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Abstract: Accurately mapping tree species is crucial for forest management and conservation. Most
previous studies relied on features derived from optical imagery, and digital elevation data and the
potential of synthetic aperture radar (SAR) imagery and other environmental factors have, generally,
been underexplored. Therefore, the aim of this study is to evaluate the potential of fusing freely
available multi-modal data for accurately mapping tree species. Sentinel-2, Sentinel-1, and various
environmental datasets over a large mountainous forest in Southwest China were obtained and
analyzed using Google Earth Engine (GEE). Seven data cases considering the individual or joint
performance of different features, and four additional cases considering a novel clustering-based
feature selection method, were analyzed. All 11 cases were assessed using three machine learning
algorithms, including random forest (RF), support vector machine (SVM), and extreme gradient
boosting tree (XGBoost). The best performance, with an overall accuracy of 77.98%, was attained
from the case with all features and the random forest classifier. Sentinel-2 data alone exhibited similar
performance as environmental data in terms of overall accuracy. Similar species, such as oak and
birch, cannot be spectrally discriminated based on Sentinel-2-based features alone. The addition of
SAR features improved discrimination, especially when distinguishing between some coniferous
and deciduous species, but also decreased accuracy for oak. The analysis based on different data
cases and feature importance rankings indicated that environmental features are important. The
random forest outperformed other models, and a better prediction was achieved for planted tree
species compared to that for the natural forest. These results suggest that accurately mapping tree
species over large mountainous areas is feasible with freely accessible multi-modal data, especially
when considering environmental factors.

Keywords: tree species mapping; mountainous forest; Sentinel-1 and Sentinel-2; environmental data

1. Introduction

As an essential component of ecosystems, forest vegetation plays a vital role in reg-
ulating climate change, monitoring biodiversity, estimating carbon sequestration, and
promoting sustainable forest operations [1–3]. Acquiring accurate and low-latency infor-
mation on tree species is crucial for the ability of forest authorities to implement effective
forest management and monitor biodiversity. However, the species diversity conditions
resulting from the complex composition of vegetation types, dense forest coverage and typ-
ical climatic characteristics present a challenge when mapping tree species in mountainous
forests. In addition, acquiring accurate sample data is challenging in these forests, where
access is hindered by a lack of infrastructure and rugged terrain [4].
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Remote sensing analyses are less costly in terms of labor and time than field surveys
and aerial photography and are easily extended to large scales. The Landsat and Sentinel-2
series satellites provide images with high spatial resolutions, and the accumulation of these
data with available revisit cycles can facilitate the mapping of forest types and changes in
the distributions of specific tree species. As remote sensing technologies have developed,
satellite data with different spectral, temporal, and spatial resolutions provided more
chances for tree species mapping. Many recent studies have explored high-resolution
remote sensing imagery such as IKONOS, QuickBird, and WorldView imagery to map
forest types in detail, even at the species level [5–7]. Despite the advantages of these data
in terms of the spatial details they provide, previous studies have been limited to relatively
small study areas of a few hundred to a few thousand square kilometers. Thus, these data
can only meet the needs of specific users due to their high user costs and time-consuming
characteristics and cannot support forest inventories over extensive areas [8]. Therefore,
medium- and high-resolution satellite data are more suitable for mapping tree species over
widespread areas.

Sentinel-2 data are widely employed for classifying land use, forest types, and tree
species [9,10]. Moreover, Sentinel-2 data contain red-edge bands, which are crucial spectral
wavelength domains and can help discriminate the subtle differences among morpho-
logically similar tree species [11]. Multitemporal or time-series data can capture subtle
vegetation changes in phenology [12–15]. Using the dense time-series data derived from
the Sentinel-2 satellite over the growing season, researchers can obtain detailed information
regarding tree species’ spectral–temporal patterns [16]. However, clouds can lead to invalid
observations in some periods, especially in the rainy season of subtropical and tropical
regions. Recent studies have used time-series smoothing and interpolation methods to
preserve complete phenology information. Effective methods for processing image-based
temporal features include fitting time-series curves and removing high-frequency noises
with effective filters to generate gap-free time-series products [17]. Nevertheless, a signif-
icant number of available observations are needed to construct timeseries that describe
species growth to ensure the accuracy of the output phenology features.

An active remote sensing synthetic aperture radar (SAR) that is not blocked by cloud
cover or insufficient lighting can be used as a supplementary data source to overcome the
limitations of optical satellites that are susceptible to cloudy and rainy weather [18]. SAR
data can be used for crop identification, farmland parameter extraction, yield estimation,
average forest stand height mapping, aboveground biomass estimation, forest condition
change detection, and forest type classification tasks [8,19–21]. SAR systems are sensitive
to the biochemical structure of vegetation and the dynamic characteristics of plant tar-
gets, such as the plant water content, geometric properties, and surface roughness; for
forests, backscatter is influenced by the roughness of leafy branches and the morphology
and orientation of the leaves [22,23]. Many studies have combined optical and radar sen-
sors’ strengths when capturing vegetation biochemical and physical properties for various
applications in forests. For example, SAR data improved the ability to predict forest hetero-
geneity indices in mapping the diversity indices of forest plants [24]. The combination of
Sentinel-1 with Sentinel-2 data allowed for the effective assessment of spatial vegetation het-
erogeneity and diversity over a wide area. The results of another tree species classification
study suggested that adding the VV, VH, and ratio of both (VH/VV) features of SAR data
based on Sentinel-2 data could improve the classification accuracy of coniferous forests [25].
In addition, seasonal SAR features have been reported to be helpful for forest area estima-
tions and forest type classifications in temperate forests [26]. Therefore, combinations of
Sentinel-1 and Sentinel-2 data can be used to improve the classification results for forests,
especially in large subtropical mountainous regions where the availability of optical images
is limited. In previous studies, topographic factors could improve the accuracy of forest
type and tree species classifications, especially in mountainous regions [27]. The spatial
distribution of tree species is greatly influenced by topography, which affects various envi-
ronmental conditions, such as solar radiation, temperature, and moisture [28]. In addition
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to topography, abiotic conditions such as precipitation, temperature and soil conditions also
significantly affect the distributions of tree species and forests. These ancillary datasets can
thus provide complementary information for discriminating among different tree species.
Furthermore, several previous studies confirmed the strong correlations between climatic
factors and tree species distributions and identified precipitation and temperature as the
most critical factors influencing plant communities [29,30].

In contrast to optical and radar data, the spatial distribution of climate variables char-
acterizes species’ climate preferences but cannot directly measure vegetation; interestingly,
such datasets have rarely been used for tree species classifications [31]. In tropical and
subtropical forests, seasonal rainfall variations are highly apparent, and species drought per-
formance and physiological drought tolerance positively impact species distributions [32].
In research assessing the importance of rainfall temperature and its seasonality on the
distribution of tropical forest tree species, researchers found that 95% of the distributions of
20 species were significantly correlated with annual precipitation [30]. Studies often com-
bine ancillary predictor variables with remotely sensed data, such as environmental data, to
improve species classification accuracy. Combining multi-modal data sources leads to better
results better than using remote sensing or ancillary environmental data alone; additionally,
data source combinations can reduce the constraints of heterogeneous environmental condi-
tions. To assess the performance of different source data, these data were iteratively added
onto the single data to construct different feature sets, and these feature sets were used as
inputs to different classifiers in a previous study [33]. Many studies have compared single
or multiple data combinations to obtain the most suitable combination of the multi-source
dataset [8,25,34]. Remote sensing-based tree species mapping tasks present an increasing
demand for statistical methods. In the past, typical methods built on parametric analyses,
including maximum likelihood, Bayesian, and some unsupervised clustering methods
(e.g., the k-means), were employed [35–37]. Recently, some nonparametric machine learn-
ing methods, such as random forest (RF) and support vector machine (SVM) methods, have
been widely used for tree mapping due to their stable performance when processing high
dimensional features [38,39]. In addition, the proliferation of high-performance comput-
ing systems and data availability has increased and thus improved large-scale geospatial
data processing capabilities. Google Earth Engine (GEE) is a cloud-based platform widely
used for large-scale environmental monitoring and analyses; this platform can facilitate
vegetation mapping at large regional scales [40].

The main objectives of this study are as follows:(1) to map nine tree species classes
at a spatial resolution of 10 m in a typical tropical and subtropical climatic mountainous
area, (2) to explore the potential of fusing multi-modal data for tree species classification
in a mountainous area by combining Sentinel-1 backscatter, Sentinel-2 spectral, texture,
time-series feature, and environmental variable data, and (3) to explore the optimal feature
combination for tree species classification.

2. Materials and Methods
2.1. Study Area

Our study area is in the southwestern part of China, covering three administrative
states of Yunnan Province, Lincang, Xishuangbanna, and Puer, spanning an area of over
70 thousand square kilometers (Figure 1). With 70% of the area covered by forests, the
study area is one of Yunnan’s most densely forested regions. The area has influence of the
tropical and subtropical monsoon climate. It has distinct wet and dry seasons, with an
average annual temperature of approximately 17.4 ◦C and an average annual precipitation
of approximately 1489 mm. The topography of the study area is complex, consisting
mainly of low- and medium-elevation mountains, foothills, and river valleys, ranging
in elevation from 317–3429 m, and the total elevation difference is nearly 2000 m, with
prominent vertical climate characteristics. The vegetation types in the study area belong to
the southern Yunnan flora that evolved with the extrusion of the Indochinese landmass into
Southeast Asia, influenced by the tropical Asian component since the end of the Tertiary era.
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The vegetation in the study area is related closely to the Indo-Malaysian flora [41], resulting
in a complex and diverse vegetation landscape including tropical rainforests, subtropical
evergreen broadleaf forests, and subtropical mixed coniferous broadleaf forests. Our study
area includes a significant amount of virgin forest. In recent years, the proportion of forest
accounted for by plantation forests also increased quickly due to extensive economic crop
cultivation and the policy of returning farmland to forest. The region is dominated by
Simao pine (Pinus kesiya var. langbianensis), rubber (Hevea brasiliensis), eucalyptus (Eucalyptus
robusta), Yunnan pine (Pinus yunnanensis), oak (Quercus L.), fir (Cunninghamia lanceolata
(Lamb.) Hook.), birch (Betula), and alder (Alnus cremastogyne Burk.).
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2.2. Data and Preprocessing
2.2.1. Features from Multi-Modal Data

Both Sentinel-2 A/B satellites carry multispectral instruments containing 13 bands,
with spatial resolutions ranging from 10 to 60 m in the visible to shortwave infrared
(SWIR) region. Sentinel-2 data were used in this study to generate three types of features:
(1) spectral features, (2) 10-day time-series data, and (3) texture metrics. In the mountainous
regions of Yunnan, it is challenging to obtain complete and appropriate images due to the
presence of clouds, and cloud shadows, especially in cloudy and rainy summer months.
To minimize the effects of missing pixels after cloud masking, we used Sentinel-2A/B
multispectral top-of-atmosphere (TOA) reflectance images (Level-1C) from 2015 to 2017
to create the best composite pixels. Pixels obscured or covered by clouds, cloud shadows
or snow were removed using a bitmask band (QA60) with cloud mask information in
GEE. Furthermore, to fill the gaps that were present after the cloud-removal process, a
median imagery composite was conducted with all observations from 2015 to 2017. Two
types of spectral features were used to distinguish the tree species. The first type was the
spectral bands of Sentinel-2, including blue, green, red, red-edge 1, red-edge 2, red-edge
3, Near-infrared (NIR), red-edge 4, SWIR1, and SWIR2 bands. In addition, 16 commonly
used spectral indices were obtained: triangular vegetation index (TVI), land surface water
index (LSWI),normalized difference water index (NDWI), normalized difference built-up
index (NDBI), normalized burn ratio (NBR), red edge chlorophyll index (CRE), normalized
difference salinity index (NDSI), normalized difference temperature index (NDTI), red-
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edge normalized difference vegetation index (REDNDVI), red-edge position index (REP),
normalized difference red edge index (NDRE), modified chlorophyll absorption ratio
index (MCARI), medium-resolution imaging spectrometer terrestrial chlorophyll index
(MTCI), inverted red-edge chlorophyll index (IRECI), normalized difference vegetation
index (NDVI), and normalized difference senescent vegetation index (NDSVI). The crown
shape can be used to characterize the age, growing conditions, and interspecies competition
of trees of different species. The GEE cloud platform also provides the glcmTexture function
for calculating a grey-level cooccurrence matrix (GLCM). Six parameters were calculated
for red-edge 1 considering the referenced research results: the sum average, correlation,
dissimilarity, variance, contrast, and cluster shade.

The red-edge band of Sentinel-2 is sensitive to chlorophyll and effectively separable
across various plant phenology stages; the information in the red-edge band has been
found to be critical in distinguishing tree species and the growth stages of species [42].
Therefore, enhanced REP vegetation index timeseries was produced to extract the pheno-
logical differences among tree species. Sentinel-2 did not provide efficient observations
of the entire study area in 2016, so all observations from 2015 to 2017 were collected to
perform 10-day median compositing. To resolve the issue of missing pixels after cloud
masking, a time window interpolation algorithm was proposed by Park and Tateishi in
1998 [43]. Furthermore, the Savitzky-Golay (SG) filtering algorithm was used to smooth the
interpolated timeseries and suppress noise effects [44]. Finally, we obtained a cloud-free
and gap-filled 10-day REP timeseries.

Sentinel-1 consists of two polar-orbiting satellites performing C-band synthetic aper-
ture radar imaging. These satellites can provide dual-polarization observations, allowing
them to acquire images independent of changing weather and environmental conditions.
In this study, we used all available VV and VH polarization schemes of the C-band SAR
Ground-Range-Detected (Sentinel-1 SAR GRD) data in IW mode from 2016, as provided
by the ‘COPERNICUS/S1_GRD_FLOAT’ image collection of GEE. All Sentinel-1 images
were processed to an angular-based radiometric slope correction using a Shuttle Radar
Topography Mission digital elevation model (SRTM DEM) to reduce the impacts of local
terrain on backscatter. The images were filtered using a refined Lee filter with a 7 × 7
moving window to mitigate the effects of “salt-and-pepper” noise. In addition, we added
the VV/VH ratio in the analysis since previous studies have shown favorable results when
applying this ratio in classifications of deciduous and broadleaf tree species [25]. Three
radar indices were also computed: the modified radar vegetation index (MRVI) [45], the
dual-polarization SAR vegetation index (DPSVIm) [46], and the normalized difference of
the bands (NDI) [47].

Climatic conditions and environmental factors largely influence plant growth and tree
species composition. The ecological processes of climate change affect the succession of
dominant tree species and their distribution patterns. To understand the importance of envi-
ronmental factors in our tree species classification, we utilized auxiliary variables describing
topography, land surface temperature, and precipitation conditions. The MOD11A2 V6.1
product provides average 8-day land surface temperatures (LST) at a 1000-m resolution [48].
We composited this product into monthly average values. In addition, monthly average
precipitation data at a 1-km resolution by OpenLandMap Precipitation Monthly were also
used [49]. Previous studies have shown that adding topographic factors can effectively
improve tree species classification results in mountainous areas [50]. The topographic
data used herein were derived from an SRTM DEM at a resolution of 30 m; we extracted
elevation, slope, and aspect parameters from these data.

Five types of features were extracted from multiple sensors to discriminate the tree
species, which are listed in Table 1.
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Table 1. Features used in this study.

Feature Number Acronym Description

Spectral (26) SP 10 basic Sentinel-2 bands (blue, green, red, red edge 4, NIR, SWIR 2).
16 vegetation indices

Texture (6) TX The red edge was selected to calculate 6 GLCM metrics: the sum average,
correlation, dissimilarity, variance, contrast, and cluster shade.

REP_Time Series (37) REP_TM A 10-day time-series of the REP

SAR (6) S1 VV, VH, CR, and 3 radar vegetation indices: NDI, mRVI, and DPSVIm.

Environmental Factors (27) Env
Topographic (elevation, slope, and aspect)

Monthly mean precipitation
Monthly mean land surface temperature

2.2.2. Reference Samples

Forest species ground survey data collected in the Forest Management Inventory (FMI)
provide information regarding the species compositions of forests. Each survey contains a
ground survey and a forest stand survey. In the ground survey, the locations of patches are
investigated, and the land use types, topography, soils, and other factors are determined
for every patch. Each forest stand survey includes an analysis of the stand origin, species
composition, stand age, stand stock, and other factors.

To obtain representative and accurate sample data, we proposed a filter flow based on
the original survey data for 2016. First, we obtained survey information about the study
area by cropping small groups according to the boundaries of the study area. Second,
forests and non-forests were masked, and subregions with pure species compositions were
selected from the forest regions. A pure forest subclass was defined as a single vegetation
class, homogeneous tree stands, dominant plant species, or land classes covering more than
65% of the area. Third, the standard deviation and mean values of the blue, NIR, SWIR,
NDVI, and GREENNESS bands were calculated based on the median composite Sentinel-2
images of the 2016 growing season to set appropriate thresholds and exclude small classes
that did not meet the required conditions. Finally, sample points for each tree species were
generated from the purified polygons.

Seventy percent of the ground-sample points were used to train the classification
model, and the remaining 30% were used to validate the model (Figure 2). The following
nine tree species were identified in our study area for further analysis: Pinus kesiya var.
langbianensis (PKV), other broadleaf species (OB), Hevea brasiliensis (HB), Eucalyptus robusta
(EL), Pinus yunnanensis (PY), Quercus L. (QL), Cunninghamia lanceolata (Lamb.) Hook. (CL),
Betula (BL), and Alnus cremastogyne Burk. (ACB).

2.3. Design Data Cases and Feature Selection

Seven data cases were designed to assess the performance of different data combina-
tions. The first three individual data cases shown in Table 2 were designed to evaluate
the importance of tree species classification. The rest four data combination cases were
designed to help understand the synergism of optical, SAR and environmental data on tree
species classification.

Feature selection is a nonnegligible step in machine learning classification tasks when
dealing with high-dimensional features. However, features from multi-modal data are
not essential to improve the classification accuracy due to the existence of the “dimen-
sion disaster” [51]. Many methods have been proposed to select feature subsets, such as
recursive feature elimination (RFE), Boruta, and the Gini Index [52,53]. However, most
methods of feature selection do not consider the co-linearity among variables. Therefore,
the relevance hierarchical clustering method was used to retain the optimal features to
minimize redundant information caused by the covariance between features and decrease
the computation time [11]. This hybrid method helps to identify redundant features by
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clustering. First, we assessed the feature importance of all features according to the Mean
Decrease Impurity index (MDI) produced by the RF classifier. The MDI measures the
decrease in the Gini purity of each feature for each decision tree to determine the impor-
tance of the feature. Second, hierarchical clustering of a certain number of features on the
Spearman rank-order correlations was conducted. The features with high correlation were
grouped into clusters. The dendrogram produced by hierarchical clustering generates an
immediate level organization of the feature space. Finally, each cluster’s variables with the
highest feature importance scores were retained. For cases 2,4,6, and 7, 32 out of the
69 variables, 31 out of the 75 variables, 32 out of the 96 variables and 32 out of the
102 variables were retained by feature selection, respectively. Considering that number
of features from Sentinel-1 and environmental data is small, we did not perform feature
selection on these datasets used alone.
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Table 2. Different data cases are designed for tree species classification.

Serial Number Abbreviation of Data Cases Data Source Number of
Features

Cases 1 S1 Sentinel-1 6
Cases 2 S2(SP+TX+REP_TM) Sentinel-2 69
Cases 3 Env Topographic, temperature, precipitation 27
Cases 4 S2(SP+TX+REP_TM) + S1 Sentinel-1, Sentinel-2 75
Cases 5 S1 + Env Sentinel-1, topographic, temperature, precipitation 33
Cases 6 S2(SP+TX+REP_TM) + Env Sentinel-2, topographic, temperature, precipitation 96

Cases 7 S2(SP+TX+REP_TM) + S1 + Env Sentinel-1, Sentinel-2, topographic, temperature,
precipitation 102

Note: See Table 1 for the meanings of abbreviations.
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2.4. Classification
2.4.1. Classification Model and Assessment

In this study, we selected three nonparametric machine learning models, including RF,
SVM, and extreme gradient boosting tree (XGBoost), for tree species classification. These
algorithms have been widely adopted due to their reliable performance and stability in
various remote sensing applications [9,15].

The RF algorithm is a machine learning method combining bagging ensemble learning
theory with a random subspace approach [54]. The RF averages the prediction of each
decision tree to obtain the final prediction. The RF is more robust and accurate than
many conventional classifiers, such as the maximum likelihood, single decision trees, and
single-layer neural network classifiers [37]. We adjusted one parameter in the RF within
the GEE platform: the numberOfTrees: this parameter determines the number of binary
classification and regression trees (CARTs) used to build the RF model. When the number
of trees increases, the accuracy increases, and the computational cost increases linearly. We
adjusted the numberOfTrees (the number of internally grown trees) and tried different
settings of 100, 120, 150, and 180 according to some previous works and the number of
features used in this study. Finally, we set the number of trees to 150. The other three
parameters, including the number of variables per split, the fraction of input to bag per
tree, whether the classifier should run in out-of-bag mode and random seed parameters,
were set by default in GEE.

The SVM is a machine learning algorithm built on Vapnik-Chervonenkis dimensional
(VC) statistical learning theory and the structural risk minimization criterion [55]. SVM is
widely used in remote sensing image classification tasks and has a strong generalization
capability and robustness in solving nonlinearity, small-sample classification, and high-
dimensional data problems. The radial basis function (RBF) was chosen as the kernel
function for the SVM in this study, and two other parameters, gamma, and cost, were
manually adjusted several times. Here, we set the gamma parameter to 0.5 and the cost
parameter to 8.

The XGBoost algorithm is similar to the gradient boosting framework; this model
combines a linear model and a tree learning algorithm to form a new efficient boosting
algorithm. It is optimized and improved on the base algorithm and has demonstrated
excellent performance in remote sensing applications [56]. In this study, we adjusted and
set the numberOfTrees to 45, the shrinkage to 0.006, and samplingRate to 0.7.

A confusion matrix is often used to evaluate the accuracy of classification task results
and can visualize classification and omission errors in each category. In addition, various
accuracy measures can be calculated from a confusion matrix. The classification results
obtained herein were evaluated by building a confusion matrix for the analyzed tree species
and by calculating the overall accuracy, Kappa, user’s accuracy (UA), and producer’s
accuracy (PA) as evaluation metrics based on ground validation samples.

2.4.2. Overview of the Proposed Method

The methodology and experimental setup of this study are demonstrated in Figure 3.
The framework consists of the following steps. (1) Sample data filtering; (2) Data pre-
processing; (3) Feature extraction; (4) Classification case design and feature reduction;
(5) Accuracy evaluation and mapping.
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3. Results
3.1. Classification Results

The performances of the 11 different cases in the three machine learning models are
shown in Figure 4. The integration of spectral, texture, time-series, SAR, and environmental
factors and the RF classifier provided the best classification results with an overall accuracy
of 77.98% and Kappa coefficient of 0.75, followed by the S2(SP+TX+REP_TM) + Env combina-
tion (the combination of Sentinel-2-derived features and environmental factors), with an
overall accuracy of 76.29–77.23% and Kappa coefficient of 0.73–0.74. The poorest perfor-
mance was obtained using only Sentinel-1 data on RF, with OA 27.49% and Kappa 0.16. The
S2(SP+TX+REP_TM) + S1 combination slightly improved compared to S2(SP+TX+REP_TM). Com-
pared to the features of Sentinel-2, combining environmental factors resulted in substantial
improvement, with an overall accuracy increase of 7.19–13.78%. There was no significant
difference in accuracies among using feature sets after feature selection compared to all
features. Feature selection significantly reduced the cost of model training time while
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maintaining similar accuracy. The feature sets of the four cases after feature selection are
presented in Table A6.
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Figure 4. Classification accuracies were obtained from different classification cases and three classifiers.

Considering only features from Sentinel-2 did not yield satisfactory results when
classifying tree species in large mountainous areas. To further understand the impacts
of Sentinel-2 in mapping specific tree species, we additionally computed the confusion
matrix for the individual and combination of three types of features. Table A1 shows
the overall accuracy (OA) of 64.18% and Kappa coefficient of 0.59 achieved using only
spectral features in the SVM. Table A2 shows the confusion of individual species obtained
by adding texture features to the spectral features (S2(SP+TX)). The texture features signifi-
cantly improved only the birch and fir classification results, while the confusion between
some other species was aggravated instead of improved. However, texture information
usually does not effectively improve the separability of all classes [35]. Although previous
studies have shown that time-series features can improve tree species classification, these
features did not result in the expected results in this research. As shown in Table A3, for
each species, the combination of spectral, texture, and time-series features improved the
classification accuracy compared to the combination of only spectral and texture features,
especially for Yunnan pines and birch. Time-series features improved the PA and UA of
Yunnan pines by 9.02% and 3.16%, respectively and the PA and UA of birch by 7.42% and
14.42%, respectively.

The results obtained using Sentinel-1 data alone were not informative; using only Sentinel-
1 data yielded the lowest OA at 27.49%. However, adding Sentinel-1 data based on Sentinel-2
(case 4) was improved slightly, with a resulting OA of 69.99% and a Kappa coefficient of 0.66
in the SVM model (Table A4). Specifically, with the integration of SAR variables, the impact
on the Yunnan pine results was more significant, with the PA and UA values increasing by
10.72% and 4.71%, respectively. The OA obtained under case 6 (S1 + Env) also showed low
improvement compared to that under case 3 (Env), as presented in Figure 4.
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Environmental features allowed the optimal accuracy to be obtained with the use of a
single data source, with an overall accuracy approximately 6% higher than that obtained
for case 2 (Sentinel-2). Case 5 and Case 6 obtained overall accuracies of 71.10% and 77.23%,
respectively, with the RF classifier model, respectively. Environmental features increased
the PA of Yunnan pine by 14.86% and UA of Yunnan pine by 15.38% compared to the
S2(SP+TX+REP_TM) + S1 combination (Table A5). Misclassifications among broadleaf species
are the most frequent, especially among alder, birch, oak, and other broadleaf species.
However, the needleleaf and broadleaf species were effectively distinguished from each
other; e.g., the two major broadleaf classes, rubber, and other broadleaf species were
confused with Yunnan and Simao pines to a much lesser extent (Table A5).

3.2. Mapping of the Tree Species Classification Results

We chose the best-performing RF classification derived from the feature set combining
all data sources to visualize the tree species map (Figure 5). Simao pine is mainly distributed
in the eastern and northeastern regions of the study area. Moreover, the southern area
is dominated by rubber and other broadleaf trees; these results are the situation. The
Xishuangbanna region (the southern region of the study area) has a tropical and subtropical
monsoon climate with sufficient sunshine and abundant rainfall. It is an important rubber-
producing region in China. Yunnan pine is mainly concentrated in the northwestern region
and is mixed with a portion of alder. Eucalyptus is relatively concentrated in the Puer
city area (in the central part of the study area), and the area of fir makes up the largest
proportion of all tree species, covering almost the entire study area. Oak species are widely
distributed but relatively scattered across the study area. More particularly, the spatial
location of birch species has a precise latitudinal distribution along the east-west continuum
spanning the study area.
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Figure 5. Mapping tree species with all feature combinations. (a–d) show the spatial details of the
tree species map.

In this study, we produced tree species maps in a large subtropical and tropical moun-
tainous area using three machine learning classifiers on a cloud-computation platform.
Seven main data cases were designed to evaluate the performance of single and different
data (Sentinel-1, Sentinel-2, and environmental data) combinations. The best accuracy
(77.98% OA) of mapping tree species was achieved by using all data sources on RF algo-
rithms. We obtained similar classification accuracies with previous studies for tree species
mapping and had a larger study area above 70,000 km2 than these study areas [25,57,58].
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Figures 6 and 7 describe the partial results obtained under three classification cases in the
selected area compared to the markers obtained from the ground survey. We selected two
subregions of the classification results from seven cases for comparison with the ground
data. Figure 6i shows the map almost completely obtained for the study region; the map
almost agrees with the ground survey results. However, the area illustrated in Figure 6
only shows individual tree species with high classification accuracy, and Figure 7 shows
the mapping of oak species that cannot be provided as a reference. The area in Figure 7
is dominated by oak and Simao pines. The misclassification between the two species is
significant, with all the oak being mistaken for Simao pines in the cases with only environ-
mental data. One possible reason is the coarse spatial resolution (1 km) of climate data;
these datasets could not provide more detailed spatial information thanSentinel-2 data in
complex vegetation cover areas. Better visual results are obtained with the Sentinel-2 data.
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In this study, natural forests cover the entire study area and are extensively distributed,
while planted forests are relatively concentrated. Significant differences exist in spatial
distribution and species composition between natural and plantation forests (Figure 8).
However, plantation forests are dominated by Simao pine and rubber, with high accuracies
of over 90%. For example, rubber is mainly distributed in the Xishuangbanna region and
mainly planted manually, with a relatively concentrated distribution and containing more
pure pixels. Although the multi-modal data improved the classification of each tree species
compared to the single data, some classes are still assigned at a relatively low accuracy, such
as oak, with an OA of only 53.92%. Two reasons may explain this low accuracy. The first is
that approximately 97% of the oak species are from natural forests, which are fragmented
throughout the study area, aggravating the mixed pixel situation. The second is that the
genus oak contains many species with large morphological differences. The tree species
classification results only depend not only on their physiological characteristics but also
on their origin and later anthropogenic disturbances. These findings may provide useful
information for future tree species mapping.
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3.3. Feature Importance Assessment

To understand the separability among tree species in different classification cases,
the Jeffires–Matusita (JM) distance method is considered suitable for expressing cate-
gory separability [59]. The JM results are classified into four ranks, with values from the
1.9–2.0 range representing strong separation, values from 1.8–1.9 representing good separa-
tion, values from 1.7–1.8 representing weak separation, and values from 0–1.7 representing
poor separation, as illustrated in Figure 9. For each tree species, 1000 sample points were
randomly selected to calculate the JM distance. In this figure, panels a-f represent the
calculated results of cases 1–7. From panel a, Sentinel-2 data made only Yunnan Pine
somewhat separable from the other species. With the integration of SAR features, the
separability of some tree species increased. However, it was still difficult to distinguish
most broadleaf species, such as rubber and oak trees, from one another. The best results
were acquired from case 7 with a combination of all data sources.

Considering the variability in the tree species classification results across feature sets,
we also used a feature importance assessment to determine which features contributed most
to nine tree species classifications. Feature importance scores were calculated internally by
the RF algorithm on the GEE platform. The Gini importance score describes the relative
importance of features in the classification process. Here, we ranked the importance of
102 features from case 7 (the best features combination), as shown in Figure 10. The
topmost feature was the NDTI, followed by elevation. Among the first 30 features, there
were only 2 spectral bands and 6 indices; the remaining features were environmental
factors. Environmental features played an essential role in the classification of tree species
in this study, among which the monthly mean precipitation and monthly mean land
surface temperature accounted for significant proportions. Furthermore, the top-ranking
temperature and precipitation factors were mainly distributed in May, June, July, and
August, which interestingly span the rainy season in the study area.
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Figure 10. RF feature importance results based on case 7 for tree species classification. The feature
abbreviations in the figure can be found in Section 2.2.1. With LST as a prefix representing land
surface temperature and with “Preci” as a prefix representing precipitation, the number after them
represents the month. The number after REP represents the time information in steps of 10 days.
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4. Discussion

In this study, we evaluated the utility of multi-modal data from different remote-
sensing sensors, such as optical, SAR and environmental datasets. The Sentinel-2 data used
in the study produced spectral, texture and time-series features. We calculated 16 vegetation
indices that have been confirmed in previous studies to be related to vegetation growth,
senescence, and vegetation water content but did not discuss whether they are useful
for discriminating between tree species. As shown in A1, using spectral features alone
cannot produce sufficiently high classification accuracies for all tree species. The relatively
narrow and few spectral bands limit their ability to distinguish tree species, especially in
subtropical and tropical regions with abundant vegetation types. Nevertheless, Sentinel-2
worked relatively well for certain classes with significant spectral differences, such as
rubber and Simao pines. As shown in A2, adding texture features did not contribute to an
improved classification ability, possibly due to spatial resolution limitations. Most studies
on remote sensing classification that used high spatial resolution images stated that texture
features had outstanding performance [60,61]. In addition, the bands in which the texture
features were calculated and the window size affected the classification accuracy of the
tree species. The combination of texture features applicable for classifying tree species
varies among tree species. This implies that it is difficult to find a universal texture feature
combination applicable to all tree species. However, the usefulness of texture features
is related to the size of the selected window, which depends on the spatial resolution
of the imagery. The relatively short revisit period and high spatial resolution of these
data can facilitate the extraction of spectral features with temporal information for each
type of tree species. Significant effects were observed for two coniferous species, Yunnan
and Simao pines, and a slight performance increase was observed for several broadleaf
species (Table A3). Yunnan and Simao pines are mutually misclassified. The probable
reason is that both species are evergreen trees of the genus Pinus and have remarkable
similarities concerning their physiological structures and morphology, leading to difficulties
distinguishing them in terms of spectral and textural information. Meanwhile, tree species’
phenological differences are not obvious, and it is difficult to distinguish them in this
manner, especially among broadleaf species. Although we performed a median composite
of the available observations to mitigate the influence of no-data pixels after cloud masking,
the true surface reflectance of such composited pixels is still inaccurate.

Sentinel-1 sensors can observe the earth under all-weather conditions, and they are
often used as a complement to Sentinel-2. The backscattering features and radar vegetation
indices obtained from Sentinel-1 data exerted a 4% improvement in the tree species classifi-
cation results. The C-band generally provides information from a combination of ground
backscatter after canopy attenuation and backscatter information directly from the canopy.
Specifically, the VH polarization mode is dominated by the ground surface, but complex
volume scattering also occurs in the canopy [62]. This situation occurs mainly in forested
areas with low vegetation densities. It is challenging to differentiate tree species using
Sentinel-1 data alone in regions with dense tree canopies and complex forest structures.
Although many studies have shown that radar indices effectively distinguish vegetation
and crops, the importance levels of the features analyzed herein indicate that these indices
are not dominant in classifying the nine tree species. Although the contribution of Sentinel-
1 was relatively low for tree species classification, it was still helpful in improving the
accuracy of the classification of Simao pine and Yunnan pine. This is possibly related to the
difference in canopy surface roughness between conifers and deciduous trees (the canopy
surface of deciduous is smoother than that of conifers) [25]. However, combining Sentinel-1
and Sentinel-2 data did not reduce the omission error of oak, indicating that the integration
of these data could not provide sufficient information to accurately distinguish all species.

The feature importance analyzed in this study demonstrated the significance of to-
pographic features; elevation ranked second among all features. A box-and-whisker plot
was created to show the elevational differences among tree species according to each
type of tree (Figure 11). The results reflect that oak and other broadleaf species have the
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most extensive elevational range, growing between 500 and 3100 m. These two classes
also contain many other species, such as the experimental combination of hemp oak and
green oak, considered an oak species. The rubber elevation distribution ranges from
500–1300 m, the smallest elevation range among the analyzed classes, with an average
elevation of 900 m. Tree species’ distributions strongly correlate with elevation, and the
environmental conditions in different elevational ranges vary [63].
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Figure 11. Box−and−whisker plot of tree species elevation distributions.

Tree species distributions are usually subject to environmental conditions, such as
abiotic conditions, including soil, temperature, and precipitation [64]. Climate and re-
motely sensed data are mutually complementary in tree species classification tasks. In
addition to the contribution of topographic factors, the precipitation and land surface
temperature factors also played essential roles in the classification. To further understand
the relationships between land surface temperature and tree species and between precipi-
tation and tree species, we calculated the average monthly land surface temperature and
precipitation conditions for each tree species in the study area, as shown in Figures 12
and 13. The land surface temperature statistics for the two conifer classes of Simao pine
and Yunnan pine are lower than those for the broadleaf species. Both species are usually
distributed on mountains at relatively high elevations. In addition, alder shows lower
acclimatization-temperature conditions, consistent with the fact that alder is suitable for
growing at an average annual land surface temperature of 15~18 ◦C. The monthly land
surface temperature averages of rubber than the other tree species, which is related to
the growing environments of alder, which are mainly located in areas near the equator.
Toledo et al. noted a significant response of temperature when determining the flora to
which a species belongs in their study of flora composition and its relationships with
environmental factors [65]. In addition, the annual precipitation and growing season pre-
cipitation in coniferous forest areas (Simao pine and Yunnan pine) are less than those in
broadleaf forests. The spatial distribution of tree species in this study area reflects the spatial
heterogeneities in topography and climate conditions associated with species composition.
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Figure 13. Average monthly land surface temperature statistics of different tree species in the study
area.

The best accuracy of 77.98% was obtained by combining Sentinel-1 and Sentinel-2
imagery with environmental factors in the RF. Among the different machine learning
algorithms, we found that the RF classifier performed slightly better than the SVM and
XGBoost classifiers. The optimal performance of the RF has also been reported in past
tree species classification studies [66]. In this study, the performance differences of the
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analyzed classifiers were not sufficiently noticeable, thus indicating the stability of the
selected features. In addition, the quality and number of samples per class and the tuning of
hyperparameters both impacted the models’ performance. Thus, the three classifiers used
in our study are well-suited for tree species classification tasks. In addition, too high feature
dimensions increase the training time. Therefore, determining how to filter the important
features and maintain high accuracy is essential for producing large-scale maps. Moreover,
the selection of multi-modal data should consider the cover type and composition in the
study area.

5. Conclusions

In this study, we designed different classification cases based on freely available
data to explore their potential use for mapping tropical and subtropical mountainous
tree species classification. Synergistic multi-modal data represent a new opportunity
to improve mountainous tree species classification. The results showed that Sentinel-2
data had a nonnegligible effect on the tree species classification results. SAR data could
compensate for the lack of Sentinel-2 images, but it was less capable of distinguishing all
tree species. Environmental variables are significant for tree species classification, which has
rarely been explored in previous studies, especially in a mountainous area. Furthermore,
topographic features exhibited an advantage in classifying tree species in mountainous
areas, especially elevation features. The environmental conditions of different species vary
significantly. Although with a lower spatial resolution, precipitation and land surface
temperature data play considerable roles in the mapping of tree species, especially in
distinguishing coniferous species from broadleaf species. In conclusion, considering a
combination of multi-modal data sources provided accurate information regarding the
distributions of tree species, especially when considering factors related to the growing
environments of tree species. The final tree species map was obtained from synergistic
of all data and achieved an overall accuracy of 77.98%, demonstrating that synergistic
multi-modal data has the potential to map tree species in complex mountain vegetation
coverages and help the forestry department in updating the forest information. Both the
remote sensing and environmental data used in this experiment are freely available on
the GEE platform, and the production of the products is convenient, thus allowing the
transfer of the classification strategy proposed herein to larger study areas. Mapping a
larger range of tree species, acquiring an accurate sample, and selecting optimized features
are necessary. However, mapping and understanding the detailed spatial distributions of
tree species requires further exploration by combining other data sources; these tasks are
essential for developing future forest management strategies.
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Appendix A
Classifications’ confusion matrix on RF is reported here to support the main results.

Table A1. Confusion matrix derived using only Sentinel-2 spectral features.

Reference
PKV OB HB EL PY QL CL BL ACB UA (%)

S2
(S

P)
cl

as
si

fic
at

io
n

PKV 819 50 20 77 146 61 114 52 17 60.71
OB 61 738 78 35 14 258 31 98 36 53.82
HB 5 70 736 7 7 28 17 14 4 82.05
EL 13 9 1 631 10 5 10 22 2 90.40
PY 122 14 1 18 516 55 16 9 49 62.69
QL 78 97 2 14 41 188 16 36 42 38.47
CL 22 14 17 10 16 16 339 18 13 72.71
BL 20 46 0 24 10 31 18 228 17 57.07

ACB 13 28 0 8 61 46 13 22 258 56.08

PA (%) 71.03 69.23 86.08 76.57 62.85 27.32 55.48 45.69 58.90

OA: 64.18% Kappa: 0.59

Note: UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy; see Section 2.2 for the abbreviations of
tree species names.

Table A2. Confusion matrix derived using Sentinel-2 spectral and texture features.

Reference
PKV OB HB EL PY QL CL BL ACB UA (%)

S2
(S

P+
TX

)
cl

as
si

fic
at

io
n

PKV 836 59 14 56 171 79 69 38 13 62.48
OB 61 695 100 29 11 208 20 88 26 56.14
HB 6 75 729 5 5 23 29 12 4 82.09
EL 14 18 1 642 14 12 11 24 5 86.64
PY 103 10 0 29 490 49 62 16 55 60.20
QL 75 109 1 20 50 230 23 53 42 38.14
CL 33 8 6 15 28 17 353 18 18 71.17
BL 14 60 2 18 11 24 14 231 19 58.78

ACB 11 32 2 10 41 46 30 19 253 56.98

PA (%) 72.51 65.20 85.26 77.91 59.68 33.43 57.77 46.29 57.76

OA: 64.11% Kappa: 0.59

Note: UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy; see Section 2.2 for the abbreviations of
tree species names.

Table A3. Confusion matrix derived using only Sentinel-2 spectral and texture features and REP
time-series features.

Reference
PKV OB HB EL PY QL CL BL ACB UA (%)

S2
(S

P+
TX

+R
EP

_T
M

)
cl

as
si

fi
ca

ti
on

PKV 824 49 14 65 121 7 63 38 14 65.19
OB 63 732 64 30 14 245 35 97 32 57.50
HB 4 60 764 2 6 15 10 6 2 87.72
EL 17 17 1 658 9 8 3 15 3 88.56
PY 113 21 1 20 564 45 52 10 56 63.66
QL 78 115 3 18 36 223 13 23 46 41.97
CL 27 14 5 8 20 14 400 20 15 73.49
BL 11 28 2 14 4 14 13 275 18 75.33

ACB 16 30 1 9 47 45 22 15 262 57.75

PA (%) 71.47 68.67 89.36 79.85 68.70 35.32 61.70 57.52 58.68

OA: 67.66% Kappa: 0.63

Note: UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy; see Section 2.2 for the abbreviations of
tree species names.
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Table A4. Confusion matrix derived using Sentinel-2 and Sentinel-1 data.

Reference
PKV OB HB EL PY QL CL BL ACB UA (%)

S2
(S

P+
T

X
+R

EP
_T

M
)

+
S1

cl
as

si
fic

at
io

n

PKV 870 46 12 72 60 86 65 32 15 69.16
OB 57 751 61 31 22 204 31 81 33 59.09
HB 4 59 761 1 6 17 13 5 2 87.67
EL 16 11 1 659 6 13 8 14 6 89.78
PY 83 26 2 14 644 49 56 13 55 68.37
QL 74 99 9 16 18 259 22 27 41 45.84
CL 27 13 8 10 20 11 387 24 22 74.14
BL 12 30 1 12 3 12 10 288 16 75.00

ACB 10 31 0 9 42 18 18 15 248 60.49

PA (%) 78.40 71.29 88.54 79.73 79.42 33.72 65.41 54.11 57.53

OA: 69.99% Kappa: 0.66

Note: UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy; see Section 2.2 for the abbreviations of
tree species names.

Table A5. Confusion matrix derived using all data..

Reference
PKV OB HB EL PY QL CL BL ACB UA (%)

S2
(S

P+
TX

+R
EP

_T
M

)+
S1

+
En

v
cl

as
si

fic
at

io
n

PKV 987 55 8 128 5 105 23 45 14 74.52
OB 19 794 53 16 0 79 24 53 22 70.49
HB 2 71 779 1 0 23 7 1 0 88.58
EL 50 13 3 622 1 15 4 12 3 91.54
PY 13 9 2 5 774 33 42 0 47 83.75
QL 51 57 3 18 5 371 7 28 32 57.92
CL 5 19 5 6 11 29 477 23 23 81.37
BL 22 28 1 22 0 14 15 332 10 70.08

ACB 4 20 1 6 25 19 11 5 287 65.12

PA (%) 85.60 74.48 91.11 75.49 94.28 53.92 78.20 66.53 65.53

OA: 77.98% Kappa: 0.75

Note: UA: user’s accuracy, PA: producer’s accuracy, OA: overall accuracy; see Section 2.2 for the abbreviations of
tree species names.

Table A6. The selected features use the relevance hierarchical clustering method.

Cases Selected Features Number of Features (after
vs. before)

S2(SP+TX+REP_TM)

‘NDTI’, ‘NDSVI’, ‘REP’, ‘b_17_REP’, ‘b_4_REP’, ‘LSWI’,
‘B5_contrast’, ‘b_29_REP’, ‘MTCI’, ‘b_36_REP’, ‘B5_corr’,
‘IRECI’, ‘b_0_REP’, ‘B2’, ‘B4’, ‘TVI’, ‘b_19_REP’, ‘b_31_REP’,
‘B12’, ‘b_23_REP’, ‘B5’, ‘b_3_REP’, ‘b_34_REP’, ‘b_1_REP’,
‘NDWI’, ‘b_2_REP’, ‘B6’, ‘b_26_REP’, ‘NDRE1’, ‘b_13_REP’,
‘B5_shade’, ‘B3’.

32/69

S2(SP+TX+REP_TM) + S1

‘NDTI’, ‘NDSVI’, ‘REP’, ‘B2’, ‘b_18_REP’, ‘VV’, ‘LSWI’,
‘b_3_REP’, ‘b_22_REP’, ‘NDRE1’, ‘b_5_REP’, ‘B5_shade’, ‘NDI’,
‘B5_contrast’, ‘VH’, ‘b_0_REP’, ‘B12’, ‘MTCI’, ‘b_31_REP’,
‘B5_corr’, ‘b_12_REP’, ‘B5_savg’, ‘IRECI’, ‘B4’, ‘MCARI2’,
‘b_36_REP’, ‘TVI’, ‘B3’, ‘b_34_REP’, ‘b_29_REP’, ‘B6’.

31/75
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Table A6. Cont.

Cases Selected Features Number of Features (after
vs. before)

S2(SP+TX+REP_TM) + Env

‘NDTI’, ‘LST_5’, ‘elevation’, ‘LST_7’, ‘NDSVI’, ‘dec’, ‘LST_4’,
‘LSWI’, ‘REP’, ‘may’, ‘LST_9’, ‘b_5_REP’, ‘B2’, ‘jul’, ‘B5_corr’,
‘aspect’, ‘TVI’, ‘b_1_REP’, ‘LST_11’, ‘B11’, ‘jun’, ‘B5_contrast’,
‘b_11_REP’, ‘MTCI’, ‘LST_8’, ‘MCARI2’, ‘b_0_REP’, ‘feb’,
‘b_3_REP’, ‘NDRE1’, ‘nov’, ‘b_15_REP’, ‘apr’, ‘B5_shade’,
‘b_20_REP’

32/96

S2(SP+TX+REP_TM) + S1 + Env

‘NDTI’, ‘elevation’, ‘LST_7’, ‘LST_9’, ‘LST_5’, ‘NDSVI’, ‘dec’,
‘LST_8’, ‘LST_1’, ‘NBR’, ‘oct’, ‘REP’, ‘LST_6’, ‘TVI’, ‘VV’, ‘apr’,
‘may’, ‘b_1_REP’, ‘jul’, ‘b_27_REP’, ‘b_2_REP’, ‘b_7_REP’,
‘b_13_REP’, ‘b_3_REP’, ‘b_18_REP’, ‘b_36_REP’, ‘B4’,
‘b_23_REP’, ‘B2’, ‘B5’, ‘B5_contrast’, ‘NDRE1’, ‘B5_shade’,
‘b_25_REP’, ‘b_0_REP’, ‘NDWI’, ‘B12’, ‘b_10_REP’, ‘mRVI’.

32/102

References

1. Chiarucci, A.; Piovesan, G. Need for a global map of forest naturalness for a sustainable future. Conserv. Biol. 2020, 34, 368–372.
[CrossRef] [PubMed]

2. Xiao, J.; Chevallier, F.; Gomez, C.; Guanter, L.; Hicke, J.A.; Huete, A.R.; Ichii, K.; Ni, W.; Pang, Y.; Rahman, A.F.; et al. Remote
sensing of the terrestrial carbon cycle: A review of advances over 50 years. Remote Sens. Environ. 2019, 233, 111383. [CrossRef]

3. Bonan, G.B. Forests, climate, and public policy: A 500-year interdisciplinary odyssey. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 97–121.
[CrossRef]

4. Graves, S.; Asner, G.; Martin, R.; Anderson, C.; Colgan, M.; Kalantari, L.; Bohlman, S. Tree species abundance predictions in a
tropical agricultural landscape with a supervised classification model and imbalanced data. Remote Sens. 2016, 8, 161. [CrossRef]

5. Adelabu, S.; Dube, T. Employing ground and satellite-based QuickBird data and random forest to discriminate five tree species in
a Southern African Woodland. Geocarto Int. 2014, 30, 457–471. [CrossRef]

6. Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial resolution 8-band
worldview-2 satellite data. Remote Sens. 2012, 4, 2661–2693. [CrossRef]

7. Pu, R. Mapping tree species using advanced remote sensing technologies: A state-of-the-art review and perspective. J. Remote
Sens. 2021, 2021, 9812624. [CrossRef]

8. Liu, Y.; Gong, W.; Xing, Y.; Hu, X.; Gong, J. Estimation of the forest stand mean height and aboveground biomass in Northeast
China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 277–289.
[CrossRef]

9. Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge
bands to land-use and land-cover mapping in Burkina Faso. GIScience Remote Sens. 2017, 55, 331–354. [CrossRef]

10. Hościło, A.; Lewandowska, A. Mapping forest type and tree species on a regional scale using multi-temporal sentinel-2 data.
Remote Sens. 2019, 11, 929. [CrossRef]

11. You, N.; Dong, J.; Huang, J.; Du, G.; Zhang, G.; He, Y.; Yang, T.; Di, Y.; Xiao, X. The 10-m crop type maps in Northeast China
during 2017-2019. Sci. Data 2021, 8, 41. [CrossRef] [PubMed]

12. Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series,
multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [CrossRef]

13. Pasquarella, V.J.; Holden, C.E.; Woodcock, C.E. Improved mapping of forest type using spectral-temporal Landsat features.
Remote Sens. Environ. 2018, 210, 193–207. [CrossRef]

14. Sun, C.; Li, J.; Liu, Y.; Liu, Y.; Liu, R. Plant species classification in salt marshes using phenological parameters derived from
Sentinel-2 pixel-differential time-series. Remote Sens. Environ. 2021, 256, 112320. [CrossRef]

15. Htitiou, A.; Boudhar, A.; Lebrini, Y.; Hadria, R.; Lionboui, H.; Benabdelouahab, T. A comparative analysis of different phenological
information retrieved from Sentinel-2 time series images to improve crop classification: A machine learning approach. Geocarto
Int. 2020, 37, 1426–1449. [CrossRef]

16. Hemmerling, J.; Pflugmacher, D.; Hostert, P. Mapping temperate forest tree species using dense Sentinel-2 time series. Remote
Sens. Environ. 2021, 267, 112743. [CrossRef]

17. Vuolo, F.; Ng, W.-T.; Atzberger, C. Smoothing and gap-filling of high resolution multi-spectral time series: Example of Landsat
data. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 202–213. [CrossRef]

18. Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES
Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [CrossRef]

19. Rüetschi, M.; Schaepman, M.; Small, D. Using multitemporal sentinel-1 C-band backscatter to monitor phenology and classify
deciduous and coniferous forests in northern Switzerland. Remote Sens. 2017, 10, 55. [CrossRef]

http://doi.org/10.1111/cobi.13408
http://www.ncbi.nlm.nih.gov/pubmed/31418913
http://doi.org/10.1016/j.rse.2019.111383
http://doi.org/10.1146/annurev-ecolsys-121415-032359
http://doi.org/10.3390/rs8020161
http://doi.org/10.1080/10106049.2014.885589
http://doi.org/10.3390/rs4092661
http://doi.org/10.34133/2021/9812624
http://doi.org/10.1016/j.isprsjprs.2019.03.016
http://doi.org/10.1080/15481603.2017.1370169
http://doi.org/10.3390/rs11080929
http://doi.org/10.1038/s41597-021-00827-9
http://www.ncbi.nlm.nih.gov/pubmed/33531510
http://doi.org/10.1016/j.rse.2019.111511
http://doi.org/10.1016/j.rse.2018.02.064
http://doi.org/10.1016/j.rse.2021.112320
http://doi.org/10.1080/10106049.2020.1768593
http://doi.org/10.1016/j.rse.2021.112743
http://doi.org/10.1016/j.jag.2016.12.012
http://doi.org/10.1016/j.rse.2011.05.028
http://doi.org/10.3390/rs10010055


Remote Sens. 2023, 15, 979 24 of 25

20. Tomppo, E.; Antropov, O.; Praks, J. Boreal forest snow damage mapping using multi-temporal sentinel-1 data. Remote Sens. 2019,
11, 384. [CrossRef]

21. Liu, C.-a.; Chen, Z.-x.; Shao, Y.; Chen, J.-s.; Hasi, T.; Pan, H.-z. Research advances of SAR remote sensing for agriculture
applications: A review. J. Integr. Agric. 2019, 18, 506–525. [CrossRef]

22. Moreira, A.; Prats-Iraola, P.; Younis, M.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.P. A tutorial on synthetic aperture radar. IEEE
Geosci. Remote Sens. Mag. 2013, 1, 6–43. [CrossRef]

23. Nasirzadehdizaji, R.; Balik Sanli, F.; Abdikan, S.; Cakir, Z.; Sekertekin, A.; Ustuner, M. Sensitivity analysis of multi-temporal
sentinel-1 SAR parameters to crop height and canopy coverage. Appl. Sci. 2019, 9, 655. [CrossRef]

24. Yang, Q.; Wang, L.; Huang, J.; Lu, L.; Li, Y.; Du, Y.; Ling, F. Mapping plant diversity based on combined SENTINEL-1/2
Data—Opportunities for subtropical mountainous forests. Remote Sens. 2022, 14, 492. [CrossRef]

25. Lechner, M.; Dostálová, A.; Hollaus, M.; Atzberger, C.; Immitzer, M. Combination of sentinel-1 and sentinel-2 data for tree species
classification in a central European biosphere reserve. Remote Sens. 2022, 14, 2687. [CrossRef]
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