
Citation: Chen, X.; Li, F.; Chang, Q.

Combination of Continuous Wavelet

Transform and Successive Projection

Algorithm for the Estimation of

Winter Wheat Plant Nitrogen

Concentration. Remote Sens. 2023, 15,

997. https://doi.org/10.3390/

rs15040997

Academic Editor: Wenjiang Huang

Received: 20 November 2022

Revised: 2 February 2023

Accepted: 9 February 2023

Published: 10 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Technical Note

Combination of Continuous Wavelet Transform and Successive
Projection Algorithm for the Estimation of Winter Wheat Plant
Nitrogen Concentration
Xiaokai Chen, Fenling Li and Qingrui Chang *

College of Natural Resources and Environment, Northwest A & F University, Xianyang 712100, China
* Correspondence: changqr@nwsuaf.edu.cn; Tel.: +86-135-7183-5969

Abstract: Plant nitrogen concentration (PNC) is a traditional standard index to measure the nitrogen
nutritional status of winter wheat. Rapid and accurate diagnosis of PNC performs an important
role in mastering the growth status of winter wheat and guiding field precision fertilization. In
this study, the in situ hyperspectral reflectance data were measured by handheld SVC HR−1024I
(SVC) passive field spectroradiometer and PNC were determined by the modified Kjeldahl digestion
method. Continuous wavelet transform (CWT), successive projection algorithm (SPA) and partial
least square (PLS) regression were combined to construct an efficient method for estimating winter
wheat PNC. The main objectives of this study were to (1) use CWT to extract various wavelet
coefficients under different decomposition scales, (2) use SPA to screen sensitive wavelet coefficients
as independent variables and combine with PLS regression to establish winter wheat PNC estimation
models, respectively, and (3) compare the precision of PLS regression models to find a reliable model
for estimating winter wheat PNC during the growing season. The results of this paper showed that
properly increasing the decomposition scale of CWT could weaken the impact of high-frequency
noise on the prediction model. The number of wavelet coefficients has been significantly reduced
after screened by SPA. The PNC estimation model (CWT–Scale6–SPA–PLS) based on the wavelet
coefficients of the sixth decomposition scale most accurately predicted the PNC (the determination
coefficient of the calibration set (Rc

2) was 0.85. Root mean square error of the calibration set (RMSEc)
was 0.27. The determination coefficient of the validation set (Rv

2) was 0.84. Root mean square error of
the validation set (RMSEv) was 0.28 and relative prediction deviation (RPD) was 2.47). CWT-Scale6-
SPA-PLS can be used to predict PNC. The optimal winter wheat PNC prediction model based on
CWT proposed in this study is a reliable method for rapid and nondestructive monitoring of PNC
and provides a new technical method for precision nitrogen management.

Keywords: winter wheat; plant nitrogen concentration; continuous wavelet transform; successive
projection algorithm; partial least square regression

1. Introduction

Nitrogen is one of the most important macroelements in plants and performs a key
role in the growth of crops. It is generally believed that applying an appropriate amount of
nitrogen fertilizer to crops can significantly improve the quality of crops by stimulating the
synthesis of carbon and nitrogen compound. However, if nitrogen fertilizer is not applied
properly, it can slow down crop growth, affect final yields and even cause environmental
problems, such as greenhouse gas emissions and soil acidification [1]. Therefore, the rapid
diagnosis of nitrogen status in the field is significant for guiding precise fertilization in the
field to achieve efficient green agriculture.

Traditional nitrogen diagnosis is mainly destructive sampling in the field and bio-
chemical analysis in the laboratory [2]. The experimental results obtained by traditional
method are more accurate, but the cost is expensive and the analysis speed is slow. In recent
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years, hyperspectral remote sensing technology, as a kind of noncontact and nondestructive
crop growth monitoring methods are developing rapidly, which can obtain narrow and
continuous fine spectral information of the target [3]. Hyperspectral remote sensing has
gradually become an effective way to rapidly monitor the physical and chemical compo-
nents of crops in the field. In previous studies, hyperspectral remote sensing has made
great achievements in crop parameter estimation, similar to leaf area index (LAI) [4–7], Leaf
chlorophyll content (LCC) [8–11] and above-ground biomass (AGB) [12–14]. Therefore, it
is feasible to use hyperspectral remote sensing technology to monitor crop physical and
chemical parameters. In this study, hyperspectral remote sensing will be used to evaluate
the nitrogen status of winter wheat.

Compared with leaf nitrogen concentration (LNC), which mainly involves the informa-
tion of individual leaves, the nitrogen status of the whole plant can more comprehensively
reflect the growth status of crops. The study of Fageria [15] showed that plant nitrogen
concentration (PNC) has been widely used as an effective indicator of crop nitrogen nutri-
tion diagnosis, which was closely related to crop yield [16,17]. Therefore, many researchers
tried to accurate diagnosis of crop nitrogen status based on PNC [18–21]. Chen et al. [22]
established a new nitrogen index, double-peak canopy nitrogen index (DCNI), to invert the
PNC of wheat and corn. The results showed that compared with the existing estimation
of crop nitrogen index, the inversion accuracy of crop PNC model based on DCNI was
higher. Stroppiana et al. [23] proposed an optimal normalized difference index (NDIopt)
to predict the PNC of rice through a regression model, which was most sensitive to PNC
(R2 = 0.65). Wang et al. [24] predicted PNC of rice at different growth stages by calculating
more than 20 vegetation indexes and achieved satisfactory research accuracy. However, the
above studies mainly estimate PNC by constructing vegetation index. It has to be admitted
that this method is very simple to calculate and has a clear physical meaning, but it also
has some shortcomings. Most of these vegetation indices are calculated by selecting the
spectral reflectance of two or three hyperspectral bands, which cannot make full use of
the hyperspectral reflectance data of the whole band range [25]. Additionally, all these
vegetation indices were calibrated for specific databases to some extent. Due to differences
in external conditions, such as climate, temperature and soil background, specific databases
cannot be directly promoted or applied [26]. In order to successfully implement precise
nitrogen management, it is necessary to develop an effective technique to quickly and
nondestructively diagnose PNC in combination with the full band spectral information of
canopy to monitor crop nitrogen status during crop growth.

Continuous wavelet transform (CWT) is a signal processing tool with a good math-
ematical foundation and can make full use of the rich information of all canopy spectral
bands. In the field of precision agriculture, CWT has been used to detect weeds [27],
estimate crop chlorophyll content [28], diagnose crop carbon and nitrogen content [29],
retrieve crop leaf water content [30], detect diseases [31], etc. CWT has the advantages
of multiple analysis and time-frequency local optimization, which can decompose the
signal into wavelet coefficients at multiple scales. The essence of CWT is that the similarity
coefficient of wavelet function and original signal each wavelet coefficient can be directly
compared with the original signal to extract weak information from the spectral signal.
Cheng et al. [30] used CWT to analyze the leaf spectra of 47 plants, then invert the water
content, obtaining good research results. Liao et al. [32] compared the traditional spectral
index and CWT to estimate the chlorophyll content of maize leaves under different nitrogen
stress. The research results showed the accuracy of chlorophyll estimation based on CWT
is more promising. However, there was no relevant research report on the CWT to monitor
PNC of winter wheat.

Although CWT methods have been widely used and some satisfactory research
progress has been made, there are still some urgent problems to be solved, especially
the choice of regression methods when the combination of hyperspectral remote sensing
and CWT to estimate winter wheat PNC. PLS regression model has been well applied
to evaluate the relationship between wavelet coefficients and crop LNC [3,33]. Unlike
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linear regression models used to evaluate the relationship between crop growth parame-
ters and wavelet coefficients [34], PLS is a bilinear multiple regression analysis method,
which can remove the collinearity problem between variables to a certain extent and make
regression models more stable. However, PLS regression model also contains some invalid
independent variables, some models have poor prediction effect, and even over-fitting
phenomenon [35]. Therefore, the optimization of feature variables has become a key link
in the modeling process of using hyperspectral data analysis too. Previous studies have
developed many screening methods for feature variables, including the genetic algorithm
(GA) [36], the successive projection algorithm (SPA) [37] and the competitive adaptive
reweighting sampling (CARS) [38]. Compared with common correlation analysis methods,
SPA is a sensitive feature wavelength selection algorithm, which can significantly reduce
the number of independent variables and ensure the minimum collinearity between inde-
pendent variables. Relevant research has shown the combination of SPA and PLS regression
could further improve the prediction accuracy and efficiency of the model [39,40]. In this
study, CWT, SPA and PLS regression are combined to construct an efficient method for
estimating winter wheat PNC, in order to provide theoretical support for precision nitrogen
management during the growth stages of winter wheat.

The main objectives were to (1) use CWT to extract various wavelet coefficients under
different decomposition scales, (2) use SPA to screen sensitive wavelet coefficients as indepen-
dent variables and combine with PLS regression to establish winter wheat PNC estimation
models, respectively, and (3) compare the precision of models constructed under objective
(2) to find a reliable model for estimating winter wheat PNC during the growing season.

2. Materials and Methods
2.1. Experimental Design

Experimental data from three growing seasons, 2016–2017, 2017–2018 and 2018–2019,
were obtained from Qian County (108◦07′E, 34◦38′N. average altitude: 830 m) in Shaanxi
Province, China. In the 2016–2017 trial, 36 plots and 10 field trials were set up, and
in 2017–2018 and 2018–2019, 36 plots and 4 field trials were set up. The plot area was
9 m × 10 m = 90 m2. A common local winter wheat cultivar Xiaoyan 22 was sown in early
October every year. In the three-year plot tests, six levels of nitrogen treatment (0, 30, 60,
90, 120 and 150 kg ha−1), phosphorus treatment (0, 22.5, 45, 67.5, 90 and 112.5 kg ha−1) and
Potassium treatments (0, 22.5, 45, 67.5, 90 and 112.5 kg ha−1) were set, respectively. Each
treatment was repeated twice, and nitrogen, phosphorus and potassium fertilizers were
applied in the form of urea, phosphate (P2O5) and potash chloride (K2O), respectively. All
fertilizers were applied as a base fertilizer at one time, and no additional fertilization was
required during the growth stages. All field trials were consistent with the local farmers’
fertilization habits. The management method was the same as the local conventional
winter wheat, and no weeds, diseases were ensured in each plot. See Table 1 for detailed
information on the sowing and sampling of winter wheat in this study.

Table 1. Summary of the details in the three wheat growth experiments.

Exp. Sowing Time Sampling and Sensing Date

2016
Qian Oct. 2nd March 26 (GS3), April 14 (GS5), April 28 (GS6), May 17 (GS7), May 26 (GS8). (2017)
2017
Qian Oct. 2nd March 29 (GS3), April 18 (GS5), May 7 (GS7), May 22 (GS8). (2018)
2018
Qian Oct. 1st March 31 (GS3), April 20 (GS5), April 29 (GS6), May 17 (GS7). (2019)

Note: Qian represent Qian County. GS3: stem elongation, GS5: heading, GS6: flowering, GS7: development of
fruit, GS8: ripening.
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2.2. Data Acquisition
2.2.1. Canopy Spectrum Determination

A handheld SVC HR−1024I (SVC) passive field spectroradiometer developed by
Spectra Viata in the United States was used to determine the non-imaging hyperspectral
reflectance of winter wheat canopy. SVC can obtain the spectral data of 1024 bands in the
350–2500 nm wavelength range of the target object, of which the spectral resolutions of
350–1000 nm, 1000–1850 nm and 1850–2500 nm are 3.5 nm, 3.6 nm and 2.5 nm, respectively.
Winter wheat canopy spectrum collection requires clear weather, no wind and no clouds
and a solar altitude angle of >45◦. According to the actual conditions of the test site, the
measurement time is set at 10:30–14:00 Beijing time to minimize the change in solar light
intensity. Before each measurement of canopy spectral reflectance, the sensor should be
calibrated with a white standard reference plate. During observation, the sensor lens
should be vertically downward and placed at a distance of about 1.3 m from the winter
wheat canopy, and the field of view angle should be 25◦. In this study, two sampling
points are randomly set far away from the plot edge, and the average value of the canopy
spectral reflectance of each sample point repeated 10 times was taken as the final spectral
value. The canopy hyperspectral reflectance of each plot is the average of two sampling
points. Real-time kinematics (RTK) was used to mark the position information of each
sampling point.

2.2.2. PNC Determination

After the spectral reflectance of the winter wheat canopy was determined, plant sam-
ples were collected. The aboveground plants of winter wheat with an area of 0.5 m × 0.5 m
was collected near the spectral measurement point and 20 representative samples of uni-
form growth were selected. Plant samples were taken to the laboratory in a freezer and
put into a kraft paper bag. We set the oven temperature to 105 ◦C to quench the sample for
30 min and dry it at 80 ◦C for about 48 h until the weight of the sample no longer changes.
Then, we crushed the dry sample, weigh about 0.2 g, digest it with concentrated H2SO4
in the presence of a catalyst and PNC was determined by the modified Kjeldahl digestion
method. Finally, the average PNC of the two sampling points in each plot was taken as the
winter wheat PNC in the plot.

2.2.3. Calibration and Validation

Theoretically, there should be 46 × 5 + 40 × 4 × 2 = 550 winter wheat PNC samples.
However, during the 2019 GS5 winter wheat growth period data acquisition activities,
reflectance was lost in four plots due to spectrometers and another six samples were
deleted due to invalid hyperspectral reflectance data. Therefore, 540 valid data samples
were analyzed in the end. As shown in Table 2, the results of the winter wheat PNC dataset
were divided in ascending order of the ratio of 4:1. The data set of the PNC prediction
model was made up of calibration and validation sets, containing 432 and 108 samples,
respectively. The maximum value of the validation set was smaller than the calibration set,
and the minimum value of the validation set was smaller than the calibration set, indicating
that the division results were reasonable. The coefficient of variation (CV) was 36.56%,
which revealed a slight degree of dispersion.

Table 2. Statistical description of winter wheat PNC (%) in the whole growth period.

Data Sets Number of Samples Maximum Minimum Average SD CV (%)

All 540 3.69 0.59 1.86 0.68 36.56
Calibration 432 3.69 0.59 1.86 0.68 36.56
Validation 108 3.50 0.70 1.88 0.68 36.17
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2.3. Canopy Spectrum Pretreatment

Relevant studies have shown that the visible and near-infrared regions of the spec-
trum are the most important regions for simulating plant biophysical and biochemical
processes [41]. Therefore, the hyperspectral reflectance data in the 350–1350 nm range was
chosen as the basis for the estimation and analysis of winter wheat PNC. The research of
Luo et al. [42] showed that the Savitzky–Golay (S–G) smoothing method can effectively
reduce the high frequency noise of spectrum data caused by instrument vibration or elec-
tromagnetic interference. All canopy reflectance in this study were processed by the most
commonly used second-order polynomial and 9 smoothing points for S–G smoothing
filtering, eliminating the noise information attached to the canopy hyperspectrum and
resampling the canopy reflectance to 1 nm obtain the original spectrum (OS) of winter
wheat. The above operation is performed in matlab2017a software.

2.4. Analytical Methods
2.4.1. Continuous Wavelet Transform (CWT)

As a common linear transformation method, CWT can transform one-dimensional
hyperspectral reflectance data into two-dimensional wavelet coefficients (two-dimensional
matrix composed of decomposition scale and band range) [43]. In this study, the wavelet
basis function could be used to transform winter wheat hyperspectral reflectance into
wavelet coefficient under a series of different decomposition scales and the calculation
formula was [30]:

W f (a, b) =
∫ +∞

−∞
f (λ)ψa,b(λ)dλ (1)

ψa,b(λ) =
1√
a

ψ

(
λ− b

a

)
(2)

Here, W f (a, b) represents wavelet coefficient, f (λ) represents the hyperspectral reflectance
data of winter wheat canopy, λ is the selected hyper-spectral band (350–1350 nm), ψ(λ) is the
wavelet mother function, a and b, respectively represent the scale factor and the translation
factor. In order to simplify the data volume, the scale factor of the continuous wavelet
transform is set to 21, 22, 23, . . . , 210, corresponding to the scale 1, scale 2, scale 3, . . . , scale 10.

As far as we know, there were about 50 mother wavelet functions [25]. However, as
to which mother wavelet function to choose and the best decomposition level, no unified
conclusion has been given yet. Based on the previous work conclusions of Li et al. [3], sym8
was selected as the mother wavelet function for CWT in this research.

2.4.2. Successive Projections Algorithm (SPA)

Bregman first proposed SPA in 1965, which was an algorithm for forward selection
of variables that effectively reduces collinearity between variables [44]. The main principle
of SPA is to use projection analysis to project wavelengths to other wavelengths, select the
wavelength with the largest projection vector and finally select the optimal wavelength
through the correction model, which can eliminate redundant information in the original
spectrum matrix and can be used for spectral characteristic wavelengths screening. The
characteristic bands filtered by SPA are automatically sorted by importance, which intuitively
reflects the degree of contribution of the characteristic bands to the dependent variable. For the
specific steps to achieve SPA, see the reference [37]. The relevant operations were completed
in Matlab 2017a (Matrix Laboratory, Math-Works, Natick, MA, USA).

2.4.3. Model Construction and Accuracy Evaluation Method

Partial Least Squares (PLS) regression, a bilinear multiple regression analysis method,
was used to build winter wheat PNC estimation models. PLS regression maximizes the
covariance between the latent variable and response variable by reducing the input data to
certain independent latent variables [45,46]. The number of latent variables was determined
using the standard error of the leave-one-out cross-validation [47,48]. PLS accounts for
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strong linearly dependent and independent variables when the number of samples is fewer
than the number of variables [25]. The statistical software R was used to accomplish the
modeling and parameter optimization.

In this study, the coefficient of determination (R2), root mean square error (RMSE) and
relative prediction deviation (RPD) were used to evaluate the stability and accuracy of the
winter wheat plant nitrogen concentration estimation model. RPD is defined by the ratio of the
sample standard deviation SD and the relative prediction error RMSE. It is generally believed
that the model with the closer R2 to 1 and the lower the RMSE is considered the best estimation
effect. RPD < 1.4 indicates that the model has no predictive ability; 1.4 < RPD < 2.0 indicates
that the model has a rough estimation and predictive ability; and RPD > 2.0 indicates that the
model has excellent predictive ability. Rc

2, RMSEc, and Rv
2, RMSEv represented R2, RMSE in

the calibration and validation dataset, respectively.

3. Results
3.1. Analysis of Wavelet Coefficients under Different Decomposition Scales Based on CWT

In this study, CWT was used to decompose the winter wheat spectrum curve smoothed
and denoised by S−G filter into wavelet coefficients of scale 1−scale 10. The decomposition
result of a sample hyperspectral curve is shown in Figure 1. The wavelet coefficient
increases with the increase in the decomposition scale, and the high−frequency noise
gradually decreases. Properly increasing the decomposition scale can weaken the impact
of high−frequency noise on the prediction model, which is conducive to highlighting the
hyperspectral feature information, as shown in the scales 5−8 in Figure 1. However, when
the decomposition scale is too large, the hyperspectral curve becomes smooth, leading to
the lack of certain helpful feature information, such as scales 9 and 10 in Figure 1.
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Figure 1. Curves of wavelet coefficient at different decomposition scales based on CWT.

3.2. Correlation Analysis under Different Decomposition Scales Based on CWT

The spectral reflectance of winter wheat canopy is subjected to CWT processing by
sym8 wavelet mother function to obtain wavelet energy coefficients. The correlation coeffi-
cient matrix diagrams of correlation coefficient and PNC under different decomposition
scales are shown in Figure 2. In general, the correlation coefficient increases first, then
decreases with the increase in the wavelet decomposition scale. The larger area is mainly
concentrated in the 400–900 nm range of the visible and near-infrared regions, and the
correlation coefficient is in the range of 900–1350 nm. The overall coefficient is low. In
the low decomposition scale 1–3 areas, the correlation coefficient is relatively low and the
overall change is not large and there are almost no areas with high correlation coefficients.
In the region of medium decomposition scale 4–7, the decomposition scale with lower
correlation coefficient is greatly improved and the correlation coefficient can reach 0.65,
−0.77, 0.72 and 0.71 at the decomposition scale of 4–7, respectively, while at the high
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decomposition scale 8–10, the correlation coefficient is relatively evenly distributed and
there is no particularly prominent correlation coefficient value. Therefore, the wavelet
coefficient used to estimate winter wheat PNC in this study may be located in the 4–7 area
of the medium decomposition scale.
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3.3. Screening of Wavelet Coefficient Based on SPA

In order to further eliminate the collinearity and data redundancy between wavelet
coefficients based on CWT, obtaining a more promising winter wheat PNC prediction
model, SPA was used to filter the variables. Figure 3 shows the number of the screening of
wavelet coefficient by SPA based on different decomposition scales. Among them, CWT
has relatively more wavelet coefficients at the second and sixth decomposition scales, 59
and 50, respectively, while the number of wavelets coefficient on decomposition scale 1
is the least; In sum, after the 1001 wavelet coefficients of each decomposition type were
screened by SPA, all the number of wavelet coefficients has been significantly reduced.
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3.4. Estimation of Winter Wheat PNC Based on CWT-SPA-PLS

With various sensitive wavelet coefficients selected by SPA as input variables and
winter wheat PNC as response variables, PLS regression models based on different de-
composition scales for predicting PNC were constructed, respectively. The accuracy of
calibration and validation set are shown in Figure 4. In general, the calibration and valida-
tion results of all prediction models have good prediction ability. In the calibration results,
the Rc

2 of all PNC prediction models increases first, then decreases with the increase in
decomposition scale. On the contrary, the overall trend of RMSEc is to decrease first, then
increase. Among all models, CWT–Scale1–SPA–PLS has the lowest Rc

2 (0.39) and highest
RMSEc (0.53). CWT–Scale1–SPA–PLS has the highest Rc

2 (0.85) and lowest RMSEc (0.27),
which has the strongest predictive ability. In the validation result, Rv

2 and RMSEv in all
PNC prediction models have similar trends in the corresponding calibration results of Rc

2

and RMSEc. CWT–Scale1–SPA–PLS also gives the highest Rv
2 (0.84) and the lowest RMSEv

(0.28). The optimal winter wheat PNC prediction model is given by CWT–Scale1–SPA–PLS.
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3.5. Model Accuracy Comparison

As shown in Figure 5, the RPD was used to further evaluate the model accuracy of
winter wheat PNC. Compared with the prediction models of the lower decomposition scale
(1–4), the RPD of the higher decomposition scale (5–10) models were greater than 2, indicat-
ing the models constructed by wavelet coefficient had excellent predictive ability based on
the high decomposition scale. The prediction model of the lower decomposition scale (1–4)
has a rough sample estimation ability (RPD < 1.4). Among them, the CWT–Scale6–SPA–PLS
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model had the highest accuracy, with an RPD to 2.47. The spatial distribution of PNC
measured and predicted values of all models with RPD > 2 is shown in Figure 6. It can
be seen that the fitting distribution of measured and predicted values of winter wheat
PNC prediction model constructed by CWT–Scale6–SPA–PLS is closer to 1:1. The RPD of
CWT–Scale6–SPA–PLS is the highest in all models, with Rc

2, Rv
2 as the highest and RMSEc,

RMSEv as the lowest, indicating that the estimation model has excellent prediction ability.
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4. Discussion
4.1. Analysis of Continuous Wavelet Transform (CWT)

As an efficient signal processing tool, CWT has been applied to quantitative analysis
of crop parameters by more and more researchers [49–51]. This is mainly due to the fact
that CWT can effectively eliminate the noise information attached to the spectral band while
retaining the full band hyperspectral characteristics [30]. As shown in Figure 1, the wavelet
coefficient increases with the increase in the decomposition scale, and the high−frequency
noise gradually decreases. Properly increasing the decomposition scale can weaken the impact
of high−frequency noise on the prediction model, which is conducive to highlighting the
hyperspectral feature information, as shown in the scale 5–8 in Figure 1. The same conclusions
have been drawn from previous studies [26,52]. However, when the decomposition scale
is too large, the hyperspectral curve will become smooth, leading to the lack of certain
feature information that is helpful for predictive analysis, such as scales 9 and 10 in Figure 1.
When Liu et al. [35] used CWT to analyze potato chlorophyll content, the results showed the
medium-scale wavelet decomposition can capture the information that can truly reflect potato
chlorophyll content to a certain extent. As shown in Figure 2, the correlation coefficient matrix
diagram of wavelet coefficient and PNC under different decomposition scales based on CWT
indicated the correlation coefficient can reach 0.65,−0.77, 0.72 and 0.71 at the decomposition
scale of 4–7, respectively, which is higher than the correlation coefficient in the region of high
or low decomposition scales, illustrating both low and high CWT decomposition scales were
not conducive to the reflection of crop absorption characteristics. Similar conclusions have
been drawn in previous research [53–55].

4.2. Screening of Sensitive Wavelet Coefficient by SPA

Hyperspectral reflectance data has large information capacity and strong band con-
tinuity, but there are also problems, such as data redundancy and over fitting. Therefore,
sensitive variable optimization is particularly important for quantitative estimation of win-
ter wheat PNC. The commonly used sensitive variable screening method CARS has been
widely used in previous studies and achieved good research result [35,56], but the process
of CARS is complex and cumbersome. However, SPA can ensure the minimum collinearity
between the selected characteristic bands, thus reducing the complexity of fitting in the
process of model establishment and speeding up the fitting operation speed. In this study,
SPA is used to screen the wavelet coefficients obtained by CWT. After SPA screening, all
the number of wavelet coefficients has been significantly reduced as shown in Figure 3.
The results show that SPA can remove the invalid information with large interference from
the wavelet coefficients processed by CWT, while retaining the wavelet coefficients with
the lowest information redundancy, thus producing satisfactory model prediction accuracy.
Similar findings have also been found in previous studies [57]. However, some studies
have shown that SPA has disadvantages, such as introducing some independent variables
with low correlation with the target variable [58]. In future research, we need to develop a
more satisfactory screening method of sensitive variables based on SPA theory as far as
possible to meet the needs of quantitative estimation of crop parameters.

4.3. Accuracy Estimation of PNC Models

With various sensitive wavelet coefficients selected by SPA as input variables and winter
wheat PNC as response variables, PLS regression models based on different decomposition
scales for predicting PNC were constructed, respectively. The results showed CWT–Scale6–
SPA–PLS based on wavelet coefficient of the sixth decomposition scale most accurately
predicted the PNC (Rc

2 = 0.85, RMSEc = 0.27, Rv
2 = 0.84, RMSEv = 0.28) in Figure 4. In Figure 5,

compared with the prediction model of the lower decomposition scale (1–4), the RPD of the
higher decomposition scale (5–10) model was greater than 2, indicating the models constructed
by wavelet coefficient had excellent predictive ability based on the high decomposition scale.
The results indicated CWT–Scale6–SPA–PLS also is the optimal winter wheat PNC prediction
model (RPD = 2.47). It could be seen that CWT–Scale6–SPA–PLS had good robustness and
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adaptability. Therefore, CWT–Scale6–SPA–PLS could be recommended as a basic model for
winter wheat PNC estimation. The research results also show the feasibility and necessity
of developing the combination of feature variable selection algorithm and PLS regression.
Previous research also indicate that screening sensitive variables before PLS regression model
can improve the low prediction accuracy and avoid over fitting, thus improving the accuracy
of prediction model [38,59,60].

5. Conclusions

This study explored the feasibility of estimating winter wheat plant nitrogen concentra-
tion (PNC) by combining canopy hyperspectral reflectance, continuous wavelet transform
(CWT), successive projections algorithm (SPA) and partial least squares (PLS) regression
through three consecutive years of winter wheat field experiments. The results of this study
showed the regions with large correlation coefficients between the wavelet coefficients
obtained by CWT processing and PNC are basically located in the middle decomposition
scale of 4–7. After SPA screening, all the number of wavelet coefficients has been signifi-
cantly reduced. The PNC estimation model (CWT–Scale6–SPA–PLS) based on the wavelet
coefficients of the sixth decomposition scale most accurately predicted the winter wheat
PNC (Rc

2 = 0.85, RMSEc = 0.27, Rv
2 = 0.84, RMSEv = 0.28 and RPD = 2.47). This approach

was reliable for PNC estimation and could be regarded as a basic model for the proposal
of precise fertilizer management strategy for winter wheat. However, more variety tests
are still needed in subsequent experiments to prove our research conclusions are still valid
and more studies are needed to further compare different mother wavelets to improve the
accuracy of nitrogen diagnosis in the management of precision nitrogen fertilizer.
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