
{
(i, j)|i ∈ I , j ∈ N R

i

}
(8)

Inspired by the n-links proposed in [38], we set the weight of Ws
i,j for the graph Gs as:

Ws
i,j =

1
distΛ

i,j
×



exp
(
−

disty
i,j

2σ2
1
−

distx
i,j

2σ2
2

)
, if disty

i,j ≤ σ2
1 , distx

i,j ≤ σ2
2

exp
(

disty
i,j

2σ2
1
−

distx
i,j

2σ2
2
− 1
)

, if disty
i,j ≤ σ2

1 , distx
i,j > σ2

2

exp
(
−

disty
i,j

2σ2
1

+
distx

i,j

2σ2
2
− 1
)

, if disty
i,j > σ2

1 , distx
i,j ≤ σ2

2

exp(−1), if disty
i,j > σ2

1 , distx
i,j > σ2

2

(9)

where distΛ
i,j denote the spatial distance between the center points of Λi and Λj, σ2

1 =〈
disty

i,j

〉
and σ2

2 =
〈

distx
i,j

〉
are the two normalized parameters using 〈·〉 to calculate the

mean value of the feature distance throughout the entire image. From (9), there are four
different cases of edge weight assignment: a large weight when Xi and Xj and Yi and Yj
are both similar; a small weight when Xi and Xj are not similar but Yi and Yj are similar; a
small weight when Xi and Xj are similar but Yi and Yj are not similar; and a median weight
when Xi and Xj and Yi and Yj are both not similar.

With this defined edge weight Ws
i,j, the constructed local spatial graph Gs not only

exploits the contextual information of the DI but also the similarity information of the
multi-temporal image. Based on spatial continuity, we have the following regularization:

min
p∈RNS

∑
(i,j)∈Es

Ws
i,j
(

pi − pj
)2

(10)

From (10), we can find that for the spatially adjacent Di and Dj, the regularization (10)
requires that their values are close, especially for those that originally have the same
similarity relationship in the two multi-temporal images. By defining the Laplacian matrix
of graph Gs as Ls, the regularization (10) can be rewritten as:

min
p∈RNS

2pTLsp (11)

It can be regarded as a local spatial smoothness constraint for the DI.

2.4. GLGDE Model

For the DI-enhancement model, we have a change data regularization term, which
constrains the difference between the enhanced DI and the original DI, defined as:

min
p∈RNS

∥∥p− d̄
∥∥2

2 (12)

where d̄ is the mean vector of DI with d̄i being the mean value of the superpixel Di as

d̄i =
∑(m,n)∈Λi

d(m,n)
|Λi |

.
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By combining the global feature graph G f -induced regularization (GRGR) of (7),
the local spatial graph Gs-induced regularization (LSGR) of (11) and the change data
regularization (CDR) of (12), we have the final GLGDE model as:

min
p∈RNS

∥∥p− d̄
∥∥2

2 + αpTL f p + βpTLsp (13)

where α, β > 0 are the balance parameters that control the weights of the GFGR and LSGR,
respectively. Here, the larger the α and β, the smoother the DI on the graphs of G f and Gs,
respectively. The closed-form solution of the minimization problem (13) is:

p∗ =
(

INS + αL f + βLs

)−1
d̄ (14)

where INS denotes the NS × NS identity matrix. Because p∗i represents the change level of
the i-th superpixel, we can obtain the enhanced DI as D∗:

d∗(m, n) = p∗i , if(m, n) ∈ Λi (15)

From the solution of p∗ and D∗, we can find that it is a process of improving the DI using
the graph model, i.e., requiring the DI to be smooth on two different graphs of G f and Gs.

Once the enhanced DI is computed, the binary CM can be calculated by using some
image-segmentation methods, for example, the thresholding methods such as the OTSU
threshold [48] or the kittler and Illingworth (KI) threshold [49], the clustering methods such
as k-means clustering [50] or the Fuzzy c-means clustering [51], or the random field-based
methods such as the Markov random field [37] or conditional random field [52]. Since the
focus of this paper is on how to improve DI quality and not on how to segment DI, we
directly use the OTSU method to classify the DI into changed and unchanged classes to
obtain the final CM. The framework of the global and local graph-based DI-enhancement
for CD is summarized in Algorithm 1.

Algorithm 1: GLGDE-based CD.

Input: Images of X and Y, initial DI of D.
Parameters of NS, α, and β.

Pre-processing:
Segment X, Y, and D into superpixels with GMMSP.
Extract the features to obtain X̃ and Ỹ.

Graph construction:
Find the KNN sets of N x

i and N y
i .

Find the R-adjacent neighbors of N R
i .

Construct the graphs of G f and Gs.
Model solving:

Compute the p∗ by using (14).
Compute the D∗ by using (15).
Compute final CM by using OTSU thresholding method.

3. Experimental Results and Discussions

In this section, we demonstrate the performance of the proposed GLGDE through
experiments, which are conducted on different CD tasks (homogeneous CD of SAR images
and optical images and heterogeneous CD) with six datasets, as listed in Table 1.
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Table 1. Description of the six datasets.

Dataset Sensor (or Source) Size (Pixels) Date Location Event (and Spatial Resolution)

#1 Radarsat-2/Radarsat-2 289× 257× 1(1) June 2008–June 2009 Yellow River, China Farmland irrigation (8 m)
#2 Radarsat-2/Radarsat-2 291× 306× 1(1) June 2008–June 2009 Yellow River, China Farmland irrigation (8 m)
#3 Google Earth/Google Earth 500× 500× 3(3) September 2012–March 2013 Beijing, China Construction (1 m)
#4 Google Earth/Google Earth 500× 500× 3(3) September 2012–March 2013 Beijing, China Construction (1 m)
#5 Landsat-5/Google Earth 300× 412× 1(3) September 1995–July 1996 Sardinia, Italy Lake expansion (30 m)
#6 Radarsat-2/Google Earth 593× 921× 1(3) June 2008–September 2012 Shuguang Village, China Building construction (8 m)

3.1. Experimental Settings

The main parameters of the GLGDE are the number of superpixels NS, the balance
parameters of α and β. For all the experimental results, we set NS = 5000, α = 0.5,

and β =
∑(i,j)∈E f

W f
i,j

∑(i,j)∈Es Ws
i,j
× α for GLGDE. The impact of these parameters will be discussed in

Section 3.3.
To measure the effect of DI enhancement, we use two types of evaluation metrics. First,

we evaluate the quality of the DI directly by using: (1) the precision-recall (PR) curve along
with the areas under the PR curve (AUP); (2) the empirical receiver operating characteristics
(ROC) curve along with the areas under the ROC curve (AUR). Second, we evaluate the
quality of the DI indirectly by assessing the CM obtained using the OTSU thresholding,
which can be measured using the False alarm rate (Fa), Miss rate (Mr), overall accuracy (Oa),
and the Kappa coefficient (Kc) computed using Fa = FP/(FP+ TN), Mr = FN/(TP+ FN),
Oa = (TP + TN)/(TP + TN + FP + FN), and Kc = (Oa− PRE)/(1− PRE) with:

PRE =
(TP + FN)(TP + FP) + (TN + FP)(TN + FN)

(TP + TN + FP + FN)2 , (16)

where TN, TP, FN, and FP represent the true negatives, true positives, false negatives, and
false positives, respectively. At the same time, in the CM, we mark the TN, TP, FN, and FP
with different colors.

3.2. Experimental Results
3.2.1. Homogeneous CD of SAR Images

Two pairs of SAR images are used in this task. Datasets #1 and #2 are both collected
using a Radarsat-2 SAR sensor over the Yellow River Estuary, China, as shown in Figure 2.
The pre-event images and post-event images are acquired in June 2008 and June 2009,
respectively, the spatial resolution of the images is 8 m/pixel, and the ground change maps
indicate the newly irrigated areas over Yellow River Estuary.

To obtain the initial DI, we choose the difference operator (Diff), log-ratio operator
(LR), mean-ratio operator (MR) [26], neighborhood-ratio operator (NR) [53], sparsity-driven
change-detection (SDCD) method [27], and the improved nonlocal patch-based graph
(INLPG) model [11] as the baselines. In the MR and NR, the patch size is set to 3× 3; in the
SDCD, the regularization parameter λ manually selects the best examples by adjusting it
from 10−4 to 10−1 with 20 logarithmic intervals; in the INLPG, the default parameters of
the official code are used directly. After the initial DI is computed, the proposed GLGDE is
applied to each DI to obtain the enhanced DI, denoted as the E-Diff, E-LR, E-MR, E-NR,
E-SDCD, and E-INLPG, respectively.

Figure 3 shows the initial DIs and enhanced DIs of Datasets #1 and #2, Figure 4 shows
the ROC and PR curves of these DIs, and Table 2 lists the corresponding AUR and AUP.
From these results, we have three findings: first, the qualities of the enhanced DIs generated
using the proposed GLGDE are much higher than that of the initial DIs, which means
that the GLGDE can increase the contrast between changed and unchanged in the DI.
For example, by comparing the DIs generated using Diff and E-Diff in Figure 3a, it can
be seen that, with the former, it is difficult to detect changes, while the latter can clearly
highlight the changes. Second, GLGDE is not only a local spatial smoothing of DI but, more
importantly, it can correct the DI, that is, it can modify the DI by introducing the correlation
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information of the original multi-temporal images, as illustrated by Figure 3e. Third, the
poorer the initial DI performance, the more significant the improvement of the GLGDE. It
can also be found that INLPG can achieve better performance in these initial DI-generation
methods.

(a) pre-event image (b) pre-event image (c) ground truth

Figure 2. Datasets #1 (top row) and #2 (bottom row). From left to right are: (a) pre-event image;
(b) post-event image; and (c) ground truth.

Table 2. Quantitative measures of DIs and CMs on the Datasets #1 and #2. Avg.ipv represents the
average improvement.

Methods
Dataset #1 Dataset #2

AUR ↑ AUP ↑ Fa ↓ Mr ↓ Oa ↑ Kc ↑ AUR ↑ AUP ↑ Fa ↓ Mr ↓ Oa ↑ Kc ↑
Diff 0.657 0.248 0.317 0.453 0.659 0.167 0.818 0.194 0.326 0.158 0.684 0.154
LR 0.764 0.478 0.185 0.404 0.775 0.351 0.916 0.525 0.143 0.156 0.856 0.352

MR 0.902 0.805 0.226 0.143 0.789 0.470 0.966 0.844 0.263 0.038 0.750 0.238
NR 0.905 0.794 0.166 0.178 0.832 0.536 0.978 0.860 0.114 0.047 0.890 0.460
SDCD 0.900 0.601 0.236 0.098 0.789 0.484 0.971 0.788 0.188 0.033 0.821 0.326
INLPG 0.978 0.938 0.008 0.264 0.946 0.798 0.990 0.909 0.013 0.163 0.978 0.809

E-Diff 0.959 0.881 0.021 0.252 0.937 0.774 0.986 0.922 0.005 0.154 0.986 0.869
E-LR 0.971 0.911 0.017 0.228 0.945 0.802 0.993 0.943 0.005 0.172 0.985 0.863
E-MR 0.973 0.929 0.015 0.180 0.955 0.841 0.990 0.945 0.004 0.121 0.989 0.898
E-NR 0.981 0.938 0.012 0.183 0.957 0.847 0.994 0.957 0.003 0.135 0.989 0.897
E-SDCD 0.976 0.930 0.023 0.135 0.957 0.853 0.992 0.947 0.006 0.105 0.988 0.893
E-INLPG 0.983 0.945 0.013 0.182 0.956 0.845 0.996 0.962 0.004 0.147 0.988 0.885

Avg.ipv 0.123 0.278 −0.173 −0.063 0.153 0.359 0.052 0.259 −0.170 0.040 0.157 0.494

Figure 5 shows the binary CMs generated from the initial and enhanced DIs by using
the OTSU thresholding on Datasets #1 and #2, where we mark the false positives (FP)
and false negatives (FN) with different colors (red and cyan) for easy observation and
comparison. Table 2 lists the corresponding Fa, Mr, Oa, and Kc. We can see that there are a
large number of errors in the original CMs and, in the CMs obtained after using GLGDE
enhancement, these errors are corrected and the resulting CMs are much more accurate. For
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example, as reported in Table 2, the average improvements (Avg.ipv) of GLGDE in Dataset
#1 on the AUR, AUP, Oa, and Kc metrics are 0.123, 0.278, 0.153, and 0.359, respectively.

(a1) Diff (b1) LR (c1) MR (d1) NR (e1) SDCD (f1) INLPG

(a2) E-Diff (b2) E-LR (c2) E-MR (d2) E-NR (e2) E-SDCD (f2) E-INLPG

(a3) Diff (b3) LR (c3) MR (d3) NR (e3) SDCD (f3) INLPG

(a4) E-Diff (b4) E-LR (c4) E-MR (d4) E-NR (e4) E-SDCD (f4) E-INLPG

Figure 3. Initial and enhanced DIs of Datasets #1 and #2. From top to bottom, they correspond to
initial DIs of Dataset #1, enhancement DIs of Dataset #1, initial DIs of Dataset #2, and enhancement
DIs of Dataset #2. From left to right are DIs generated using: (a1–a4) Diff/E-Diff; (b1–b4) LR/E-LR;
(c1–c4) MR/E-MR; (d1–d4) NR/E-NR; (e1–e4) SDCD/E-SDCD; and (f1–f4) INLPG/E-INLPG.

Figure 4. ROC and PR curves of Datasets #1 and #2. From left to right are: (a) ROC curves on Dataset
#1; (b) PR curves on Dataset #1; (c) ROC curves on Dataset #2; and (d) PR curves on Dataset #2.
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(a1) Diff (b1) LR (c1) MR (d1) NR (e1) SDCD (f1) INLPG

(a2) E-Diff (b2) E-LR (c2) E-MR (d2) E-NR (e2) E-SDCD (f2) E-INLPG

(a3) Diff (b3) LR (c3) MR (d3) NR (e3) SDCD (f3) INLPG

(a4) E-Diff (b4) E-LR (c4) E-MR (d4) E-NR (e4) E-SDCD (f4) E-INLPG

TP FP TN FN

Figure 5. CMs computed from initial and enhanced DIs of Datasets #1 and #2. From top to bottom,
they correspond to initial CMs of Dataset #1, enhancement CMs of Dataset #1, initial CMs of Dataset
#2, and enhancement CMs of Dataset #2. From left to right are CMs generated by: (a1–a4) Diff/E-
Diff; (b1–b4) LR/E-LR; (c1–c4) MR/E-MR; (d1–d4) NR/E-NR; (e1–e4) SDCD/E-SDCD; and (f1–f4)
INLPG/E-INLPG. In the CM, White: true positives (TP); Red: false positives (FP); Black: true
negatives (TN); and Cyan: false negatives (FN).

3.2.2. Homogeneous CD of Optical Images

Two pairs of optical images are used in this task. Datasets #3 and #4 are both collected
from Google Earth over Beijing, China, as shown in Figure 6. The pre-event images and
post-event images were acquired in September 2012 and March 2013, respectively, the
spatial resolution of the images is 1m/pixel, and the ground change maps indicate the
newly constructed buildings.
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(a) pre-event image (b) pre-event image (c) ground truth

Figure 6. Datasets #3 (top row) and #4 (bottom row). From left to right are: (a) pre-event image;
(b) post-event image; and (c) ground truth.

To obtain the initial DI, we choose the change vector analysis (CVA) [18], multivariate
alteration detection method (MAD) [19], iteratively reweighted MAD method (IRMAD) [20],
deep slow feature analysis network (DSFA) [23], deep CVA network (DCVA) [21], and
the INLPG [11] as the baselines. After the initial DI is computed, the proposed GLGDE is
applied to each DI to obtain the enhanced DI, denoted as the E-CVA, E-MAR, E-IRMAD,
E-DSFA, E-DCVA, and E-INLPG, respectively.

Figure 7 shows the initial DIs and enhanced DIs of Datasets #3 and #4, Figure 8 shows
the ROC and PR curves of these DIs, and Table 3 lists the corresponding AUR and AUP. As
can be seen from Figures 6 and 7, the seasonal differences in the pre-event and post-event
images lead to the poor qualities of the initial DIs obtained by some methods, such as the
CVA and DCVA on Dataset #3 and MAD and IRMAD on Dataset #4. By using the proposed
GLGDE on these initial DIs, the distinguishability between changed and unchanged is
greatly improved, as shown in Figures 7 and 8 and especially illustrated by the PR curves
of Figure 8. The average improvements of GLGDE in Datasets #3 and Datasets #4 on the
AUP metric are 0.421 and 0.450, respectively.

Figure 9 shows the binary CMs of Datasets #3 and #4 generated by using the OTSU
thresholding on the DIs of Figure 7 and Table 3 lists the corresponding Fa, Mr, Oa, and Kc.
For Dataset #3, there are lots of false alarms in the initial CMs of CVA, MAD, and DCVA
and lots of miss detection in the initial CMs of IRMAD and DSFA, though most of these
errors are corrected after the enhancement of GLGDE. Therefore, it can be seen that GLGDE
is not only a smoothing of DI but also a correction of DI. It enables the entire error area to
be corrected, which is not possible in the common spatial smoothing methods that only use
contextual information of a DI, as shown in Figures 7 and 9. The average improvements of
GLGDE in Dataset #3 and Dataset #4 on the Kc metric are 0.414 and 0.148, respectively.
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Table 3. Quantitative measures of DIs and CMs on the Datasets #3 and #4. Avg.ipv represents the
average improvement.

Methods
Dataset #3 Dataset #4

AUR ↑ AUP ↑ Fa ↓ Mr ↓ Oa ↑ Kc ↑ AUR ↑ AUP ↑ Fa ↓ Mr ↓ Oa ↑ Kc ↑
CVA 0.712 0.160 0.191 0.474 0.787 0.185 0.798 0.127 0.168 0.332 0.830 0.073
MAD 0.885 0.420 0.193 0.198 0.806 0.312 0.859 0.192 0.317 0.166 0.685 0.042
IRMAD 0.911 0.687 0.006 0.569 0.950 0.549 0.856 0.224 0.306 0.179 0.696 0.043
DSFA 0.769 0.194 0.081 0.685 0.871 0.207 0.824 0.180 0.082 0.395 0.913 0.139
DCVA 0.715 0.212 0.335 0.329 0.666 0.127 0.955 0.614 0.140 0.095 0.860 0.127
INLPG 0.955 0.652 0.124 0.086 0.879 0.484 0.992 0.796 0.007 0.228 0.990 0.674

E-CVA 0.975 0.685 0.076 0.047 0.926 0.631 0.978 0.706 0.093 0.066 0.907 0.195
E-MAD 0.993 0.902 0.033 0.016 0.969 0.815 0.982 0.809 0.137 0.028 0.865 0.142
E-IRMAD 0.995 0.942 0.022 0.035 0.977 0.858 0.980 0.799 0.140 0.033 0.861 0.137
E-DSFA 0.976 0.680 0.073 0.018 0.932 0.658 0.979 0.702 0.047 0.160 0.952 0.306
E-DCVA 0.975 0.744 0.093 0.049 0.911 0.580 0.994 0.867 0.050 0.036 0.950 0.328
E-INLPG 0.992 0.898 0.035 0.012 0.966 0.804 0.999 0.949 0.001 0.194 0.997 0.876

Avg.ipv 0.160 0.421 −0.100 −0.361 0.120 0.414 0.105 0.450 −0.092 −0.146 0.093 0.148

(a1) CVA (b1) MAD (c1) IRMAD (d1) DSFA (e1) DCVA (f1) INLPG

(a2) E-CVA (b2) E-MAD (c2) E-IRMAD (d2) E-DSFA (e2) E-DCVA (f2) E-INLPG

(a3) CVA (b3) MAD (c3) IRMAD (d3) DSFA (e3) DCVA (f3) INLPG

(a4) E-CVA (b4) E-MAD (c4) E-IRMAD (d4) E-DSFA (e4) E-DCVA (f4) E-INLPG

Figure 7. Initial and enhanced DIs of Datasets #3 and #4. From top to bottom, they correspond
to initial DIs of Dataset #3, enhancement DIs of Dataset #3, initial DIs of Dataset #4, and en-
hancement DIs of Dataset #4. From left to right are DIs generated using: (a1–a4) CVA/E-CVA;
(b1–b4) MAD/E-MAD; (c1–c4) IRMAD/E-IRMAD; (d1–d4) DSFA/E-DSFA; (e1–e4) DCVA/E-DCVA;
and (f1–f4) INLPG/E-INLPG.
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Figure 8. ROC and PR curves of Datasets #3 and #4. From left to right are: (a) ROC curves on Dataset
#3; (b) PR curves on Dataset #3; (c) ROC curves on Dataset #4; (d) PR curves on Dataset #4.

(a1) CVA (b1) MAD (c1) IRMAD (d1) DSFA (e1) DCVA (f1) INLPG

(a2) E-CVA (b2) E-MAD (c2) E-IRMAD (d2) E-DSFA (e2) E-DCVA (f2) E-INLPG

(a3) CVA (b3) MAD (c3) IRMAD (d3) DSFA (e3) DCVA (f3) INLPG

(a4) E-CVA (b4) E-MAD (c4) E-IRMAD (d4) E-DSFA (e4) E-DCVA (f4) E-INLPG

TP FP TN FN

Figure 9. CMs computed from initial and enhanced DIs of Datasets #3 and #4. From top to bottom,
they correspond to initial CMs of Dataset #3, enhancement CMs of Dataset #3, initial CMs of Dataset
#4, enhancement CMs of Dataset #4. From left to right are CMs generated by: (a1–a4) CVA/E-CVA;
(b1–b4) MAD/E-MAD; (c1–c4) IRMAD/E-IRMAD; (d1–d4) DSFA/E-DSFA; (e1–e4) DCVA/E-DCVA;
and (f1–f4) INLPG/E-INLPG.
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3.2.3. Heterogeneous CD

Two pairs of heterogeneous images are used in this task, as shown in Figure 10. In
Dataset #5, the pre-event image is collected using Landsat-5 with the near-infrared band
in September 1995, the post-event image is obtained from Google Earth using R, G, and B
bands in July 1996, the spatial resolution of the images is 30 m/pixel, and the ground change
map indicates the Lake expansion in Sardinia, Italy. In Dataset #6, the pre-event image is
collected using a Radarsat-2 SAR sensor in June 2008, the post-event image is obtained
from Google Earth with R, G, and B bands in September 2012, the spatial resolution of the
images is 8 m/pixel, and the ground change map indicates the building construction in
Shuguang Village, China.

(a) pre-event image (b) pre-event image (c) ground truth

Figure 10. Datasets #5 (top row) and #6 (bottom row). From left to right are: (a) pre-event image;
(b) post-event image; and (c) ground truth.

To obtain the initial DI, we choose the homogeneous pixel transformation (HPT)
method [13], affinity matrix distance-based image regression (AMDIR) [14], adaptive
local structure consistency-based method (ALSC) [54], INLPG [11], fractal projection and
Markovian segmentation-based algorithm (FPMS) [34], and sparse-constrained adaptive
structure consistency-based method (SCASC) [37] as the baselines. For the HPT, we use
40% of the unchanged pixels as the training samples; for other methods, we directly use
the default parameters of their official codes. After the initial DI is computed, the proposed
GLGDE is applied to each DI to obtain the enhanced DI, denoted as the E-HPT, E-AMDIR,
E-ALSC, E-INLPG, E-FPMS, and E-SCASC, respectively.

Figure 11 shows the initial DIs and enhanced DIs of Datasets #5 and #6, Figure 12 shows
the ROC and PR curves of these DIs, and Table 4 lists the corresponding AUR and AUP.
From these results, we can see that the initial DIs all show some change information and,
among these DIs, FPMS and INLPG perform relatively better. By comparing the initial DIs
and enhanced DIs of Figure 11, two findings can be noted: first, the enhanced DIs generated
using GLGDE can cause the change area to be more continuous than the corresponding
initial DIs, such as the DIs obtained using SCASC and E-SCASC in Figure 11(f1–f4); second,
the GLGDE can effectively suppress the unchanged regions with high change levels in
the initial DI, thus reducing the interference of the background area on change detection,
such as the DIs obtained using AMDIR and E-AMDIR in Figure 11(b1–b4). The ROC and
PR curves in Figure 12 also verify the enhancement of GLGDE on DI and the average
improvements of GLGDE in Datasets #5 and Datasets #6 on the AUP metric are 0.276 and
0.236, respectively.
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(a1) HPT (b1) AMDIR (c1) ALSC (d1) INLPG (e1) FPMS (f1) SCASC

(a2) E-HPT (b2) E-AMDIR (c2) E-ALSC (d2) E-INLPG (e2) E-FPMS (f2) E-SCASC

(a3) HPT (b3) AMDIR (c3) ALSC (d3) INLPG (e3) FPMS (f3) SCASC

(a4) E-HPT (b4) E-AMDIR (c4) E-ALSC (d4) E-INLPG (e4) E-FPMS (f4) E-SCASC

Figure 11. Initial and enhanced DIs of Datasets #5 and #6. From top to bottom, they correspond
to initial DIs of Dataset #5, enhancement DIs of Dataset #5, initial DIs of Dataset #6, and en-
hancement DIs of Dataset #6. From left to right are DIs generated using: (a1–a4) CVA/E-CVA;
(b1–b4) MAD/E-MAD; (c1–c4) IRMAD/E-IRMAD; (d1–d4) DSFA/E-DSFA; (e1–e4) DCVA/E-DCVA;
and (f1–f4) INLPG/E-INLPG.

Figure 13 shows the CMs of Datasets #5 and #6 using different DIs with OTSU thresh-
olding and Table 4 lists the corresponding quantitative measures. It can be seen that the
GLGDE can effectively improve the detection performance. For example, GLGDE can
significantly reduce false alarms in HPT and AMDIR in Figures 13(a1–a4) and 13(b1–b4),
respectively, and preserve the edges of the detected area, such as the results on Dataset #6.
As reported in Table 4, the average improvements of GLGDE in Datasets #5 and #6 on the
Kc metric are 0.196 and 0.252, respectively.

Figure 12. ROC and PR curves of Datasets #5 and #6. From left to right are: (a) ROC curves on Dataset
#5; (b) PR curves on Dataset #5; (c) ROC curves on Dataset #6; and (d) PR curves on Dataset #6.
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(a1) HPT (b1) AMDIR (c1) ALSC (d1) INLPG (e1) FPMS (f1) SCASC

(a2) E-HPT (b2) E-AMDIR (c2) E-ALSC (d2) E-INLPG (e2) E-FPMS (f2) E-SCASC

(a3) HPT (b3) AMDIR (c3) ALSC (d3) INLPG (e3) FPMS (f3) SCASC

(a4) E-HPT (b4) E-AMDIR (c4) E-ALSC (d4) E-INLPG (e4) E-FPMS (f4) E-SCASC

TP FP TN FN

Figure 13. CMs computed from initial and enhanced DIs of Datasets #5 and #6. From top to bottom,
they correspond to initial CMs of Dataset #5, enhancement CMs of Dataset #5, initial CMs of Dataset #6,
and enhancement CMs of Dataset #6. From left to right are CMs generated by: (a1–a4) CVA/E-CVA;
(b1–b4) MAD/E-MAD; (c1–c4) IRMAD/E-IRMAD; (d1–d4) DSFA/E-DSFA; (e1–e4) DCVA/E-DCVA;
and (f1–f4) INLPG/E-INLPG.

Table 4. Quantitative measures of DIs and CMs on the Datasets #5 and #6. Avg.ipv represents the
average improvement.

Methods
Dataset #5 Dataset #6

AUR ↑ AUP ↑ Fa ↓ Mr ↓ Oa ↑ Kc ↑ AUR ↑ AUR↑ Fa ↓ Mr ↓ Oa ↑ Kc ↑
HPT 0.889 0.373 0.196 0.138 0.808 0.286 0.922 0.564 0.117 0.181 0.880 0.339
AMDIR 0.795 0.155 0.224 0.277 0.773 0.203 0.911 0.470 0.151 0.180 0.848 0.279
ALSC 0.972 0.793 0.026 0.218 0.962 0.696 0.980 0.623 0.038 0.115 0.958 0.641
INLPG 0.930 0.604 0.027 0.297 0.956 0.642 0.985 0.808 0.029 0.151 0.965 0.672
FPMS 0.925 0.406 0.083 0.189 0.911 0.486 0.994 0.904 0.004 0.310 0.982 0.768
SCASC 0.885 0.383 0.043 0.420 0.934 0.485 0.968 0.695 0.002 0.713 0.965 0.418

E-HPT 0.948 0.757 0.035 0.186 0.956 0.672 0.992 0.922 0.019 0.044 0.979 0.800
E-AMDIR 0.926 0.576 0.092 0.181 0.903 0.465 0.991 0.889 0.060 0.039 0.941 0.571
E-ALSC 0.980 0.851 0.011 0.229 0.975 0.781 0.994 0.911 0.021 0.040 0.979 0.794
E-INLPG 0.959 0.761 0.017 0.261 0.968 0.723 0.994 0.920 0.020 0.038 0.980 0.802
E-FPMS 0.953 0.669 0.040 0.221 0.949 0.626 0.996 0.948 0.011 0.039 0.987 0.869
E-SCASC 0.964 0.755 0.018 0.280 0.966 0.705 0.992 0.892 0.021 0.038 0.978 0.792

Avg.ipv 0.056 0.276 −0.064 −0.030 0.062 0.196 0.033 0.236 −0.032 −0.235 0.041 0.252

3.3. Parameter Analysis

The main parameters of the proposed GLGDE are the number of superpixels NS and
the balance parameters of α and β.

Generally, the NS should be selected according to the image resolution and granularity
requirement of the CD task. A larger NS cause the segmented superpixel to be smaller,
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which improves the detection granularity but also increases the computational complexity.
In addition, we have the following notes for the influence of the image resolution on the
proposed method. First, high-resolution images usually contain more detailed structure and
textural information, so when performing superpixel co-segmentation in the pre-processing,
the segmented superpixels are required to be finer, i.e., NS is larger. Second, when the
spatial resolution of the compared image is very high, the great intraclass variation and
low interclass variance usually lead to a lot of salt-and-pepper noise in the original DI.
At the same time, it is difficult to accurately characterize the structure of high-resolution
images with the KNN graphs. Therefore, when facing the very high-resolution images,
the following two issues need to be considered in the proposed method: first, the number
of superpixels NS should be increased appropriately; second, the KNN graphs used to
capture the structures of multi-temporal images and the DI may need to be replaced with
the more advanced graph neural networks (GNN).

The balance parameters of α and β are used to control the weights of the GFGR and
LSGR in the DI-enhancement model (13), respectively. First, in order to cause the GFGR

and LSGR to be equivalent (the penalty is balanced), we set β =
∑(i,j)∈E f

W f
i,j

∑(i,j)∈Es Ws
i,j
× α, which

makes causes the values of αpTL f p and βpTLsp to be approximately at the same level.
Second, to measure the impact of α, we adjust the α from 2−4 to 22 with ratio of 2 and plot
the average improvement of the AUP generated using GLGDE with different α in Figure 14.
It can be found that too large and too small α are both not suitable: first, if α is too large,
the GLGDE tends to over-smooth the DI, causing all the superpixels connected by the
constructed graphs (G f and Gs) to converge to the same; second, if α is too small, then
GFGR and LSGR cannot play a noticeable effect in the DI-enhancement model, which limits
the performance of GLGDE. Based on Figure 14, we fix α = 0.5 in this paper for simplicity.

Figure 14. Sensitivity analysis of parameter α in GLGDE.

4. Conclusions

In this paper, we focus on the post-processing of the DI that is rarely noticed by other
methods and propose a DI-enhancement method, named GLGDE. Once the initial DI is
obtained, GLGDE first segments the DI and multi-temporal images into superpixels and
then constructs a global feature graph and a local spatial graph with superpixels as vertices
for the DI, which can exploit the change information and contextual information in the DI
and the correlation information in the multi-temporal images. With the constructed graphs,
the DI-enhancement model is built using three terms: a global-feature-graph-induced
regularization term, a local spatial-graph-induced regularization term, and a change-data
regularization term. By solving the minimization model, we can obtain the improved DI.
Different from the previous DI-smoothing algorithm that only uses the contextual informa-
tion of the DI itself, the proposed GLGDE can also exploit the association information of the
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multi-temporal images, so it can not only smooth the DI but also correct the DI. Therefore,
it is a DI-enhancement method specifically designed for a CD problem, which takes into
account the characteristics of the CD problem. Finally, extensive experiments in different
CD scenarios demonstrate the effectiveness of the proposed method. In our future study,
we will exploit the global feature graph and local spatial graph in the DI segmentation
process of a CD problem to improve the detection performance of the final change map.
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