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Abstract: Weakly Supervised Semantic Segmentation (WSSS) with only image-level labels reduces
the annotation burden and has been rapidly developed in recent years. However, current mainstream
methods only employ a single image’s information to localize the target and do not account for the
relationships across images. When faced with Remote Sensing (RS) images, limited to complex back-
grounds and multiple categories, it is challenging to locate and differentiate between the categories
of targets. As opposed to previous methods that mostly focused on single-image information, we
propose CISM, a novel cross-image semantic mining WSSS framework. CISM explores cross-image
semantics in multi-category RS scenes for the first time with two novel loss functions: the Common
Semantic Mining (CSM) loss and the Non-common Semantic Contrastive (NSC) loss. In particular,
prototype vectors and the Prototype Interactive Enhancement (PIE) module were employed to capture
semantic similarity and differences across images. To overcome category confusions and closely
related background interferences, we integrated the Single-Label Secondary Classification (SLSC) task
and the corresponding single-label loss into our framework. Furthermore, a Multi-Category Sample
Generation (MCSG) strategy was devised to balance the distribution of samples among various cate-
gories and drastically increase the diversity of images. The above designs facilitated the generation
of more accurate and higher-granularity Class Activation Maps (CAMs) for each category of targets.
Our approach is superior to the RS dataset based on extensive experiments and is the first WSSS
framework to explore cross-image semantics in multi-category RS scenes and obtain cutting-edge
state-of-the-art results on the iSAID dataset by only using image-level labels. Experiments on the
PASCAL VOC2012 dataset also demonstrated the effectiveness and competitiveness of the algorithm,
which pushes the mean Intersection-Over-Union (mIoU) to 67.3% and 68.5% on the validation and
test sets of PASCAL VOC2012, respectively.

Keywords: weakly supervised semantic segmentation; remote sensing images; image-level labels

1. Introduction

As a result of recent advances in deep convolutional neural networks with powerful
feature learning capabilities, semantic segmentation has achieved significant success, in-
cluding ASPP [1], PSPNet [2], DeepLabV3 [3], etc. However, their application scenes are
still constrained by the large amount of pixel-level manual annotations. There has been
increasing interest in Weakly Supervised Semantic Segmentation (WSSS) methods, which
employ scribble annotations [4,5], bounding boxes [6–9], or image-level annotations [10–13]
instead of pixel-level annotations for the purpose of reducing the annotation burden. Com-
pared to other annotations, image-level tags are the least expensive to acquire because they
only provide classification cues without any object shape or texture information. This paper
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discusses WSSS methods that are based on the most-challenging annotations at the image
level in Remote Sensing (RS) scenes.

Most current WSSS models that only utilize image-level labels employ Class Activation
Maps (CAMs) [14] to provide initial target localization and generate pseudo-masks, then
train the fully supervised semantic segmentation model with the pseudo-masks. However,
the trained classifier prefers to focus on the most-discriminative components as opposed
to the full objects, which is insufficient for the pseudo-masks required for subsequent
semantic segmentation tasks. To address this problem, researchers have made many
breakthroughs [15–19] in Natural Scenes (NSs) to boost the segmentation performance of
image-level WSSS models. These algorithms, however, only use a single image to localize
the target, ignoring the extensive semantic-related context between weakly annotated data,
and the image processing is independent of each another. When confronted with RS image
scenes containing multiple categories, multi-category localization is not only used to find
the targets, but also to distinguish between different categories; however, existing methods
perform poorly on multi-category RS datasets.

Therefore, we propose CISM, a novel RS cross-image semantic mining WSSS frame-
work, which can resolve some ambiguities and prevent false predictions by connecting
correlated regions across images. Furthermore, propagating correlated representations
across images can assist the network in learning more consistent representation capa-
bilities from the whole dataset to obtain more complete target activation regions. The
proposed method was demonstrated to be effective in a series of in-depth experiments.
Finally, our CISM achieved the new state-of-the-art results on the challenging iSAID [20]
dataset only with image-level labels. To achieve a comparison with more competitive
algorithms, we compared the results of our methods with existing NS methods on the
PASCAL VOC2012 [21] dataset, and the mIoU results on the validation and test sets were
67.3% and 68.5%, respectively. Following is a brief summary of the main contributions:

1. We propose CISM as the first RS cross-image semantic mining WSSS framework to
explore more object regions and complete semantics in multi-category RS scenes with
two novel loss functions: the common semantic mining loss and the non-common
semantic contrastive loss, obtaining cutting-edge state-of-the-art results on the iSAID
dataset by only using image-level labels.

2. To capture cross-image semantic similarities and differences between categories, in-
cluding the background, the prototype vectors based on class-specific feature maps
and the PIE module are proposed, which are beneficial to enhance the feature repre-
sentation and improve the target localization performance by 4.5% and 2.1% on the
mIoU and OA, respectively.

3. To avoid class confusion and the unnecessary activation of closely related back-
grounds, we propose integrating the SLSC task and its corresponding novel loss
into our framework, which forces the network to acquire knowledge from additional
object parts while suppressing false activation regions. Ultimately, SLSC improved
the model performance by 1.3% and 1.5% on the mIoU and OA, respectively.

4. The multi-category sample generation strategy is proposed to obtain a large number
of multi-category samples by randomly stitching most of the low-category samples,
which balances the distribution of samples across different categories and improved
the model performance by 1.9% and 2.5% on the mIoU and OA, respectively.
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2. Related Works
2.1. Semantic Segmentation in Remote Sensing Scenes

Deep learning offers a powerful feature representation capability, making it possi-
ble to utilize fully supervised methods to segment high-resolution RS images with high
accuracy. These methods, however, rely on time-consuming and laborious pixel-level
annotations, severely limiting their application scenarios. Consequently, semi-supervised,
weakly supervised, and unsupervised segmentation methods are steadily emerging in
RS segmentation.

The majority of currently available semi-supervised methods [7,22,23] employ Gen-
erative Adversarial Networks (GANs) trained on datasets with few pixel-level annota-
tions to achieve model performance as close to fully supervised segmentation as possible.
Sun et al. [24] proposed a semi-supervised semantic segmentation framework with bound-
ary awareness to infer pseudo-labels from very high-resolution unlabeled RS images using
GANs with few annotations at the pixel level. He et al. [25] devised a semi-supervised
learning strategy with consistent regularization and a hybrid perturbation paradigm to
enhance the performance of models on land cover datasets. To further alleviate the training
cost, some researchers [26,27] have started to investigate challenging unsupervised RS
segmentation methods. Using topology learning, Grozavu et al. [26] proposed a method for
automatically segmenting images into different regions according to the texture, intensity,
and color of the images. In a study conducted by Scheibenreif et al. [27], large-scale RS
data were pre-trained using the Transformer architecture before the model was fine-tuned
on small labeled datasets. Nevertheless, without any human-supplied supervised input,
unsupervised models frequently achieve very limited segmentation performance. As a
compromise between fully supervised and unsupervised segmentation, Weakly Supervised
Semantic Segmentation (WSSS) approaches give RS semantic segmentation a glimmer of
hope. Related research on WSSS will be introduced in detail in Section 2.2.

2.2. Weakly Supervised Semantic Segmentation

Weakly Supervised Semantic Segmentation (WSSS) models aim to simplify annota-
tion while minimizing accuracy loss in the semantic segmentation task. Existing WSSS
annotation types have gradually diminished from pixel-level masks to points [28], scrib-
bles [5,29], bounding boxes [6–9], and image-level labels [10–13]. Among these, image-level
annotations present the most-challenging task due to only providing category information
without location and shape information. Our approach focuses on WSSS approaches based
on the most-challenging image-level annotations in RS scenes.

Currently available state-of-the-art methods follow the mainstream pipeline of WSSS,
firstly training a classifier to generate the CAMs [14] as the initial seeds and further mapped
into pseudo-masks. Then, segmentation networks with pseudo-masks as the ground
truth labels are trained in fully supervised manner. However, existing methods generate
CAMs, which only locate the most-discriminative regions of objects, and a large number
of false activations are seen in the background. The focus of much existing research in
this area is on improving the consistency and integrality of activation regions in CAMs.
Specifically, Wei et al. [13] employed the antagonistic erasure strategy to gradually mine
the perfect target region by an iterative process. Afterwards, Wei et al. [30] introduced
the dilated convolution with varying dilation rates to expand the receptive field of the
classifier and combined the contextual information of the target region to generate dense
target localization. Wang et al. [18] incorporated the equivariant constraint to enable
the consistency of CAMs under different image scale transformations and combined a
self-supervised approach to improve the CAM quality. Chang et al. [31] integrate the self-
supervised sub-category exploration into the classifier to force the network to acquire more
comprehensive target features and improve the accuracy of segmentation. Lee et al. [32]
proposed the FickleNet to combine diverse locations on feature maps of the convolutional
neural network by the dropout layer, in order to mine more complete target regions.
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Other work has been performed, such as adding additional saliency maps [33,34], other
web-sourced images [35,36], or video data [37,38] to refine the generated initial CAM.

However, each of the above methods treats images independently of the others, ig-
noring the relationship in the cross-image context. Some cross-image semantic mining
methods have been proposed to explore more consistent representations within the same
class. Fan et al. proposed the CIAN [39] to create a pixel-level relationship matrix between
different images of the same category and obtained mutually complementary information
from different images.Another similar approach was proposed by Sun et al. [40], which
designs a special classification network with co-attention and contrastive co-attention
to discover integral object regions by addressing cross-image semantics. In addition,
RPNet [41] was proposed to explore the cross-image object diversity of the training set,
which identifies similar object parts in an image by region feature comparison and propa-
gates object confidence between regions to discover new object regions while suppressing
background regions.

Compared with the dataset of natural scenes, the background of RS images is complex
and classified; hence, there are fewer studies for WSSS tasks in RS scenes. Fu et al. [42]
proposed the WSF-NET with feature fusion and designed a binary training strategy on
water and cloud datasets to eliminate the class imbalance problem. Chen et al. [43] proposed
the SPMF-Net to identify the building regions by utilizing a top-down method and super-
pixel pooling to achieve accurate and complete segmentation results of buildings. Although
the above methods are effective, they ignore the rich relationships across different images
and only deal with no more than two simple categories. When faced with RS images
containing multiple categories, the above work does not provide sufficient information for
training a qualified segmentation model, with the segmentation results on multi-category
RS datasets being poor. The present work proposes an innovative cross-image semantic
mining framework to discover more object regions and complete the semantics for target
localization and category differentiation in multi-category RS scenes. Meanwhile, extensive
experiments confirmed that our method resolves some ambiguities and prevents false
predictions by connecting correlated regions across images.

3. Methodology

To begin with, we discuss in greater detail the proposed CISM network structure,
as shown in Figure 1. Then, we review the conventional CAM pipeline and its limitations.
Based on this, we rethink the CAM generation process. Further, we introduce how the
MCSG strategy balances the distribution of samples across different categories. Finally, we
mainly introduce all the loss functions used in CISM.

3.1. Cross-Image Semantic Mining Network

As RS image scenes contain multiple categories, it is challenging to locate the target
and differentiate between the categories. Existing algorithms only employ information from
a single image to localize the target, neglecting the rich semantic context associated with
weakly annotated data. To maximize the potential of the diverse training data, we propose
CISM, a novel WSSS framework with a cross-image semantic mining capability, which is
used to explore cross-image semantics in multi-category RS scenes. As shown in Figure 1,
object features are extracted as prototype vectors from pairs of images containing the same
object category, which is referred to as the query and reference image. By employing a two-
branch Siamese network as opposed to the conventional single-branch Siamese network,
complementary information from different images can be used to make more accurate and
consistent estimates, and all of the data can be utilized to their full potential.
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Figure 1. (a) An overview diagram of the WSSS cross-image semantic mining (CISM) framework.
For a pair of query and reference images containing common classes as the network input, then
enhancing the feature representation by exploring prototype vectors to generate class-specific features.
(b) The schematic diagram of the all loss functions. The basic multi-label soft margin classification
loss Lml is used to provide the rough localization of objects. Lsl , Lcsm, and Lnsc are three novel losses
to assist in the training of the network.

To begin with, given the image pairs [IQ, IR] as the input, the paired image features are
extracted by the backbone network for further enhancement of the prototype vectors and
generation of class-specific features. In order to obtain CAMs, a weighting factor is applied
to the class-specific features based on their contribution to the classification output. For
CAM refinement, our approach follows common practice in that we used denseCR F [44]
to improve the CAM quality, followed by argmax to generate pseudo-masks based on the
refined CAMs. Furthermore, we followed the pipelines of [17,18] for semantic segmentation
by using DeepLabV1 [45] to train the model with pseudo-masks and determine the final
segmentation outcome. CISM can construct shared feature relationships between targets
of the same class in different sample images, as well as differential feature relationships
between a single target class and all other targets and backgrounds. Our model will
eventually be able to generate refined CAMs and pseudo-labels for all samples once the
classifier has been trained.

3.1.1. Prototype Vector Generation

Inspired by RPNet [41], we selected only the activation regions with high confidence
as the prototype vectors. Unlike the RPNet, we implemented interactive enhancement
based on prototype vectors generated by class-agnostic features, aiming to purposefully
extract more common category features and strengthen the discriminability between dif-
ferent categories. The details of the interactive enhancement of prototype vectors will
be introduced in Section 3.1.2. Specifically, given the image pair [IQ, IR] as the input,
the paired image features Fq

n(x, y) and Fr
n(x, y) are extracted by the backbone network.
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Then, the initial prototype vectors are extracted by the channel-unified convolution layer of
1× 1 with a learnable matrix W, and the sigmoid function σ is directly applied after W as

Fq
c (x, y) = σ(F1×1(Fq

n(x, y)))) = σ(W>k Fq
n(x, y)) (1)

Fr
c (x, y) = σ(F1×1(Fr

n(x, y)))) = σ(W>k Fr
n(x, y)) (2)

To ensure that only the activation region with high confidence is selected as the
prototype vector, we designed a learnable gate map Γ(x, y) to threshold the corresponding
initial prototype vectors Fq

c (x, y) and Fr
c (x, y) with a learnable parameter η. The initial

prototype vector Fc(x, y) is then masked by the learnable gate map Γ(x, y) to extract the
updated prototype vector PQ ∈ R1×1×C and PR ∈ R1×1×C. Specifically, we employed
Masked Average Pooling (MAP) [46] for embedding different foreground objects in different
initial prototype vectors Fc(x, y), on which pixels within the object regions are averaged to
obtain the updated prototype vectors as follows:

PQ =
∑x,y Fq

c (x, y)Γ(x, y)

∑x,y Γ(x, y)
(3)

PR =
∑x,y Fr

c (x, y)Γ(x, y)

∑x,y Γ(x, y)
(4)

where
Γ(x, y) = Φ(1H×W , η) (5)

The parameter η is an adjustable variable, which helps mask the corresponding
locations of the initial prototype vector Fc(x, y) by, during training, randomly discarding
some activated regions from CAMs. Φ is the dropout function, which randomly removes
some elements of the matrix 1H×W . Different foreground objects are embedded in different
prototype vectors using MAP, which helps the network to learn object features better while
ignoring the background and noise. An illustration of the complete process of prototype
vector generation is shown in Figure 2.

Figure 2. The schematic diagram of prototype vector generation.

3.1.2. Prototype Interactive Enhancement

As seen in the previous section, prototype vectors generated by existing mainstream
methods still contain only the information of a single image, and the images in the datasets
are independent of each other. When faced with the RS scenes containing multiple cate-
gories, the extraction of target features becomes incomplete and may also introduce other
categories or background, which leads to the final target localization becoming more diffi-
cult. In our work, as shown in Figure 3, we propose a Prototype Interactive Enhancement
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(PIE) module to integrate the common target features in the reference image into the proto-
types of the query image. Similarly, the common target features in the query image would
also be embedded in the reference image. The PIE module enhances the same category of
features while also indirectly enhancing the discriminative nature of different categories
of features. Specifically, we first define PQ and PR as the query prototypes and reference
prototypes waiting for the input; F1×1 denotes the 1× 1 convolution operation; XQ, XR
denote the transformed query prototypes and reference prototypes, respectively. We have

XQ = F1×1(PQ), XR = F1×1(PR) (6)

where F1×1 is mainly used here to change the shape of the prototypes, and the sizes of the
query prototypes and reference prototypes are both [C, H, W].

Figure 3. The schematic diagram of the PIE module.

In order to complete the embedding of the common category features, we designed
a common category matching map A(i,j) that reveals the pixel-by-pixel correspondence
between XQ and XR. A high value in A(i,j) means that one pixel in the query feature XQ cor-
responds to at least one pixel in the reference feature XR. To generate the common category
matching map, the cosine similarity calculation cos(Xq

:,i,j , Xr
:,i,j) ∈ RH×W between feature

vectors Xq
:,i,j ∈ XQ and Xr

:,i,j ∈ XR is first conducted at the pixel level. Then, we compiled
all the maximum similarity values and created the common category matching maps as

A(i,j) = max
i,j∈{1,2,...,HW}

(Xq
:,i,j)

T(Xr
:,i,j)∥∥∥Xq

:,i,j

∥∥∥∥∥∥Xr
:,i,j

∥∥∥ (7)

where the similarity value of the pixel (i, j) is denoted by A(i,j). To obtain enhanced proto-
type vectors, the common category matching map A(i,j) is utilized to extract similar parts
of the features between reference images and query images. Note that before extraction,
we normalized the value of A(i,j) to be in the interval 0–1. Firstly, we extracted similar
features from the transformed prototypes XQ and XR by the normalized A(i,j). Then, all
messages about similar parts from query features and reference features are obtained in a
complementary way. Specifically, we found similar target features in the same category
as query feature XQ from reference feature XR, and the same steps are followed in query
feature XQ. Finally, the similar target features extracted by XQ and XR from each other are
merged into the original prototype vectors PQ and PR. The enhanced prototype vectors will
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be sent to generate class-specific features. The entire generation process of the enhanced
prototype vectors is represented as:

P′Q(i, j) = PQ(i, j) + [
∑i,j A(i,j)(Xr

:,i,j)

∑i,j A(i,j)
] (8)

P′R(i, j) = PR(i, j) + [
∑i,j A(i,j)(Xq

:,i,j)

∑i,j A(i,j)
] (9)

where P′Q and P′R stand for the enhanced query prototypes and reference prototypes,
respectively. Consequently, the common category matching map incorporates the features
of both the reference and the query images and achieves mutual embedding of reference
prototypes and query prototypes.

In this part, the key to the proposed prototype interactive enhancement method is to
produce the common category matching map A(i,j) by extracting the maximum value from the
similarity matrix using the query image and the reference image, as shown in Equation (7).

3.2. Revisiting the CAM Generation

Most previous WSSS research mainly relied on Class Activation Maps (CAMs) to
generate pixel-level pseudo-labels for fully supervised training. The first part of this section
discusses the conventional CAM pipeline and its limitations. To enhance the integrity and
fine granularity of CAMs, we further explored the CAM generation process and propose
appropriate improvement methods.

3.2.1. Multi-Label Initial Classification

With an input image I ∈ R3×H×W and corresponding image-level label Y ∈ R1×C as
the inputs, initially, a multi-label classification model is trained based on Global Average
Pooling (GAP), and the following Fully Connected (FC) layer is then applied to make
predictions. Thus, the results of the prediction can be expressed as

Zq = FC(GAP(Fq
n(x, y))) (10)

Zr = FC(GAP(Fr
n(x, y))) (11)

where the paired image features Fq
n(x, y) and Fr

n(x, y) are extracted by the backbone network
from the input images IQ and IR. Zq and Zr are the prediction scores obtained by the
classifier. C and H ×W correspond to the channels and spatial dimensions, respectively.
The CAM is extracted based on the contributions of image features Fn(x, y) in each category.
For brevity, we denote the CAM as Mc(x, y) ∈ RC×H×W as follows:

Mq
c(x, y) = Θ(

Wc
T � Fq

n(x, y)
max(Wc

T � Fq
n(x, y))

) (12)

Mr
c(x, y) = Θ(

Wc
T � Fr

n(x, y)
max(Wc

T � Fr
n(x, y))

) (13)

where Wc denotes the classifier weight for the c-th class and Fq
n(x, y) and Fr

n(x, y) represent
the feature maps of input image IQ and IR prior to the GAP. In addition, � is the element-
wise multiplication, while Θ is the activation function, which in our experiment was ReLU.

3.2.2. Single-Label Secondary Classification

In the above process of generating CAMs, the GAP layer is employed to obtain the
prediction vector Zq ∈ RC×1×1 and Zr ∈ RC×1×1. Due to the fact that all pixels have
basically been assigned the same class label, it is difficult for traditional classifiers to ensure
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no reduction of positive regions while penalizing negative regions and no expansion of
negative regions while encouraging positive regions. The resultant consequences are
category confusion in multi-category cases and the inappropriate activation of related
backgrounds. To alleviate the above problem, we extracted class-specific features based on
the above multi-label initial classification. The specific extraction process is as follows:

F̃q
n(x, y) = (P′Q ⊗Mq

c(x, y))� Fq
n(x, y) (14)

F̃r
n(x, y) = (P′R ⊗Mr

c(x, y))� Fr
n(x, y) (15)

where ⊗ denotes the vector multiplication of Mc(x, y) and the enhanced prototype vector
P, which integrate the cross-image semantic similarities and differences between categories
(including background) into Mc. The �, as the elementwise multiplication, is then applied
to the class-specific features F̃n. In addition, we adjust the process of generating class scores
to enforce the network to learn from more object parts. As shown in Figure 4, the pixel
confidence map γc,i,j ∈ RC×H×W is obtained by the softmax function instead of the GAP
layer, which provides the ability to adaptively assign a soft label to each pixel. In order to
calculate the final class score Z̃, we calculated the channel-wise weighted average of the
class-specific features F̃n(x, y), treating the pixel confidence map γc,i,j as the weight .

Z̃q =

∑
(i,j)∈R

γc,i,j × F̃q
n(x, y)

∑
(i′ ,j′)∈R

γc,i′ ,j′
(16)

Z̃r =

∑
(i,j)∈R

γc,i,j × F̃r
n(x, y)

∑
(i′ ,j′)∈R

γc,i′ ,j′
(17)

Z̃q and Z̃r would be sent to calculate the single-label secondary classification loss,
penalizing misclassified pixels and encouraging the network to locate more target re-
gions. The proposed method filters class-agnostic features by CAMs, which facilitates
the activation of positive categories and inhibits the false activation of negative categories
in the classification.

Figure 4. The schematic diagram of SLSC. The soft labels are adaptively assigned to each pixel with
the softmax operation.
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3.3. Multi-Category Sample Generation

As shown in Figure 5, PASCAL VOC2012 contains 64% single-category scenes, whereas
RS datasets contain fewer than 30% single-category scenes. In proportion to the increase in
categories, the number of samples plummets, especially in the PASCAL VOC2012 dataset,
where less than 10% of the samples are from three or more categories and almost none are
from five or more categories. The increase in the number of categories greatly enhances the
difficulty of the classification and final segmentation tasks, and the plummeting number
of samples further escalates the challenge, which is clearly reflected in the RS dataset
represented by iSAID. In the iSAID dataset, 63% of the samples contain targets from
2–3 categories, and samples with more than 4 categories account for 9% of the samples. We
summarize the above discussion as the problem of “uneven distribution of multi-category
samples”, which leads to a sudden drop in the performance of existing models.

Figure 5. The proportion of images with various scene categories in the RS and NS datasets, which
represents the number of images with various scene categories in relation to all images in the datasets.

This paper proposes a method for enhancing data for MCSG by randomly splicing
low-category samples with different numbers of categories to boost the number of samples
comprising multiple categories. In particular, we present the classification of images with
the number of categories in iSAID below 3 (including 3) as the low-category sample group
{SL

i |i = 1, ..., nL} and the images with category numbers above 3 as the high-category
sample group {SH

i |i = 1, ..., nH}, where nL and nH represent the number of samples in
the low-category sample group and high-category sample group, respectively. There are
roughly three steps involved in the data manipulation process:

- First, we randomly selected images from the {SL
i |i = 1, ..., nL} and {SH

i |i = 1, ..., nH}
groups to form a batch denoted as B{SL

i , SH
i } according to the ratio λ, where b is the

size of the batch size (b ≥ 4), and the ratio λ = nL/(nH + nL).
- Second, four images were randomly selected from the Random(SL

i |i = 1, ..., λb).
Random denotes the randomly selected operation.
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- Third, the selected images {SL
i ‖i = 1, 2, 3, 4} were stitched into a new image according

to random scaling, cropping, and random arrangement. In particular, the new image
was the same size as the maximum size of the selected images.

The structure diagram of the MCSG strategy is shown in Figure 6. In the MCSG
module, a large number of low-category samples are stitched in a random scale, random
crop, and random arrangement, which drastically increases the number of samples from
the high-category groups. Although the process is simple, the MCSG module balances
the sample distribution across the various categories and vastly enhances the diversity
of images.

Figure 6. The schematic diagram of MCSG. The low-category samples are stitched in a random scale,
random crop, and random arrangement in order to produce more high-category samples.

3.4. Network Training Loss

Detailed descriptions of the overall loss functions of our CISM framework are pre-
sented in this section. The overall loss L is expressed as

L = Lml + λ(Lsl + Lcsm + Lnsc) (18)

where the basic multi-label soft margin classification loss Lml is used to provide the rough
localization of objects. Lsl denotes as single-label secondary classification loss, which is
utilized to compensate the sparsity of the initial CAM. λ is a learnable parameter for balanc-
ing the losses. On the basis of a double-branch Siamese network, we propose the Common
Semantic Mining (CSM) loss Lcsm and the Non-common Semantic Contrastive (NSC) loss
Lnsc, which are primarily used for compelling the network to acquire common category
features and improve the robustness of discriminating between non-common categories.

3.4.1. Multi-Label Initial Classification

Since the training phase provides only image-level category labels, the first step in
training the network is to train a model for multi-label classification using the multi-
label soft margin classification loss Lml , according to previous research [16,17]. Lml
is defined as follows:

Lq
ml = −

C

∑
c=1

lq · log σ
(
Zq
)
+
(
1− lq

)
· log

(
1− σ

(
Zq
))

(19)

Lr
ml = −

C

∑
c=1

lr · log σ(Zr) + (1− lr) · log(1− σ(Zr)) (20)

where σ(·) is the sigmoid activation function and lq ∈ {0, 1}C and lr ∈ {0, 1}C are image
labels for C semantic categories in the query image IQ and the reference image IR. Zq ∈
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RC×1×1 and Zr ∈ RC×1×1 are the corresponding prediction vectors of image classification.
The final Lml is the average of Lq

ml and Lr
ml .

3.4.2. Single-Label Secondary Classification

To avoid class confusion and unnecessary activation of closely related backgrounds,
the initial CAM serves as a mask in order to extract class-specific features from the class-
agnostic ones obtained by the previous multi-label classification process. As can be seen
from the above multi-label classification process, the GAP layer is employed to obtain the
prediction vector Zq ∈ RC×1×1 and Zr ∈ RC×1×1, in which all pixels have basically been
assigned the same class label. Unlike the traditional equal-weighted average, we remove
the GAP layer and choose the softmax function to adaptively assign soft labels to each pixel.
Specifically, the class-specific features are weighted by the confidence map γc,i,j for the
calculation of the average channel-wise weight and predict the final class scores Z̃. Inspired
by ReCAM [47], we design the single-label secondary classification loss Lsl to penalize
any misclassification caused by either poor features or poor masks. The following is the
definition of Lsl :

Lq
sl = −

1

∑N
i=1 l[i]

N

∑
n=1

l[n] log
exp(Z̃q[n])

∑j exp(Z̃q[j])
(21)

Lr
sl = −

1

∑N
i=1 l[i]

N

∑
n=1

l[n] log
exp(Z̃r[n])

∑j exp(Z̃r[j])
(22)

where l[n] and Z̃[n] are, respectively, the n-th elements of l and Z̃, and the final Lsl is the
average of Lq

sl and Lr
sl .

3.4.3. Common Semantic Mining Loss

To facilitate object pattern mining, we utilized the common class labels as supervised
signals and extracted common features from the transformed query prototypes XQ and
reference prototypes XR with the common category matching map A(i,j) to develop the
common prediction vector yco ∈ RC×1×1, respectively. The generation process of yco
is expressed as:

yco = GAP(Ψ(A(i,j) × XQ)) + GAP(Ψ(A(i,j) × XR)) (23)

where Ψ is the linear transform operation, implemented by 1 × 1 convolution layers.
Then, we further applied the GAP layer to obtain the common prediction vector yco ∈
RC×1×1 for IQ and IR, respectively. Then, yco would be utilized to compute the common
semantic mining loss Lcsm to assist in training the classifier, resulting in the discovery of
relevant semantics in features and the recognition of common category objects. Intuitively,
the loss Lcsm between the query and reference images for common semantic classification
is defined as follows:

Lcsm = −
C

∑
c=1

lco · log σ(yco) + (1− lco) · log(1− σ(yco)) (24)

where the common semantic label lco is obtained from the ground truth labels [lq, lr] of the
paired images. The common semantic mining loss Lcsm explicitly assists the classifier in
tying semantic labels to corresponding object regions within common categories. At the
same time, Lcsm also facilitates the classifier to be aware of the relationship between the
various components of objects. In essence, our method comprehensively utilizes context
across almost all training data.
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3.4.4. Non-Common Semantic Contrastive Loss

In addition to the preceding operation, which explores common semantics across
images, we propose a non-common semantic contrastive loss Lnsc to mine complementary
information based on differences in semantic content among paired images. By filtering the
common category object information, we obtain the contrastive category object information
in IQ and IR, allowing the classifier to pay more attention to mining non-common semantics
from the rest of the image regions. Intuitively, as in the above yco generation process, we
obtain the corresponding non-common prediction vectors as follows:

yq\co = GAP(Ψ((1− A(i,j))× XQ)) (25)

yr\co = GAP(Ψ((1− A(i,j))× XR)) (26)

where yq\co is the non-common prediction vector of the query image IQ, but not of the
reference image IR, and yr\co is the same. We applied the same procedure as in Section 3.4.3
to obtain the common prediction vector yco ∈ RC×1×1 to obtain the non-common prediction
vectors yq\co and yr\co. Then, the non-common semantic contrastive loss Lnsc is calculated
utilizing the non-common prediction vectors yq\co and yr\co, which allows the classifier
to distinguish between different objects based on their semantics, as the contrastive co-
attention disentangles the semantics of common and uncommon objects. The contrastive
loss of non-common semantic classification can be represented as

Lnsc = −
C

∑
c=1

lq\co · log σ
(

yq\co

)
+
(

1− lq\co

)
· log

(
1− σ

(
yq\co

))
−

C

∑
c=1

lr\co · log σ
(

yr\co

)
+
(

1− lr\co

)
· log

(
1− σ

(
yr\co

))
(27)

where the contrastive non-common semantic label lq\co is derived from the removal of the lq
of the common category label lco, and the same goes for lr\co. By utilizing paired samples, we
indirectly increased the total number of samples, bringing the number of training images
closer to its square. The common category object information and the contrastive category
object information make the classifier more aware of the semantics of the objects.

4. Experimental Results and Discussion

Numerous experiments were conducted on the challenging RS dataset iSAID [20] to
evaluate the efficacy of key components of our algorithm. In addition, our analyses were
also carried out on the PASCAL VOC2012 dataset in order to assess its performance in
comparison with more state-of-the-art approaches. The detailed results of the experiment
are discussed in the following paragraphs.

4.1. Datasets and Evaluation Metrics

As a public large-scale RS dataset, iSAID [20] was primarily obtained from the JL-1
and GF-2 satellites for the segmentation of aerial imagery, which has 15 target categories
and one Background (BG) category. Specific categories include Basketball Courts (BCs),
Baseball Diamonds (BDs), Bridges (BRs), Ground-Track Fields (GTFs), Harbors (HAs),
Helicopters (HCs), Large Vehicles (LVs), Planes (PLs), Roundabouts (RAs), Soccer Ball
Fields (SBFs), Ships (SHs), Swimming Pools (SPs), Storage Tanks (STs), Small Vehicles (SVs),
and Tennis Courts (TCs). In lieu of the full names, the abbreviations in brackets were used
in the results of our experiment. According to the initial partitioning of the iSAID dataset,
1411 high-resolution images were utilized for training and 458 for validation. In addition,
each image was randomly sliced into 6–8 512 × 512 slices. As a result, 7500 slices of the
training set, 1653 slices of the verification set, and 1315 slices of the test set were generated.
There are 20 foreground categories in PASCAL VOC2012, as well as 1 background category,
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which is commonly used to test the performance of object detection and image segmen-
tation algorithms. Furthermore, PASCAL VOC2012 was augmented with images from
the SBD [48] to obtain 10,582 images for the training phase, 1449 for the validation phase,
and 1456 for the test phase. On the above two datasets, we only used image-level category
labels to generate CAMs during training, which is the most-challenging task in WSSS. For
the purposes of evaluating the quality of pseudo-labels, we utilized pixel-level ground
truth labels in the inference stage. Furthermore, the standard mIoU was the metric applied
to all of our experiments. Our comprehensive comparison of diverse datasets yielded more
reasonable results in terms of performance.

4.2. Implementation Details

We adopted CIAN [39] as the baseline model in this paper. In the course of training,
we employed the same data augmentation as in previous research [16,39,49,50]. Our
network was trained with 20 iterations on a single NVIDIA RTX 3090 GPU using the
Adam optimizer [51] with a batch size of 16. With the polynomial attenuation strategy [52],
the learning rate decreased by 0.9 from the initial 0.01 level as each iteration completed.
We followed previous research [16] by selecting ResNet-50 [53] as the backbone for the
initial CAM generation. For a fair comparison, similar to the previous research, the dense
CRF [44] was adopted as the post-processing procedure to refine the initial CAMs as
the pseudo-labels. Finally, our segmentation model was trained with only pseudo-labels
utilizing DeepLab [54] as the segmentation network.

4.3. Comparison with State-of-the-Art Results

This part examines the performance of CISM compared with the weakly supervised
SOTA methods on the iSAID dataset and the PASCAL VOC2012 dataset. A more detailed
explanation is provided below.

4.3.1. iSAID Dataset

Comparison with weak supervision methods: For the purposes of comparing the per-
formance with other WSSS methods, we selected several recent competitive NS methods
to participate in this comparison. According to Table 1, for the performance comparison,
we achieved state-of-the-art performances on the iSAID dataset without any additional
training information. In comparison with the baseline method [39], our method improved
the mIoU by 10.2%, which is a promising development in the field of WSSS. Notice that
there are some very low values in Table 1, such as for SVs, HAs, HCs, etc. They have in
common that they belong to hard samples, where the distribution of SVs is dense and the
target scale is small, the target scale of HAs is highly variable, and the sample size of HCs
is sparse. These hard samples are not conducive to network learning and are difficult to
find in complex remote sensing scenes. The above experimental results demonstrated the
advantage of leveraging cross-image relationships, which enables the implementation of
image-level WSSS in the RS field.

Table 1. The performance statistics of weakly supervised methods in the mIoU (%) on iSAID.

Model BG GTF SBF SV SH BR BC BD RA PL TC LV ST HA SP HC mIoU

AffinityNet [17] 77.8 14.7 43.7 3.7 5.8 6.3 18.8 20.4 9.8 7.5 54.3 23.8 42.4 3.9 1.8 1.0 20.9
IRNet [16] 78.6 18.9 39.8 6.7 16.6 7.5 24.5 16.4 5.7 15.7 54.9 29.0 29.6 9.8 2.7 3.1 22.5
CIAN [39] 78.3 21.9 40.8 8.9 17.5 8.3 28.4 22.7 13.5 18.1 47.5 27.6 30.2 8.5 4.2 5.3 23.9
SEAM [18] 73.2 28.4 37.8 4.7 15.3 6.9 43.1 31.4 16.7 19.6 44.3 31.1 24.4 7.8 9.8 8.3 24.5

SC-CAM [31] 76.2 28.6 36.1 11.1 20.0 5.7 23.1 36.9 23.2 24.8 54.3 30.1 29.8 10.3 17.3 11.9 26.6
RPNet [41] 80.2 33.6 42.1 9.8 16.9 7.2 45.2 32.6 26.1 27.6 51.5 29.4 42.7 9.3 16.8 13.7 30.3

CISM (ours) 83.1 35.5 44.6 11.8 19.5 8.4 48.3 34.4 29.2 30.5 52.6 31.9 44.1 10.8 17.6 14.3 32.2

Comparison with other supervised methods: To more intuitively compare the perfor-
mance of the models under different supervision types, we compared four types of super-
vision methods and list their differences in Table 2, where F indicates full supervision,
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S denotes semi-supervision,W(B) andW(I) denote the bounding box supervision and
image-level supervision, respectively. Our CISM with ResNet50 achieved an mIoU of
34.1% on the iSAID dataset, outperforming all previous results only with image-level labels.
However, compared to fully supervised and semi-supervised methods, our method had a
large performance gap. The main reason is that the image-level supervision only provides
information on target categories, while information on the number and location of targets is
completely absent. Therefore, the bounding box supervision methods are proposed, which
provide information on the categories and locations of all objects in the form of bounding
boxes. Notably, our model was comparable to some bounding box works, such as [6,55,56],
which were equal to 66.5% of the performance of the weakly supervised method [55] based
on the bounding boxes. All the above experimental results demonstrated the advantage
of leveraging cross-image relationships, which enables the implementation of image-level
WSSS in the RS field.

Table 2. Evaluation results on the iSAID dataset under the different supervision types. We use
different symbols to distinguish the type of supervision: F indicates full supervision. S indicates
semi-supervision. W indicates weak supervision, whereW(B) denotes bounding box supervision
andW(I) denotes image-level supervision.

Supervision Type Model Backbone mIoU (%)

F DeepLab v3 [54] ResNet50 59.1

S
SDI [55] VGG16 54.9
Song [6] VGG16 55.2

JMLNet [56] ResNet50 56.8

W (B)
SDI [55] VGG16 53.8
Song [6] VGG16 54.2

JMLNet [56] ResNet50 55.3

W (I)

CIAN [39] ResNet50 23.9
SC-CAM [31] ResNet50 26.6

RPNet [41] ResNet50 30.3
CISM (ours) ResNet50 35.8

Analyses of the visualization: Figure 7 illustrates the comparison between our method and
the baseline method in terms of qualitative segmentation results on iSAID. From the first
two rows, the CISM model can produce segmentation results with more explicit boundaries
and more regular shapes, as well as significantly reducing misclassified pixels. The results
in the middle two rows show that our method is able to reduce false positive predictions in
the background to some extent, as they are never matched in any of the reference images.
From the last two rows, we show that our CISM model can accurately recognize and
locate objects in multi-category RS scenes. This is because our CISM builds a more robust
representation across the dataset with the help of cross-image semantic information, and the
related representations can be strengthened by each other, thus achieving more accurate
semantic localization and segmentation. This is because our CISM constructs a more robust
representation across the dataset using cross-image semantic information, and the related
representations can be strengthened by each other, resulting in more accurate semantic
localization and segmentation.
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Figure 7. Visual illustration of the segmentation results of the iSAID dataset. The six rows show
the results of the qualitative semantic segmentation to demonstrate how our CISM outperforms the
baseline. Best viewed in color.
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4.3.2. PASCAL VOC2012 Dataset

To achieve the comparison with more competitive algorithms, a further evaluation
of the performance of the CISM model was conducted by applying it to the PASCAL
VOC2012 dataset. As a standard convention, 10582 images were used for training, 1449
for validation, and 1456 for testing, with the mIoU serving as the metric for evaluating the
segmentation results. The comparison results for the PASCAL VOC2012 are provided in
greater detail below.

Comparison with SOTA methods: According to Table 3, our method produces better
results than the baseline (CIAN) in both validation and testing and outperforms all of
the previous results without any additional supervision. Based on the PASCAL VOC2012
validation set, our CISM achieved a 67.3% mIoU with ResNet-101. Furthermore, on the
test set, we achieved a 68.5% mIoU and generated high-quality pseudo-masks. To be
fair, the CISM model was also evaluated on various backbone networks and is marked
with different combinations of the symbols * and †. Excluding the method that employs
additional supervision, as a result of our model, all types of backbones achieved new state-
of-the-art performance, with specific types including ResNet-38, ResNet-50, and ResNet-101,
which demonstrates the effectiveness of cross-image semantic mining.

Table 3. The performance statistics of the current state-of-the-art on PASCAL VOC2012. We evaluated
the CISM model with different backbone networks and signify these with various combinations
of the symbols * and †. These different backbone networks include: ResNet38 (†); ResNet-50 († *);
ResNet101 († **). The supervision types (Sup.) include: image-Level labels (L) and Saliency maps (S).

Methods Backbone Sup. Val Test

AFFNet [17] R-38 L 61.7 63.7
SEAM [18] R-38 L 64.5 65.7

A2GNN [57] R-38 L 66.8 67.4
EDAM [58] R-38 L + S 70.9 70.6

EPS [59] R-38 L + S 70.9 70.8

CIAN [39] R-50 L 62.4 63.8
IRNet [16] R-50 L 63.5 64.8
RPNet [41] R-50 L 66.4 67.2

MCOF [60] R-101 L 60.3 61.2
DCSP [61] R-101 L 60.8 61.9
DSRG [62] R-101 L 61.4 63.2
SeeNet [63] R-101 L + S 63.1 62.8

AISI [64] R-101 L + S 63.6 64.5
CIAN [39] R-101 L 64.1 64.7

FickleNet [32] R-101 L + S 64.9 65.3
SC-CAM [31] R-101 L 66.1 65.9

RPNet [39] R-101 L 66.9 68.0

Ours:
CISM (†) R-38 L 64.4 66.8

CISM († *) R-50 L 66.8 67.6
CISM († **) R-101 L 67.3 68.5

4.4. Ablation Experiments

This section presents a series of thorough experiments designed to demonstrate the
benefits of our CISM framework. To systematically assess the effectiveness of each CISM
component, our evaluation of the CISM framework continued to be based on the CIAN [39]
as the baseline and on the mIoU as the evaluation metric. On the more challenging iSAID
dataset, all experimental results were evaluated.
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4.4.1. Effectiveness of Prototype Vector

We obtained prototype vectors from class-specific features with the intent of selecting
only highly confident activation regions to propagate and implement classification. As
shown in Table 4, the addition of the prototype vector improved the mIoU by 0.7% com-
pared to the baseline. As is observable, however, when we only considered the prototype
vector to filter the low-confidence activation region, we obtained a small improvement in
the mIoU of the CAMs, but a significant decrease in the OA of the CAMs, indicating that
some of the activation area in the inner object regions was filtered out, resulting in a lower
recall. Therefore, we propose the PIE module to achieve the complementary embedding
of common target information in the reference and query images, aiming to compensate
for the reduction of the target internal activation regions caused by the high-confidence
filtering operation. With the addition of the PIE module, a further improvement of 2.8% for
the mIoU was achieved on the prototype vector, and the OA value was directly increased
to 79.3%. The above quantitative experimental results show the validity of the prototype
vector and PIE module.

Table 4. The ablation research on the effectiveness of the prototype vector and the PIE module.
We added the prototype vector and the PIE module sequentially to the baseline and observed the
quality of the CAM on iSAID. +PV means the addition of the Prototype Vector, and +PIE means the
addition of the PIE module. The mIoU (%) and OA (%) as the evaluation metrics for CAM quality
are reported in the table.

Baseline +PV +PIE mIoU (%) OA (%)

X 23.9 77.2
X X 24.6 73.5
X X X 28.4 79.3

Analyses of the visualization: In order to illustrate the impact of the prototype vector and
PIE module in an intuitive manner, the CAM visualization results are presented in Figure 8.
Given a picture that includes some targets, the baseline can only have a rough estimate
of the local discriminatory regions of the targets at first. Following the addition of the
prototype vector and PIE module, there was a substantial improvement in the accuracy
of target positioning and a strengthening of the CAM activation area, and the pseudo-
masks became more complete and clearer. This is because that the prototype vector
and PIE module suppress the further propagation of the background and interference
information, ensuring that the classifier can learn more useful semantic information and
achieve reasonable optimization.

Figure 8. The visualization after adding the prototype vector and PIE module.

Selection of hyperparameters: In the process of prototype vector generation, we developed
an adjustable variable η to assist in discarding certain regions from the CAMs during
training, and then, the corresponding location of the initial prototype vector Fc(x, y) will be
masked. Table 5 presents the effect of different hyperparameter settings on CAM quality as
measured by the mIoU (%) and OA (%). With the increase of the parameter η, the evaluation
metrics gradually increased and then decreased, achieving the maximum value at η = 0.3.
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Table 5. The effect of different hyperparameter settings on CAM quality as measured by the
mIoU (%) and OA (%).

η mIoU (%) OA (%)

0.1 28.9 80.6
0.3 32.2 82.4
0.5 27.4 80.1
0.7 25.8 79.2

4.4.2. Effects of Single-Label Secondary Classification

We appended the operation of Single-Label Secondary Classification (SLSC) to the
initial multi-label classification on different networks to assess its validity independently.
Here, we selected the CIAN network as the benchmark, along with the competitive RPNet
network [39], which also employs the prototype vector, and our own CISM network for
comparison. The mIoU and OA were also used as the evaluation metrics in our CISM
framework to determine whether the SLSC is effective. We exploited the initial CAM
to extract class-specific features in order to overcome class confusion and closely related
background interference information. As indicated in Table 6, the addition of the SLSC
increased the mIoU and OA by 3.8% and 3.3%, respectively, relative to the baseline. The
middle two rows demonstrate that the addition of the SLSC improved the performance of
the RPNet. As compared with the baseline, the mIoU improvement increased from 23.9% to
30.3% and the OA improvement rose from 77.2% to 80.8% after applying the SLSC, which
further improved the two metrics to 32.6% and 82.7%, respectively. In the last two rows,
we show the more significant gains of the SLSC on our CISM network. With the addition of
the SLSC, we continued to improve above RPNet by a 0.9% mIoU and 1.2% OA. Noting
that CISM alone can achieve higher performance than the RPNet highlights the benefit of
the cross-image mining network.

Table 6. Ablation researchof the effectiveness of the MCSG strategy. +SLSC means the addition of the
Single-Label Secondary Classification. The effect of single-label secondary classification on the CAM
quality using the mIoU (%) and OA (%) as the evaluation metrics.

Baseline +SLSC mIoU (%) OA (%)

X 23.9 77.2
X X 27.7 80.5

RPNet +SLSC mIoU(%) OA(%)

X 30.3 80.8
X X 32.6 82.7

CISM (ours) +SLSC mIoU (%) OA (%)

X 32.2 82.4
X X 33.5 83.9

Analyses of the visualization: In Figure 9, the CAM visualization results on the iSAID
dataset are presented. The baseline network still has limited localization capability in multi-
category RS scenes and is prone to produce incomplete activation areas. Compared to the
baseline, the RPNet [39] found more activated regions by correlations between prototype
vectors. However, the granularity of the CAM generated by the RPNet was still insufficient,
hence limiting the quality of subsequent pseudo-label generation. Our CISM extracts
prototype vectors from high-confidence regions while filtering out interference regions in
the background and confusion regions between different categories, hence enhancing the
representation of features. As can be seen in the last column of Figure 9, the addition of
the SLSC improved the fine-grainedness of the CAMs and further refined the activation
area in the CAMs.
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Figure 9. The visualization after adding the SLSC.

4.4.3. Effects of Multi-Category Sample Generation

To evaluate the Multi-Category Sample Generation (MCSG) strategy, we applied it to
the baseline (CIAN) architecture, which is the first model to build cross-image relationships
for WSSS and achieved the best results in the original NS studies. For the sake of equality,
the hyperparameters and other conditions of our CISM model were identical to those
employed by the CIAN architecture. Table 7 summarizes the comparison results. As we
can see, there was a 1.9% mIoU improvement when the MCSG was applied to our CISM,
compared to 1.4% on the baseline alone. Furthermore, we noticed that the baseline model
still did not perform as well as our CISM model, even though the MCSG module was
added. After applying the MCSG, our CISM improved the mIoU from 25.3% to 34.1%,
which suggests that applying the MCSG greatly benefits the CAM quality.

Table 7. Ablation research of the effectiveness of the multi-category sample generation strategy.
The mIoU (%) and OA (%) are the evaluation indicators of CAM quality.

Method mIoU (%) OA (%)

Baseline 23.9 77.2
Baseline + MCSG 25.3 79.5

CISM 32.2 82.4
CISM + MCSG 34.1 84.9

4.4.4. Impact of Loss Functions

As explained in Section 3.4, our CISM was optimized through combining four loss
functions, i.e., the basic multi-label soft-margin classification loss Lml , the single-label
secondary classification loss Lsl , the common semantic mining loss Lcsm, and the non-
common semantic contrastive loss Lnsc, which play different and important roles in guiding
classification network training and generating CAMs. Here, we conducted related ablation
experiments on iSAID for the purposes of further validating the effectiveness of each
loss function. First, the quantitative comparison between different combinations of loss
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functions is presented in Table 8. Our CISM only obtained a 23.9% mIoU when only
Lml was used. By removing the class-related background regions and the inter-class
interference regions from the generated CAM, Lsl further improved the mIoU to 26.7%,
which played an important role in enhancing the fine granularity of CAM. On the basis
of this, in order to obtain more target features and improve the discriminative property
between different targets, we extracted the common semantic mining loss Lcsm and the
non-common semantic contrastive loss Lnsc to provide guidance for network training. To
independently examine the effect of Lcsm and Lnsc, we paired the Lml loss and Lsl loss with
Lcsm and Lnsc, respectively, to assist in supervising the training process for the network
and then observed the CAM generation results. Note that the CAMs can obtain a 3.1%
improvement in the mIoU when only the Lcsm loss was added to the Lml loss, while when
we only used the Lnsc loss, the quality of the CAMs did not improve, but decreased by
6.4%. Only when Lcsm and Lnsc were employed simultaneously, the quality improvement
of the CAMs was the greatest among these three loss combinations, which improved the
mIoU from 23.9% to 34.1%. We conjecture that, without the guidance of the common
semantic features, it is hard for the network to converge during training by relying only
on the non-common semantic information. This is because the non-common semantic
information is not conducive to optimizing the classifier; on the contrary, it can interfere
with classifier discrimination.

Table 8. The ablation research of different combinations of loss functions. We added Lcsm, Lnsc,
and Lsl in turn to observe the quality of the CAMs on the iSAID dataset by combining different loss
functions. The mIoU (%) is the evaluation metric for CAM quality.

Lml Lsl Lcsm Lnsc mIoU (%)

X 23.9

X X 26.7
X X X 20.3
X X X 29.8
X X X X 34.1

5. Conclusions

This paper proposed a Cross-Image Semantic Mining (CISM) WSSS framework to
discover more object regions and complete semantics in multi-category RS scenes with
two novel loss functions: the CSM loss and the NSC loss. In particular, we extracted the
prototype vectors from the class-specific features and further devised the PIE module to
construct semantic similarity and difference. In addition, we proposed integrating the SLSC
task and the corresponding novel loss into our framework to force the network to acquire
knowledge from additional object regions. Furthermore, the MCSG module was designed
to maintain a balanced distribution of samples across various categories and drastically
increase the diversity of images. It was confirmed through extensive experiments that our
method is able to resolve certain ambiguities and prevent false predictions by connecting
correlated regions across images. Furthermore, our method generated more consistent and
integral activation regions in the CAMs and provided new state-of-the-art results on the
challenging iSAID dataset.
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Abbreviations
The following abbreviations are used in this manuscript:

WSSS Weakly Supervised Semantic Segmentation
FSSS Fully Supervised Semantic Segmentation
SLSC Single-Label Secondary Classification
CISM Cross-Image Semantic Mining
CAM Class Activation Maps
CSM Common Semantic Mining
NSC Non-common Semantic Contrastive
PIE Prototype Interactive Enhancement
MCSG Multi-Category Sample Generation
RS Remote Sensing
NS Natural Scene
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