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Abstract: Since there is a frequency offset between each adjacent antenna of FDA radar, there exists
angle-range two-dimensional dependence in the transmitter. For bistatic FDA-multiple input multiple
output (MIMO) radar, range-direction of departure (DOD)-direction of arrival (DOA) information is
coupled in transmitting the steering vector. How to decouple the three information has become the
focus of research. Aiming at the issue of target parameter estimation of bistatic FDA-MIMO radar,
a real-valued parameter estimation algorithm based on high-order-singular value decomposition
(HOSVD) is developed. Firstly, for decoupling DOD and range in transmitter, it is necessary to divide
the transmitter into subarrays. Then, the forward–backward averaging and unitary transformation
techniques are utilized to convert complex-valued data into real-valued data. The signal subspace
is obtained by HOSVD, and the two-dimensional spatial spectral function is constructed. Secondly,
the dimension of spatial spectrum is reduced by the Lagrange algorithm, so that it is only related to
DOA, and the DOA estimation is obtained. Then the frequency increment between subarrays is used
to decouple the DOD and range information, and eliminate the phase ambiguity at the same time.
Finally, the DOD and range estimation automatically matched with DOA estimation are obtained.
The proposed algorithm uses the multidimensional structure of high-dimensional data to promote
performance. Meanwhile, the proposed real-valued tensor-based method can effectively cut down
the computing time. Simulation results verify the high efficiency of the developed method.

Keywords: bistatic FDA-MIMO radar; unitary transformation technique; HOSVD; DOA-DOD-
range estimation

1. Introduction

Multiple input multiple output (MIMO) radar was developed in 2004, which can make
up for the drawbacks of phased array (PA) [1–3]. Different from PA radar, the transmitted
waveforms of MIMO radar are orthogonal to each other [4–6]. When the receiver completes
the matched filtering, it can produce a large number of virtual array elements, which can
dramatically promote radar performance [7–9]. However, the advantages of MIMO radar in
range estimation are not prominent. Therefore, in 2006, Antonik et al. proposed frequency
diversity array (FDA) [10,11]. With the development of array signal processing, some
scholars developed FDA-MIMO radar [12,13]. There are two categories of FDA-MIMO:
statistical radar [14,15] and collocated radar [16,17]. In this paper, the bistatic FDA-MIMO
in collocated radar is taken as the research object.

FDA-MIMO radar adds frequency increment in transmitter antennas, the transmitter
waveform is affected by both range and angle [18,19]. The transmitting waveform has
two-dimensional dependence on range and angle [20,21]. Therefore, FDA-MIMO can
estimate angle and range concurrently [22,23]. Moreover, since FDA-MIMO radar adds
the information of range dimension, the degree of freedom (DOF) is increased [24,25].
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Thus, FDA-MIMO radar can achieve more tasks in different environments [26]. Therefore,
FDA-MIMO radar can be applied to achieve parameter estimation.

Since FDA-MIMO can provide more DOFs of the system, it can provide more target
parameter information. Therefore, many parameter estimation studies for FDA-MIMO have
been performed. In [27], an algorithm based on the multiple signal classification (MUSIC)
method to achieve target angle-range is proposed. Since the estimation method requires
two spectral peak searches to obtain angle and range, the estimation method has a lot of
operational redundancy. In order to cut down the operation time, a two-stage algorithm via
rotation invariance technique (ESPRIT) approach is developed to obtain the angle-range
estimation [28]. The angle and range estimated by this algorithm are automatically matched.
In [29], in order to cut down more operation time. Liu et al. constructed the unitary matrix to
transform the subspace into real-valued data, further reducing the operational redundancy.
However, the precision of this approach will be declined in low signal-to-noise ratio (SNR).
Therefore, a tensor-based FDA-MIMO radar algorithm is proposed [30], this algorithm
realizes spatial spectrum dimensionality reduction through Lagrange multiplier method,
thus reducing the computational complexity of spectral peak search part, and achieving
decoupling of angle and range. Xu et al. proposed an algorithm based on high-order-
singular value decomposition (HOSVD), which retains the multi-dimensional structure
of data and can obtain superior result. Although the above algorithms can realize the
estimation of FDA-MIMO, the accuracy of estimation will sharply decline in low SNR and
snapshot. However, in bistatic FDA-MIMO radar, these algorithms will fail because of the
coupling problem between the DOD and the range of the target. At present, the research
of target parameter estimation for bistatic FDA-MIMO radar is still insufficient, and the
existing algorithms are mostly carried out for monostatic FDA-MIMO radar.

In this paper, a real-valued parameter estimation approach based on HOSVD is de-
veloped. This algorithm solves the problem of three-dimensional direction of arrival
(DOA)-direction of departure (DOD)-range estimation in bistatic FDA-MIMO radar. Firstly,
for eliminating the coupling between DOD and range, the transmitter is divided into
several subarrays. Then a three-dimensional tensor data model is constructed. The orig-
inal tensor is converted into a real-valued tensor by unitary transformation technique.
The HOSVD algorithm is employed to obtain signal subspace. The spatial spectrum func-
tion is constructed through obtained subspace. Then the one-dimensional spatial spectrum
only related to DOA information is obtained by Lagrange algorithm. The DOA is esti-
mated by one-dimensional spatial spectral. Utilizing the constructed transmitting subarray,
the DOD and range information are decoupled and the periodic ambiguity of phase is
eliminated. Finally, the automatically matched DOD and range are estimated. The de-
veloped approach preserves the multidimensional structure. Furthermore, the matched
DOA, DOD and range estimation can be obtained through the reduced-dimension MUSIC
algorithm. The presented method not only has high precision, but also cut down the
computational complexity.

In summary, the contributions of the developed algorithm are summarized as:

(1) The developed approach can achieve joint DOA-DOD-range estimation for bistatic FDA-
MIMO. The tensor signal subspace is obtained by HOSVD method. The original structure
of the received data is preserved, which can greatly improve the estimation accuracy;

(2) The proposed approach is a real-valued operation, and it utilizes the reduced-dimension
MUSIC algorithm, which estimates DOA by utilizing one-dimensional spatial spectrum.
It greatly reduces operational redundancy while ensuring the performance advantages;

(3) The presented method eliminates the coupling of DOD information and range infor-
mation by subarray division of transmitter. Accurate DOD and range estimations
are achieved.

The notations are presented in Table 1.
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Table 1. Notations.

Notation Definition

(·)∗ conjugate
(·)T transpose
(·)H conjugate-transpose
(·)−1 inverse
(·)† pseudo-inverse
⊗ Kronecker product
� Khatri–Rao product
◦ outer product
tn the concatenation along the n-th mode
IQ Q×Q identity matrix
0Q Q×Q zero matrix
b·c floor operator
(·)! factorial

diag(·) diagonalization of matrix
angle(·) the phase of array elements

2. Signal Model

The bistatic FDA-MIMO radar is taken as the research object. From Figure 1, we can
know that there are M transmitting antennas and N receiving antennas, all of which are
uniform linear arrays (ULA) with half wavelength spacing. dt and dr are antenna spacing.
On the basis of the definition of FDA-MIMO radar, there is a frequency increment between
antennas at transmitter. The carrier frequency of the m-th antenna is given by [31]

fm = f0 + (m− 1)∆ f , m = 1, 2, · · · , M, (1)

where f0 represents carrier frequency. ∆ f stands for frequency increment. The signal
transmitted by m-th transmitting antenna can be defined as

sm(t) =

√
E
M

ψm(t)ej2π fmt,

0 ≤ t ≤ T, m = 1, 2, · · · , M,
(2)

where E stands for energy, ψm(t) represents transmitting waveform. T stands for delay.
Since transmitting waveforms are orthogonal to each other, the following expression
is given ∫

T
ψm(t)ψ∗n(t− τ)ej2π(m−n)∆ f tdt =

{
0, m 6= n, ∀τ
1, m = n, ∀τ.

(3)

f1 f2 fM

dt dr

1 2 N

rt

rr

r=rt+rr

Figure 1. Bistatic FDA-MIMO radar.



Remote Sens. 2023, 15, 1192 4 of 19

Assume K targets in the far-field. DOA, DOD, and range of k-th target are written as
θk, ϕk, and rk. The data of the k-th target received by n-th receiving antenna can be defined
as [19,32]

yn(t) = ρk

M

∑
m=1

ψm

(
t− τt

m,k − τr
n,k

)
ej2π fm(t−τt

m,k−τr
n,k), (4)

where ρk is complex-valued reflection coefficient of the k-th target. τt
m,k and τr

n,k stand for
the time delay, which can be given by

τt
m,k =

(
rt

1,k − (m− 1)dt sin(θk)
)

/c,

τr
n,k =

(
rr

1,k − (n− 1)dr sin(ϕk)
)

/c,
(5)

where c = 3× 108 m/s.
The received snapshot is given by [33]

X =
K

∑
k=1

ξkaR(θk)aT
T(rk, ϕk) + F, (6)

ξk = ρkej2π f0rk/c, (7)

where F represents noise vector.
Then aT(rk, ϕk) is defined as [34]

aT(rk, ϕk) = r(rk)� d(ϕk) ∈ CM×1, (8)

r(rk) =
[
1, e−j2π∆ f rk/c, . . . , e−j2π∆ f (M−1)rk/c

]T
∈ CM×1, (9)

d(ϕk) =
[
1, ej2πdt f0 sin ϕk/c, . . . , ej2πdt f0(M−1) sin ϕk/c

]T
∈ CM×1. (10)

From Equation (8), we can know that the range and DOD information are coupled
with each other. However, the DOA information of target is only related to aR(θk), which
is given by

aR(θk) =
[
1, ej2πdr f0 sin θk/c, . . . , ej2πdr f0(N−1) sin θk/c

]T
∈ CN×1. (11)

Therefore, the DOA estimation can be obtained from aR(θk). However, to obtain
DOD and range estimation, aT(rk, ϕk) needs to be decoupled. Therefore, the transmitter is
converted to P subarrays. Since each subarray is independent, the frequency increment of
subarrays is unequal. The subarray aTS(rk, ϕk) can be written as

aTS(rk, ϕk) =


a1

TS(rk, ϕk)
a2

TS(rk, ϕk)
...

aP
TS(rk, ϕk)

. (12)

The frequency of mth element in pth (p = 1, 2, · · · , P) subarray is defined as f m,p
TS ,

which can be given by

f m,p
TS = f 1,p

TS + (m− 1)∆ fp, m = 1, 2, · · · , Mp
TS, (13)

where ∆ fp stands for frequency increment of pth subarray.



Remote Sens. 2023, 15, 1192 5 of 19

Figure 2 is subarray model. It can be seen that the transmitter is converted to P
subarrays. Therefore, the steering vector of the pth subarray is given by

ap
TS(rk, ϕk) = e

j 2π
c

((
p−1
∑

q=1
Mq

TS

)
dt f1 sin(ϕk)+( f1− f 1,p

TS rk)

)
×


1

ej 2π
c (dt f1 sin(ϕk)−∆ fprk)

...

ej(Mp
TS−1) 2π

c (dt f1 sin(ϕk)−∆ fprk)

. (14)

TSM ,P

TS
f

1 2
TS

M TSM 1 TSM 2
TS

2M M

1,1

TS
f

2,1

TS
f TSM ,1

TS
f

1,2

TS
f

2,2

TS
f TSM ,2

TS
f

Figure 2. Subarray model.

In this paper, the number of antennas in each subarray is equal, that is, Mp
TS =

M/P, (p = 1, 2, · · · , P). In addition, the frequency of the last antenna in the former subarray

is identical to that of first element in latter subarray. In other words, f
Mp

TS ,p
TS = f 1,p+1

TS , where
f 1,1
TS = f1, ∆ f1 < ∆ f2 · · · < ∆ fP.

Equation (6) can be converted to tensor form, which can be given by

X (n, m, l) =
K

∑
k=1

AR(n, k) ◦ ATS(m, k) ◦ S(l, k) + Fn,m,l , (15)

where AT(m, k) is (m, k)-th element of AT , AR(n, k) denotes (n, k)-th element of AR, S(l, k)
represents (l, k)-th element of S. S = [ξ1, ξ2, . . . , ξk]

T . Fn,m,l stands for noise tensor, while l
denotes number of snapshots.

3. The Proposed Method
3.1. Real-Valued Signal Subspace Estimation

For changing X into a centro-Hermitian tensor, forward–backward averaging tech-
nique is used

Z = [X t3(X
∗ × 1ΓN × 2ΓM × 3ΓL)]. (16)

where the element on the anti-diagonal of Γn is 1, and the other elements are 0. Through
the unitary transformation, a new real-valued tensor is obtained

Z real = Z × 1EH
N × 2EH

M × 3EH
2L (17)

where the unitary matrices are defined as

EK =
1√
2

[
IK jIK
ΓK −jΓK

]
(18)

E2K+1 =
1√
2

 IK 0 jIK
01×K

√
2 01×K

ΓK 0 −jΓK

 (19)

Firstly, HOSVD algorithm is employed for Z real , which can be written as

Z real = Greal ×1 U1 ×2 U2 ×3 U3, (20)
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where Greal ∈ CM×N×L is core tensor, U1 ∈ CM×M, U2 ∈ CN×N and U3 ∈ CL×L are
composed of left singular of the mode-n tensor unfolding of Z real , respectively. In other
words, [Z real ](n) = UnΛnVH

n (n = 1, 2, 3). Then the truncated HOSVD is employed to
obtain signal subspace estimation, which is given by

Z s = Gs ×1 Us1 ×2 Us2, (21)

where Gs = Z real ×1 UH
s1 ×2 UH

s2 ×3 UH
s3 is the truncated core tensor. Usn(n = 1, 2, 3) is

composed of the column vector of Un.
Substituting Gs into Equation (21), Equation (21) is given by

Z s = Z real ×1 (Us1UH
s1)×2 (Us2UH

s2)×3 UH
s3. (22)

According to [35,36], the properties of the mode product is given by{
J × iW× jG = J ×j W×i G, j 6= i
J × iW× iG = J ×i (WG), j = i

(23)

[J × 1W1 ×2 W2 × · · · ×I WI ](i) =

Wi · [J ](i) · [WI ⊗ . . .⊗Wi+1 ⊗Wi−1 ⊗ . . .⊗W2 ⊗W1]
T (24)

where J is a tensor, W and G are matrices.
According to Equations (23) and (24), the signal subspace Us is obtained by mode-3

unfolding of Z s.

Us = [Z s]
T
(3) = (Us2UH

s2 ⊗Us1UH
s1)[Z real ]

T
(3)U

∗
s3, (25)

where [Z real ](3) = U3Λ3VH
3 . In addition, [Z real ]

T
(3) ≈ V∗s3Λs3UT

s3. Therefore, Equation (25)
can be rewritten as

Us = (Us2UH
s2 ⊗Us1UH

s1)V
∗
s3Λs3. (26)

Therefore, the tensor-based signal subspace estimation has been obtained.

3.2. DOA Estimation

According to MUSIC algorithm [37], the noise subspace is achieved by orthogonal
projection, which can be expressed as [38]

UnoiseUH
noise = INM −UoUo

H, (27)

where Uo is the orthogonal basis of Us.
The spectrum function is given by

f (θ, ϕ, r) = 1
[EH

N aR(θ)⊗EH
MaTS(rk ,ϕk)]H[INM−UoUo

H][EH
N aR(θ)⊗EH

MaTS(rk ,ϕk)]
. (28)

From Equation (28), we can know that parameter estimation can be obtained by three-
dimensional spectral peak searching. In order to cut down the computing redundancy,
the Lagrange multiplier approach is employed to cut down the dimension of the spectrum
function [39].

On the basis of the Kronecker product [40], the expression of EH
N aR(θ)⊗ EH

MaTS(r, ϕ)
can be simplified, which is given by

EH
N aR(θ)⊗ EH

MaTS(r, ϕ) = [EH
N aR(θ)I1]⊗ [EH

MaTS(r, ϕ)]

= [âR(θ)I1]⊗ [EH
MaTS(r, ϕ)]

= [âR(θ)⊗ EH
M][I1aTS(r, ϕ)]

= [âR(θ)⊗ EH
M]aTS(r, ϕ).

(29)
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where âR(θ) = EH
N aR(θ). Then according to Equation (28), F(θ, ϕ, r) is defined as

F(θ, ϕ, r) = [EH
N aR(θ)⊗ EH

MaTS(r, ϕ)]HUorth[E
H
N aR(θ)⊗ EH

MaTS(r, ϕ)]

= aTS(r, ϕ)H[âR(θ)⊗ EH
M]HUorth[âR(θ)⊗ EH

M]aTS(r, ϕ)

= aTS(r, ϕ)HF(θ)aTS(r, ϕ),

(30)

where F(θ) = [âR(θ)⊗ EH
M]HUorth[âR(θ)⊗ EH

M], Uorth = UnoiseUH
noise.

The quadratic optimization problem needs to be considered in Equation (30). That is,
the following constraints are considered [39], it is given by

eH
o aTS(r, ϕ) = 1

⇒aTS(r, ϕ) = (eH
o )
−1,

(31)

where eH
o = [1, 0, · · · , 0]T ∈ CM×1.

For solving the extreme value issue in Equation (30), Lagrange multiplier approach is
employed. The Lagrange function of Equation (30) is given by

L(θ, ϕ, r) = aTS(r, ϕ)HF(θ)aTS(r, ϕ) + λ(eH
o aTS(r, ϕ)− 1), (32)

where λ is Lagrangian multiplier.
The partial derivative of Equation (32) is given by

∂L(θ, ϕ, r)
∂aTS(r, ϕ)

= 2F(θ)aTS(r, ϕ)− λeo = 0

⇒ aTS(r, ϕ) =
λ

2
F(θ)−1eo.

(33)

Substituting Equation (31) into Equation (33), we can obtain

λ

2
F(θ)−1eo = aTS(r, ϕ) = (eH

o )
−1

⇒λ =
2

eH
o F(θ)−1eo

.
(34)

Therefore, aTS(r, ϕ) is given by

aTS(r, ϕ) =
F(θ)−1eo

eH
o F(θ)−1eo

. (35)

Finally, the DOA estimation can be obtained through Equations (28) and (35).

θ̂ = arg max f (θ, ϕ, r)

= arg min aTS(r, ϕ)HF(θ)aTS(r, ϕ)

= arg min e−1
o F(θ)e−H

o

= arg max eH
o F(θ)−1eo.

(36)

The result of DOA estimation is to search the reduced dimension MUSIC spectral peak.
The first K largest peaks obtained are the DOAs of corresponding K targets.
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3.3. DOD and Range Estimation

By using the DOA estimation and combining with Equation (35), the estimation of the
transmit steering vector âT(rk, ϕk) is achieved. The scale ambiguity of âT(rk, ϕk) should be
eliminated by normalization process. Therefore, the phase of âT(rk, ϕk) is expressed as

Φ
p
T = diag


ej 2π

c [dt f1 sin ϕ1−∆ f1r1]

ej 2π
c [dt f1 sin ϕ2−∆ f2r2]

...
ej 2π

c [dt f1 sin ϕk−∆ fKrk ]

. (37)

The phase of the kth diagonal element in Φ
p
T corresponds to kth target, which is

2π
c dt f1 sin(ϕk)− 2π

c ∆ f1rk = angle(φk,1
TS)− 2z1π

2π
c dt f1 sin(ϕk)− 2π

c ∆ f2rk = angle(φk,2
TS)− 2z2π

...
2π
c dt f1 sin(ϕk)− 2π

c ∆ fKrk = angle(φk,P
TS )− 2zPπ,

(38)

where φ
k,p
TS corresponds to the phase of the kth target in pth subarray, zi ∈ Z, i = 1, 2, · · · , P.

The value of zi cannot be determined due to the phase period ambiguity of angle(φk,p
TS ).

Since ∆ f1 < ∆ f2 < · · · < ∆ fP, subtract the subformula in Equation (38), which is given by

2π
c (∆ f2 − ∆ f1)rk =angle(φk,1

TS)− angle(φk,2
TS) + 2π(z2 − z1)

2π
c (∆ f3 − ∆ f2)rk =angle(φk,2

TS)− angle(φk,3
TS) + 2π(z3 − z2)

...
2π
c (∆ fP − ∆ fP−1)rk =angle(φk,P−1

TS )− angle(φk,P
TS ) + 2π(zP − zP−1).

(39)

It can be seen from Equation (39) that only range information is included in
Equation (39). However, there is still phase period ambiguity in Equation (39). In or-
der to eliminate phase period ambiguity, we define

hk =


hk,1
hk,2

...
hk,P−1

 =


∆ f2−∆ f1

c
∆ f3−∆ f2

c
...

∆ fP−∆ fP−1
c

, (40)

ζk,i = angle(φk,i
TS)− angle(φk,i+1

TS ) + (zi+1 − zi), (i = 1, 2, ..., P− 1). (41)

Then Equation (39) can be rewritten as

hk,1∗rk = ζk,1

hk,2∗rk = ζk,2

...

hk,P−1∗rk = ζk,P−1

⇒ hkrk = ζk, (42)

where ζk = [ζk,1, ζk,2, · · · , ζk,P−1]
T.
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Equation (42) can be simplified as

2π
∆ f i+1

TS −∆ f i
TS

c rk

=angle(φk,i
TS)− angle(φk,i+1

TS ) + 2π(zi+1 − zi).
(43)

For determining the range parameter, the following conditions need to be met

0 < 2π
∆ f i+1

TS − ∆ f i
TS

c
rk 6 2π. (44)

Since the range rk is positive and ∆ f 1
TS < ∆ f 2

TS · · · < ∆ f P
TS, 2π

∆ f i+1
TS −∆ f i

TS
c rk > 0. When

2π
∆ f i+1

TS −∆ f i
TS

c rk 6 2π, (zi+1 − zi) has a unique solution, which can be expressed as

zi+1 − zi =

{
1, angle(φk,i

TS) < angle(φk,i+1
TS )

0, angle(φk,i
TS) > angle(φk,i+1

TS ).
(45)

According to Equation (44), the range rk can be written as

rk 6
c

∆ f i+1
TS − ∆ f i

TS

. (46)

Combining Equations (42) and (46), the range rk can be expressed as

rk 6
c

max(∆ f i+1
TS − ∆ f i

TS)
. (47)

Therefore, the effective range of radar estimation is affected by radar frequency.
By substituting Equation (45) into Equation (42) and employing the least square (LS)

approach, the range estimation r̂k can be obtained, which is given by

r̂k = h†
k ζk, (48)

where the r̂k is the range estimation of kth target.
By substituting r̂k into Equation (39), we can obtain

2π
c dt f1 sin(ϕk) =angle(φk,1

TS)− 2z1π + 2π
c ∆ f 1

TSrk

2π
c dt f1 sin(ϕk) =angle(φk,2

TS)− 2z2π + 2π
c ∆ f 2

TSrk

...
2π
c dt f1 sin(ϕk) =angle(φk,P

TS )− 2zPπ + 2π
c ∆ f P

TSrk.

(49)

Since 2dt f1/c 6 1, the parameter zi(i = 1, 2, · · · , P) can be obtained, which is
expressed as

zi =

⌊
angle(φk,i

TS)−
2π
c ∆ f i

TS r̂k + π

2π

⌋
, i = 1, 2, · · · , P. (50)

To simplify Equation (49), we define

hϕ =


2π
c f1dt

2π
c f1dt

...
2π
c f1dt

 ∈ CP×1, (51)
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ψϕ =


angle(φk,1

TS)− 2z1π + 2π
c ∆ f 1

TSrk
angle(φk,2

TS)− 2z2π + 2π
c ∆ f 2

TSrk
...

angle(φk,P
TS )− 2zPπ + 2π

c ∆ f P
TSrk

 ∈ CP×1. (52)

Then Equation (49) can be rewritten as

hϕ sin ϕk = ψϕ. (53)

Utilizing the total LS approach, the DOD ϕ̂k of kth target can be estimated, which is
given by

ϕ̂k = arcsin
[(

hT
ϕhϕ

)−1
hT

ϕψϕ

]
. (54)

The DOA, DOD, and range obtained by the proposed approach are automatically
matched without additional matching process.

4. Algorithm Analysis
4.1. Algorithm Summary

The developed method for bistatic FDA-MIMO radar can be simplified in Algorithm 1.

Algorithm 1 Target parameter estimation algorithm based on real-valued HOSVD for
bistatic FDA-MIMO radar.

1: aT(rk, ϕk) is converted to subarray by Equation (12),
2: Signal can be converted to tensor form X ,
3: Construct the real-valued tensor Z real by Equation (17),
4: Calculate Us by Equation (26),
5: Construct reduced dimensional spatial spectrum function by Equation (30),
6: θ̂ is achieved by Equation (36),
7: Decouple DOD and range information by Equation (39),
8: Eliminate phase period ambiguity by Equation (40),
9: r̂k is obtained by Equation (48),

10: ϕ̂k is estimated by Equation (54).

4.2. Computational Complexity

In order to highlight the advantages of the developed approach, the computational
complexity of our method is given by

(1) The computational complexity of HOSVD for X ∈ CM×N×L is O( 1/4MNL(M + N +
L) ) in Equation (20);

(2) The computational complexity of signal subspace estimation is O(KLMN) in Equation (26);
(3) The computational complexity of dimensionality reduction for three-dimensional

spatial spectrum in Equation (30) is O(M2N2K2(MN + K2));
(4) The computational complexity of spatial spectrum search for DOA estimation in

Equation (36) is O(dθ(MK)!(MK− 1)), where dθ is the DOA search time;

(5) Computing DOD and range requires O(
P
∑

i=1
(N(MTS − 1)(2MTSNK + 4K2) + K3)).

The computational complexity of this process is relatively small, so it can be ignored.

In brief, the computational complexity of the developed approach is O{KMNL +
M2N2K2(MN + K2) + dθ(MK)!(MK− 1) + 1/4MNL(M + N + L)}.
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For proving the superiority of our method, the computational complexity of the devel-
oped approach is compared with that of ESPRIT [28], Tensor-ESPRIT [30], RD-MUSIC [20],
and MUSIC [27]. Table 2 shows the computational complexity comparison.

Table 2. Computational complexity comparison.

Method Computational Complexity

Proposed O{KMNL + M2N2K2(MN + K2) + dθ(MK)!(MK− 1)
+1/4MNL(M + N + L)}

ESPRIT O{(2MN)2L + (2MN)3 + 4(5MN − 2M− 2N)K2

+K3(L + M) + MNK2 + 31K3}

Tensor-ESPRIT O{2(MNL)3 + MNL(M + N + L) + MLK(N + K)
+K3(L + M) + MNK2 + 31K3}

RD-MUSIC O{4KMNL + M2N2K2(MN + K2) + dθ(MK)!(MK− 1)
+MNL(M + N + L)}

MUSIC O
{

LM2N2 + 4(MN)3 + 4dθdϕdr MN(MN + 1)
}

5. Simulation Results

Several numerical simulations are developed to prove the superiority of our method
in parameter estimation. ESPRIT [28], tensor ESPRIT [30], and RD-MUSIC [20] are em-
ployed for performance comparison. In addition, Cramér–Rao bound (CRB) [41,42] is
employed to evaluate the precision of the developed algorithm. In this part, bistatic
FDA-MIMO radar with M = 18 transmitter antennas and N = 18 receiver antennas is
considered. In the simulation, it is supposed that there are three uncorrelated targets at
(θ1, ϕ1, r1) = (−50◦,−15◦, 30, 000 m), (θ2, ϕ2, r2) = (0◦, 20◦, 60, 000 m), and (θ3, ϕ3, r3) =
(30◦,−10◦, 0 m). To assess the precision of our method, the root mean square error (RMSE)
is employed, where the RMSEs of angle and range estimation can be given by

RMSEθ,ϕ =
1
K

K

∑
k=1

√√√√1
ζ

ζ

∑
i=1

{(
θ̃k,i − θk

)2
+ (ϕ̃k,i − ϕk)

2
}

, (55)

RMSEr =
1
K

K

∑
k=1

√√√√1
ζ

ζ

∑
i=1

(r̃k,i − rk)
2, (56)

where the results of the i-th Monte Carlo of θk, ϕk and rk are θ̃k,i, ϕ̃k,i and r̃k,i. ζ is the total
Monte Carlo times, ζ = 500.

Figures 3 and 4 prove the effectiveness of the developed algorithm, where SNR = 20 dB
and L = 200. Figure 3 demonstrates the spatial spectrum of DOA. It can be seen that DOA
estimation is accurately achieved through spatial spectrum searching. The spatial spectrum
of the proposed algorithm is clearer and more accurate than that of MUSIC algorithm,
and has more sharp peaks. We can know from Figure 4 that our method can accurately
obtain the DOA, DOD, and range information of three targets. It can testify the availability
of our method.
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Figure 3. The spatial spectrum, SNR = 20 dB, and L = 200.

Figure 4. Estimation results, SNR = 20 dB, L = 200.

Figures 5 and 6 show the comparisons of the computational complexity with the
number of array elements and the number of snapshots, respectively. It is known from
Figure 5 that the computational complexity of all algorithms increases with the increase in
the number of array elements. The computational complexity of our algorithm is close to
that of Tensor-ESPRIT and RD-MUSIC, and far lower than that of MUSIC. Figure 6 shows
that the computational complexity of our method is lower than that of RD-MUSIC and
slightly higher than that of Tensor-ESPRIT. In general, since our method is a real-valued
operation, the computational complexity of our method is lower than that of RD-MUSIC,
which is close to that of Tensor-ESPRIT algorithm.
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Figure 5. Computational complexity comparison versus the number of array elements.
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Figure 6. Computational complexity comparison versus the number of snapshots.

For exploring the impact of different SNR on the precision of the algorithm, the first
group of comparative tests is proposed, where L = 50. Figures 7–9 show the comparison of
DOA-DOD-range estimations of different methods. From this set of comparative experi-
ments, we can see that our method has superior precision than other algorithms in DOA,
DOD, and range estimation, and nearer to the CRB. This is because the developed algorithm
takes advantage of the multi-dimensional structure of data, and can obtain accurate esti-
mations through spectral peak searching. On the one hand, the accuracy of our method in
DOA and DOD estimation is very close to that of the RD-MUSIC, but the computational
redundancy is reduced. On the other hand, in terms of range estimation, since the subarray
division can more accurately decouple the range information and DOD information, more
accurate range estimation can be obtained. Moreover, the accuracy of tensor ESPRIT is more
accurate than that of ESPRIT due to the use of multi-dimensional structure characteristics.
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Figure 7. DOA estimation comparison versus SNR, L = 50.
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The second group of experiments confirms the advantage of our algorithm under
different snapshots, where SNR = 5 dB. From Figures 10–12 we can know that DOA-DOD-
range estimation accuracy of the developed algorithm are higher to the other algorithms.
Moreover, the estimation accuracy of the developed algorithm is more stable in the case
of low snapshots. It is because our algorithm utilizes high-dimensional data to improve
the performance under small snapshots. In terms of DOA and DOD estimation, the per-
formance of our method is slightly better than that of the RD-MUSIC. However, in range
estimation, the accuracy of our method is higher to the RD-MUSIC because the subarray
division solves the coupling problem of the transmitter. Moreover, the precision of tensor
ESPRIT algorithm is obviously higher than ESPRIT algorithm in small snapshots. With the
increase in snapshot, the precision gap between the two methods will gradually decrease.
That is to say, the accuracy of the two algorithms is very close in high snapshots. Only
the precision of our method is nearer to CRB curve. This demonstrates the superiority of
our method.
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Figure 10. DOA estimation comparison versus the number of snapshots, SNR = 5 dB.
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Figure 11. DOD estimation comparison versus the number of snapshots, SNR = 5 dB.
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Figure 12. Range estimation comparison versus the number of snapshots, SNR = 5 dB.

Another criterion utilized to access the precision of the developed algorithm is proba-
bility of the successful detection (PSD), where PSD is given by

PSD =
D
ζ
× 100%, (57)

where D is the number of times of obtaining the correct estimation result. If the angle error
is lower than 0.1◦ and the range error is lower than 0.1 km, it is the correct estimation result.

For further exploring the estimation accuracy of our method, the concept of PSD is
introduced to design the third group of experiments, where L = 50. It can be seen from
Figures 13–15 that in DOA estimation, DOD estimation and range estimation, the PSD
of the developed method is higher than the other methods at the same SNR. This means
that the estimation accuracy of the developed algorithm is the highest at the same SNR.
In addition, when SNR = 0 dB, PSD of our algorithm can reach 100% in DOA estimation.
It shows that our method can obtain more accurate results at low SNR. It is worth noting
that the proposed method has less advantages than the RD-MUSIC algorithm in angle
estimation, but has greater advantages in range estimation. In conclusion, the estimation
accuracy of the developed approach is higher than the other methods.
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Figure 13. PSD of DOA estimation versus SNR, L = 50.
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Figure 14. PSD of DOD estimation versus SNR, L = 50.
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Figure 15. PSD of range estimation versus SNR, L = 50.

6. Conclusions

In this paper, a joint DOA-DOD-range estimation algorithm with low computational
complexity based on real-valued HOSVD is developed for bistatic FDA-MIMO radar.
The developed algorithm can realize high-precision DOA-DOD-range estimation with low
computational complexity. By employing unitary transformation technique, our method
converts data into real-valued data. Then our algorithm utilizes HOSVD to estimate the
signal subspace and construct a two-dimensional spatial spectral function. Then, the spatial
spectral function is transformed into one-dimension by Lagrange algorithm, and the DOA
estimation is obtained. The proposed approach divides the transmitting array into several
subarrays, which decouples the DOD and range information. Finally, the decoupled phase
is employed to achieve DOD and range estimations. Our method preserves the original
multidimensional structure of the data and effectively improves the estimation precision.
Numerical simulations demonstrate the preponderance of our method.
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