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Abstract: Massive earthquakes generally trigger thousands of coseismic landslides. The automatic
recognition of these numerous landslides has provided crucial support for post-earthquake emergency
rescue, landslide risk mitigation, and city reconstruction. The automatic recognition of coseismic
landslides has always been a difficult problem due to the relatively small size of a landslide and
various complicated environmental backgrounds. This work proposes a novel semantic segmentation
network, EGCN, to improve the landslide identification accuracy. EGCN conducts coseismic landslide
recognition by a recognition index set as the input data, CGBlock as the basic module, and U-Net
as the baseline. The CGBlock module can extract the relatively stable global context-dependent
features (global context features) and the unstable local features by the GNN Branch and CNN
Branch (GNN Branch contains the proposed EISGNN) and integrates them via adaptive weights.
This method has four advantages. (1) The recognition indices are established according to the causal
mechanism of coseismic landslides. The rationality of the indices guarantees the accuracy of landslide
recognition. (2) The module of EISGNN is suggested based on the entropy importance coefficient
and GATv2. Owing to the feature aggregation among nodes with high entropy importance, global
and useful context dependency can be synthesized and the false alarm of landslide recognition can
be reduced. (3) CGBlock automatically integrates context features and local spatial features, and
has strong adaptability for the recognition of coseismic landslides located in different environments.
(4) Owing to CGBlock being the basic module and U-Net being the baseline, EGCN can integrate the
context features and local spatial characteristics at both high and low levels. Thus, the accuracy of
landslide recognition can be improved. The meizoseismal region of the Ms 7.0 Jiuzhaigou earthquake
is selected as an example to conduct coseismic landslide recognition. The values of the precision
indices of Overall Accuracy, mIoU, Kappa, F1-score, Precision, and Recall reached 0.99854, 0.99709,
0.97321, 0.97396, 0.97344, and 0.97422, respectively. The proposed method outperforms the current
major deep learning methods.

Keywords: coseismic landslide recognition; semantic segmentation; graph neural network; convolutional
neural network

1. Introduction

Large earthquakes generally trigger thousands of landslides, i.e., coseismic landslides.
As a main type of secondary disaster, coseismic landslides are characterized by huge
quantities, wide distribution, sudden onset, and enormous damage, and cause serious
property losses and casualties. Therefore, the accurate and automatic recognition of co-
seismic landslides has played a crucial role in emergency rescue, disaster mitigation, and
city reconstruction after massive earthquakes. At present, the automatic recognition of
coseismic landslides mainly focuses on two aspects: (1) the establishment of recognition
indices and (2) recognition algorithms.
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In current studies, the recognition indice sets for coseismic landslides mainly contain
three types: (1) the recognition indice set composed of image spectral indices [1–3], (2) the
recognition indice set characterized by spectral indices and terrain indices (slope angle,
slope aspect, and curvature) [4], and (3) the recognition indice set characterized by spec-
tral indices, environmental indices (Normalized Difference Vegetation Index, NDVI), and
terrain indices (slope angle, slope aspect, and curvature) [5–7]. However, the occurrence
and distribution of coseismic landslides are closely related to the control or induction of
earthquakes, geology, terrain, environment, and pre-earthquake precipitation [8,9]. There-
fore, more complete recognition indices established according to the causal mechanism of
coseismic landslides can improve the accuracy of landslide recognition and reduce the false
alarm rate.

In terms of coseismic landslide recognition algorithms, the current deep learning
methods mainly contain two categories: change detection and semantic segmentation.
The change detection methods employ the change feature before and after an earthquake
and primarily include the following algorithms: (1) A combination of a convolutional
neural network and a sparse autoencoder (SAE) [10]. (2) Object-oriented Change Detection
Convolutional Neural Networks (CDCNNs) [11]. These are change detection models
for landslide recognition integrated by deep convolutional neural networks and image
processing methods (such as image denoising and conditional random field for image
segmentation). (3) Dual-Path Full Convolutional Networks (DP-FCNs) [2]. (4) GAN-based
Siamese frameworks (GSFs) [12]. (5) Convolutional Neural Networks (CNNs) [13,14]. These
are the end-to-end change detection methods based on pure convolutional neural networks
for landslide recognition. Gong et al. [10] encoded the difference feature between pre-
landslide and post-landslide images by SAE and employed CNN to identify the landslides
in the San Francisco area. Compared with the FCM (Fuzzy C-Mean) and FLICM (Fuzzy
Local Information C-Mean) algorithms, the proposed method increased the Percentage
Correct Classification (PCC) values by 0.0232 and 0.0091, respectively. Shi et al. [11]
proposed a CDCNN method based on change detection and threshold segmentation by
using an improved ResUnet as a subnetwork. Compared with the ResUnet and FCN-PP
methods, the CDCNN algorithm increased the F1-score value by 0.25 and 0.14, respectively,
in the Hong Kong Sharp Park area. Fang et al. [12] employed a generative adversarial
network (GAN), a Siamese network, and European distances to extract the pre-landslide
and post-landslide feature maps to identify landslides. Compared with the algorithm of a
symmetric fully convolutional network with pyramid pooling (FCN-PP), the suggested
method improved the Precision, Recall, and F1-score values by 0.0368, 0.0452, and 0.0409,
respectively, in Lantau Island, Hong Kong.

Semantic segmentation methods for coseismic landslide recognition based on deep
neural networks primarily contain (1) DeepUnet [15], (2) DFPENet [16], (3) FCN-PP [17],
(4) LandsNet [18], (5) U-Net [19,20], (6) DA-U-Net [3], (7) FC-DenseNet [21], (8) CNN-
OBIA [7,22], and (9) SegFormer [23]. All these are semantic segmentation methods for
landslide recognition with U-Net or DeepLab as the baseline and improved by ASPP, atten-
tion mechanism, dense connection, or residual connection. Different from other methods,
CNN-OBIA integrates a U-Net-like convolutional network to identify landslides with
an object segmentation method. Lei et al. [17] proposed a symmetric full convolutional
semantic segmentation method, FCN-PP, for landslide recognition in the Lantau Island
area in Hong Kong. It adopted multi-source morphological reconstruction (MMR) and
pyramid pooling methods to extract multi-scale features. The F1-score was improved by
5.3 compared with U-Net. Yi and Zhang [18] adopted single-temporal Rapid-Eye remote
sensing images and proposed a coseismic landslide recognition network, LandsNet, for
coseismic landslide recognition in the Jiuzhaigou earthquake area. The F1-score value was
improved by 0.07 and 0.08 compared with the ResUnet and DeepUnet methods, respec-
tively. Liu et al. [19] improved the up-sampling and down-sampling layers in U-Net and
introduced a residual connection to identify landslides in the Jiuzhaigou earthquake area.
It significantly improved the landslide recognition performance. Different from change
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detection methods, these semantic segmentation methods usually identify landslides from
post-earthquake remote sensing images.

The above methods have made important contributions to the automatic recognition of
coseismic landslides. However, due to the diversity of the surrounding environment, it is es-
sential to establish an environment-adaptive recognition algorithm to improve the accuracy.
Thus, this work proposes a semantic segmentation method for landslide recognition by
modeling environment-adaptive features based on context dependency relationships and
local spatial features. Spatial attention modules can capture the context dependency, extract
abundant non-local spatial features, and increase the identification accuracy. Initially, spa-
tial attention was performed globally across all pixels, with a high computational cost. To
alleviate this problem, Lee et al. [24] and Liu et al. [25] suggested VIsion Transformer (VIT)
and Swin Transformer, respectively, based on Patched Self-Attention spatial attention. They
modeled semi-global context dependencies by narrowing the context field. Cao et al. [26]
adopted this spatial attention to extract linear features with context dependency relation-
ships at low and high levels in Swin-Unet. Experiments on the Synape CT dataset showed
that the DSC (Dice-Similarity Coefficient) value of Swin-Unet was increased by 2.28 and
1.7 over those of the U-Net and transUnet methods, respectively. However, coseismic
landslides feature small sizes in an extensive earthquake-struck region; thus, semi-global
context dependency is not enough to accurately identify landslides. Global and effective
context dependency can better depict the features of coseismic landslides. Xie et al. [27] sug-
gested Efficient Self-Attention (ESA), and this attention mechanism proportionally reduced
the size of the entire image that was used to model context dependency. Thus, the huge
computational cost in context dependency establishment can be decreased, and the global
context dependency can be portrayed. The network of SegFormer was built to identify the
urban road scenes in Cityscapes based on ESA and increased the mIoU value by 1.8% over
the SETR (Segmentation Transformer) network [27]. Tang et al. [23] applied SegFormer
to coseismic landslide recognition. Compared with HRNet, mIoU was improved by 1.6%.
However, the sequence reduction process changed the original spatial structure of the
pixel set, and ESA could not accurately describe the context characteristics of landslides.
Therefore, in order to improve the identification accuracy of coseismic landslides under a
variety of environments, a new strategy is necessary to describe the global useful context
dependency without changing the spatial structure.

In addition, the Graph Neural Network (GNN) can be embedded in a semantic
segmentation method due to its strong ability to describe long-distance context dependency.
Liu et al. [28] used the Graph Isomorphism Network (GIN) to model the long-distance
dependence among the high-level features extracted by ResNet-50. The F1-score value was
improved by 0.039 compared with that of the DST_2 method. Zi et al. [29] employed the
Graph Attention Network (GAT) and channel self-attention to model the long-distance
dependence of the high-level features extracted by ResNet-50. Compared with MSCG-
Net, DANet, Deeplab V3, DUNet, and the Dense Dilated Convolutions Merging Network
(DDCM) on the Postsdam dataset, the mIoU of the proposed method was increased by
2.5%, 2.5%, 2.6%, 2.4%, and 2.4%, respectively. However, these methods did not model the
context dependencies at the low-level features and restricted the recognition accuracy of
small landslides.

Given the rationality of recognition indices and the difficulty in small landslide recog-
nition under various environments, this work makes contributions to the two aspects of
identification indices and recognition algorithms. (1) Recognition indices are established
according to the causal mechanism of coseismic landslides and to the surface change char-
acteristics caused by coseismic landslides. (2) The proposed recognition algorithm has
the following three advantages. (a) Focusing on the complicated environments where
coseismic landslides occur, CGBlock is established to extract the relatively stable identifi-
able characteristics by integrating the relatively stable global context-dependent features
(global context features) and the unstable local features via the learnable weights-weighted
feature fusion mechanism of Acmix [30]. Thus, the environment’s adaptability can be
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improved. (b) Aiming at the high alarm problem in small target identification, the built
GNN branch can model globally useful context dependency without changing the spatial
structure. Thus, the invalid context dependency (i.e., noise) can be eliminated and the
false alarm can be reduced. In the GNN branch, an Entropy Importance-based Selective
aggregation Graph Neural Network (EISGNN) is suggested to select the important nodes
and model globally useful context dependency. (c) Focusing on the low accuracy in edge
detection for small objects, a semantic segmentation method, EGCN (Efficient Graph and
Convolutional Network, the whole network for landslide recognition), with an encoder–
decoder structure is proposed and it employs CGBlock as the basic module. EGCN fuses
low-level high-resolution semantic information and high-level low-resolution semantic
information to produce high-level high-resolution semantic features. Thus, it can better
depict the shape and boundary of small landslides. Moreover, the meizoseismal area in the
Ms 7.0 Jiuzhaigou earthquake is adopted to validate the performance of the proposed new
deep learning method.

2. Study Area and Multisource Data

At 21:19:46 local time on 8 August 2017, a Ms 7.0 earthquake struck Jiuzhaigou County,
Sichuan Province, China, with a focal depth of 20 km [31]. The epicenter was located at
33.20◦N 103.82◦E, and the peak ground acceleration (PGA) at the epicenter reached 0.26 g.

The earthquake affected 205,000 people, including 25 deaths, 525 casualties, and
6 missing people. A total of 73,671 houses were damaged to varying degrees [8,32,33].

The earthquake triggered 5563 landslides that covered an area larger than 9.45 km2

and were densely distributed within two regions [34], i.e., northwest and southeast of
the epicenter. The size of these coseismic landslides is relatively small, and 92.31% of the
coseismic landslides possess an area smaller than 1104 m2 (about 11 pixels) [35]. Moreover,
the surrounding environments of the landslides were various, and coseismic landslides oc-
curred in woodland or bare land, on roadsides, or by rivers. Therefore, coseismic landslide
recognition after the Jiuzhaigou earthquake is a small-target recognition problem under
various and complex environments. It is a difficult problem in the area of target recognition.

The study area Is located in the meizoseismal region, with an area of 435.63 km2.
It stretches across the regions with seismic intensities of VII, VIII, and IX, and includes
the above-mentioned two areas with densely distributed landslides (Figure 1). Moreover,
the study area features intensive neotectonic movement, complicated active fault struc-
tures, alpine canyon landforms, steep topography, developed river systems, and a humid
plateau climate.

Five types of multi-source data (Table 1) were employed to establish the recognition in-
dices of coseismic landslides. (1) After processed by the L2A procedure, the pre-earthquake
and post-earthquake Sentinel-2 Level 1C images were used to construct the spectral in-
dices and NDVI that reflected the land cover change and vegetation damage during the
earthquake. (2) Seismic data were used to establish the indices of PGA and distance to the
seismogenic fault. (3) A geological map was adopted to build the stratum indice. (4) DEM
was utilized to establish the topographic indices of elevation, slope degree, slope aspect,
and mean curvature. (5) Meteorological data were used to construct the cumulative rainfall
indice that reflected the effect of pre-earthquake precipitation.
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Figure 1. Overview diagram of the study area. PGA indicates the peak ground acceleration.

Table 1. Multi-source data for coseismic landslide recognition. ALOS DEM indicates the digital
elevation model produced from Advanced Land-Observing Satellite-1 images.

Data Type Data Date Resolution Resource

Image Sentinel-2
Level 1C image

29 July 2017 and
13 August 2017 10 m Copernicus programme of the

European Space Agency
Terrain ALOS DEM 13 February 2011 12.5 m Alaska Satellite Facility

Geology Geological map Pre-earthquake 1:200,000
1:50,000 China Geological Survey

Meteorology Precipitation
station report

29 July 2017–
8 August 2017 —— National Center for

Environmental Information

Earthquake
Peak Ground

Acceleration (PGA) 8 August 2017 —— United States Geological Survey

Seismogenic fault 8 August 2017 —— [36]

3. Methods

The technology flow chart is shown in Figure 2, and includes three steps.

(1) Establishment of recognition indices. The landslide identification indices are estab-
lished according to the causal mechanism of the coseismic landslides and to the
change in surface cover triggered by the coseismic landslides. These indices consist
of the geological, topographic, environmental, meteorological, seismic, and spectral
characteristics extracted from multi-source data.

(2) Construction of the landslide identification network EGCN. It is composed of 3 steps.
(a) Design of a graph neural network, EISGNN. A selective aggregation graph neural
network, EISGNN, is proposed based on GATv2, entropy importance coefficients, and
a selective aggregation strategy of node features. The EISGNN can aggregate effective
features and eliminate the influence of invalid context dependency. (b) Construction of
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a basic block CGBlock. A GNN branch including EISGNN is established to extract the
global context dependency relationship. A CNN branch is established to extract the
local spatial features. Thus, CGBlock is constructed by integrating the GNN and CNN
branches via adaptive weights and an ACmix fusion mechanism. (c) Establishment
of the deep network, EGCN. The EGCN employs CGBlock as the basic module
and adopts an encoder–decoder structure to effectively integrate the low-level high-
resolution features and high-level low-resolution features. Thus, the high-level high-
resolution semantic features can be generated, and the high-level context relationship,
low-level context dependency, and local spatial features can be effectively fused to
improve the identification accuracy.

(3) Automatic recognition of coseismic landslides. The established recognition indices
are inputted into the EGCN to obtain the distribution of coseismic landslides. Note
that EGCN is the overall network for coseismic landslide recognition. CGBlock is a
basic module involved in EGCN and includes two branches of CNN and GNN, and
EISGNN is the main part of the GNN branch in CGBlock.
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Figure 2. Technology flow chart of coseismic landslide recognition. (a) Framework diagram for
landslide identification. (b) Structure of the graph neural network EISGNN. The left branch indicates
the GATv2 attention aggregation process, and the right branch exhibits the selective aggregation
strategy based on the top-k entropy importance coefficients. (c) Structure of CGBlock integrating the
CNN and GCN branches. (d) General structure of EGCN with CGBlock as a basic block; the detailed
structure of the EGCN is introduced in Section 3.4.

3.1. Establishment of Landslide Recognition Indices

The established indices (Table 2) include three categories: landslide-controlling geoen-
vironment, landslide-inducing features, and surface cover change. These indices cover
the timeline through pre-earthquake, earthquake, and post-earthquake. (1) The geoen-
vironmental indices control the occurrence and distribution of coseismic landslides and
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include the lithology, elevation, slope angle, slope aspect, and average curvature. The
stratum indice is quantified according to the stratum age. Soft rocks or soft–hard interbed-
ding rocks result in the development of unstable slopes that easily evolve into landslides
during an earthquake. Moreover, high and steep mountainsides and mountaintops are
conducive to coseismic landslide occurrence [37]. Considering its direction, the slope aspect
is classified according to the angular ranges of directions on the polar coordinate. (2) The
disaster-inducing factors trigger landslide occurrence and development, and consist of
pre-earthquake precipitation and earthquakes. Thus, the disaster-triggering indices are
composed of the pre-earthquake cumulative rainfall, PGA, and distance to the seismogenic
fault. The cumulative rainfall indice is obtained by the Kriging interpolation method based
on the precipitation station report. Rainwater scours and erodes slope surfaces and causes
water and soil loss, and gully development. In addition, rainwater penetrates cracks, and
immerses and softens rock and soil masses. Then, weak sliding surfaces form, and slopes
become unstable and move. These creeping slopes tend to slide under an earthquake event.
Therefore, an area with concentrated rainfall before an earthquake is generally a region
with intensive coseismic landslides. In addition, PGA reflects the vibration strength of
the ground’s surface, and thus controls the distribution of coseismic landslides. To make
the PGA indice more beneficial for landslide recognition, it is quantified according to its
value distribution. Furthermore, seismogenic faults lead to fragmented rock masses, and
coseismic landslides are densely distributed near seismogenic faults. Thus, the distance
to the seismogenic fault is graded according to the landslide’s distribution characteristics
around it. (3) The surface cover variation indices are composed of the pre-earthquake and
post-earthquake spectral indices stacked in the band dimension and the NDVI before and
after an earthquake. The occurrence of coseismic landslides generally causes a change in
the image spectral characteristics and the damage to vegetation coverage. As the spectral
indices stacked in the band dimension and the NDVI difference index before and after an
earthquake can reflect the surface cover change, they are regarded as surface cover change
indices strongly correlated with the occurrence of landslides.

Table 2. Recognition indices for coseismic landslides recognition. The cumulative rainfall indice was
obtained by the Kriging interpolation method based on the precipitation station report.

Time Indice Type Indice Level Data Source

Pre-earthquake

Geological Stratum
(1) D1; (2) D2; (3) C2;

(4) P1; (5) P2-T1; (6) T1;
(7) T2; (8)T3

Geological map

Topographic

Elevation (m) Continuous

Digital Elevation
Model (DEM)

Slop angle (◦) Continuous

Slop aspect
(1) Flat; (2) N; (3) NE;

(4) E; (5) SE; (6) S;
(7) SW; (8) W;(9) NW

Curvature Continuous

Meteorological Cumulative rainfall (mm) Continuous Precipitation
station report

Earthquake Seismic

Peak ground acceleration
(PGA, g)

(1) 0.12; (2) 0.16; (3) 0.2;
(4) 0.24; (5) 0.26

Peak ground
acceleration

Distance to seismogenic
fault (km)

(1) <1; (2) 1~2; (3) 2~3;
(4) 3~4; (5) 4~5;
(6) 5~6; (7) ≥6

Seismogenic fault

Pre-earthquake and
post-earthquake

Spectral Reflectance Continuous
Sentinel-2 images

Environmental Normalized Difference
Vegetation Index (NDVI) Continuous



Remote Sens. 2023, 15, 977 8 of 26

3.2. EISGNN Algorithm

At present, global context dependency is modeled by a spatial attention mechanism,
which is usually computationally massive and generates a large amount of redundant
context dependency relationships. The proposed EISGNN adopts a selective aggregation
strategy in graphs to model effective context dependency in a global image. It can avoid
the huge computation amount and reduce the false alarms caused by redundant context
dependency relationships. In the EISGNN, Pixel i becomes Node i in a graph, and the
recognition indices of Pixel i are the features of Node i. An entropy importance coefficient
is defined by information entropy and cosine similarity to evaluate the information effec-
tiveness of neighbor Node j to target Node i. The neighbor nodes corresponding to the
top-k entropy importance coefficients are selected to produce effective context dependency
from the extracted node features based on the GATv2 graph neural network [38].

The node representation process in the network of EISGNN is shown in Equation (1).

F
′′′
= λ · eisAggre(G(A, F

′′
); θe) + µ · F′′ + W1F′ (1)

where F′ indicates the input features, and F
′′

means the node features output from the
GATv2 network. G(A, F

′′
) represents a graph composed of the node feature matrix F

′′
and

the node adjacency matrix A. θe indicates the learnable weight for selective aggregation by
entropy importance coefficients, and eisAggre(·) represents the node feature aggregation
process according to the entropy importance-based selection strategy. W1 indicates a
single-layer feedforward network. λ and µ are the hyperparameters that integrate the node
features obtained by selective aggregation and the node features obtained by GATv2. The
node representation process in EISGNN contains two steps: (1) attention-based feature
aggregation in GATv2 and (2) selective feature aggregation based on the entropy-important
coefficients (Figure 2b).

3.2.1. Attention-Based Feature Aggregation in GATv2

The node representation procedure in GATv2 is shown in Equation (2).

F
′′
= GATv2(G(A, F′); θg) = attenAggre(m(G(A, F′))) (2)

where θg represents the learnable parameters in the GATv2 network. attenAggre(·) indi-
cates feature aggregation based on attention weights (called attention aggregation). m(·)
represents a feature mapping operation. The feature mapping process before attention
aggregation is shown in Equation (3).

m(·) = H = W1F′; H = {h0, h1 . . . hn}; n = len(H) (3)

where hn represents the n-th node features, and the input node features are mapped to the
updated node features. Attention aggregation indicates the feature sum of neighbor nodes
weighted by attention scores (Equation (4)). Ni represents the neighbor node set of Node i.
Strong node features in a graph structure are obtained according to the weighted sum of
neighbor node features.

attenAggre(·) = ∑j∈Ni
ai,jhj (4)

where ai,j indicates the attention score. It is calculated using the learnable weight vec-
tor α after the concatenated features of target Node i and neighbor Node j are linearly
transformed (Equation (5)).

ai,j = LeakyRELU(αW2(
∣∣∣∣(hi, hj))) (5)

where || represents the concatenation operation of node features. LeakyRELU(·) indicates
the LeakyRELU activation layer. To make the feature aggregation process of neighbor
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nodes more stable, the Softmax function is used to normalize the attention coefficients
(Equation (6)).

ai,j = softmaxj(ai,j) =
exp(ai,j)

∑k∈Ni
exp(ai,k)

(6)

3.2.2. Selective Feature Aggregation Based on Entropy-Important Coefficients

The node features obtained from GATv2 attention aggregation have some redundant
information from heterogeneous nodes. In order to alleviate the influence of heterogeneous
neighbor nodes on the representation of the target node, an entropy importance selection
strategy is suggested to reinforce the effective features from homogeneous neighbors and
to reduce the influence of invalid features from heterogeneous neighbor nodes. Selective
aggregation based on the top-k entropy importance coefficients has three steps: (a) deter-
mination of entropy importance coefficients, (b) selection of the neighbor node set, and
(c) node feature aggregation.

(a) Determination of entropy importance coefficients
Information entropy and cosine similarity are used to determine the entropy impor-

tance coefficients and to evaluate the effectiveness of the features of neighbor Node j to
target Node i. An entropy importance coefficient is defined in Equation (7).

eici,j =
1

ei,j
+ si,j; ei,j = −h′i log h′j; si,j =

h′ih
′
j

‖h′i‖ · ‖h′j‖
(7)

where ei,j indicates information entropy and si,j represents cosine similarity. The inverse
of information entropy ensures that the larger the value of an entropy importance coef-
ficient, the more effective the information that the corresponding neighbor Node j con-
tributes to target Node i. The linear transformation of input features is performed in
Equation (8) before the entropy importance coefficients are calculated.W3 indicates a single-
layer feedforward network.

H′ = W3F′; H′ =
{

h′0, h′1 . . . h′n
}

; n = len(H′) (8)

To ensure the stability of the selective aggregation process, the entropy importance
coefficients are also normalized before the weighted sum of node features is calculated.

(b) Selection of neighbor nodes
The neighbor nodes of Node i are sorted in a descending order according to the values

of the entropy importance coefficients. Then, the neighbor nodes corresponding to the
top-k entropy importance coefficients are selected to conduct later feature aggregation. The
selection procedure of the neighbor node set is shown in Equation (9).

select indexi = indexi[ : k]; indexi = argsorti(eici,j) (9)

where argsort(·) is a sorting function. It sorts the neighbor nodes of Node i according to
the values of entropy importance coefficients to obtain the indices indexi of the sorted
neighbor nodes. select indexi indicates the neighbor nodes of Node i corresponding to the
top-k entropy importance coefficients. Actually, the number of selected neighbor nodes for
a target node i varies. Given the universality of EISGNN, the choice proportion select_factor
is defined to dynamically adjust the parameter k, i.e., k = int (Ni *select_factor). Ni is the
number of neighbor nodes and k reflects the number of selected neighbor nodes. The value
setting of select_factor is shown in Section 4.1, and the influence of different select_factor
values on network performance is discussed in Section 4.4.4.

(c) Node feature aggregation
Feature aggregation is conducted from the selected neighbor nodes to the target node,

and the feature aggregation procedure is shown in Equation (10).

eisAggre(·) = ∑s∈select indexi
eici,s · F

′′
s (10)
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where F
′′
s indicates the features of the selected neighbor nodes after GATv2 attention

aggregation. eici,s indicates the entropy importance coefficient between Node i and its
selected neighbor nodes. select indexi represents the set of selected neighbor nodes.

Similar to Transformer, the suggested EISGNN can perform node representation in
a multi-head formation. For the multi-head EISGNN, the final output node features are
shown in Equation (11):

F
′′′
= ‖C

c=1λc · eisAggre(G(A, F
′′ ,c

); θc
e) + µc · F′′

,c
+ Wc

1F′ (11)

where || represents the concatenation operation of node features. C indicates the parallel
number of GATv2 attention aggregation and entropy importance-based selective aggregation.

3.3. CGBlock

CGBlock is composed of a CNN branch and a GNN branch (Figure 3). The CNN and
GNN branches extract local spatial features and global context features, respectively. The
global context features are relatively stable and independent of environmental backgrounds,
and are extracted by feature aggregation among the strongly correlated nodes in a GNN
branch. The local features reflect landslide-varying detail features (unstable features) under
different environments and are acquired by a CNN branch. The relatively stable global
context dependency features and the unstable local features are integrated to generate
the relatively stable identifiable characteristics of landslides by adaptive weights (the
learnable weights-weighted feature fusion mechanism for ACmix [30]). As a result, the
environmental adaptability can be improved.
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The CNN branch adopts a convolutional layer with a kernel size of 3 × 3, and the
GNN branch includes a down-sampling layer, an up-sampling layer, a graph definition
layer, and a GNN module. The GNN module (i.e., EISGNN) takes each image pixel as a
node; thus, it can extract contextual features among various pixels. The down-sampling
layer employs a nearest-neighbor interpolation method to reduce the spatial size of feature
maps and to decrease the computational amount.

The graph definition layer determines the selected top-k pixels according to the L2
distance between one pixel and other pixels as the context structure of the pixel (Figure 4).
The L2 relative score of features between one pixel and other pixels is calculated as
Equation (12).

relative score = L2(reshape(F)) (12)

where reshape(·) is the reshaping operation that converts the feature map F ∈ Rc,h/r,w/r into

F′ ∈ Rh∗w/r2,c. relative score ∈ (0∪R+)
h∗w/r2,h∗w/r2

indicates the distance matrix among
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pixels. For target Pixel i and another Pixel j, a smaller relative score between Pixel i and
Pixel j indicates that Pixel j is closer to Pixel i, and that Pixel j is more similar to or strongly
correlated with Pixel i. h and w indicate the height and width of the input feature map. r
indicates the down-sampling factor. For any pixel i, the top-k pixels strongly correlated to
pixel i are selected as the context structure of pixel i in terms of the value of relative scorei.
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Therefore, during node representation in the GNN module, the valid features from
strongly correlated pixels can be effectively utilized and the interference information
from weakly correlated pixels can be reduced in feature aggregation. The adjacency
matrix A among all pixels is initialized by a zero matrix. For any pixel i, the pixels
corresponding to the top-k L2 distances are considered to have adjacency relationships with
pixel i (Equation (13)).

A[indice[i, : k]] = 1; indice = argsort(relative score) (13)

where argsort(·) computes the corresponding pixel indice after the variable relative score is
arranged in an ascending order. indice[i,:k] represents the indices of the top-k pixels similar
to Pixel i, and these pixels constitute the receptive field of Pixel i. In the CNN branch, the
receptive field of convolutional operation is a local and regular rectangle range; thus, local
spatial features can be extracted. Different from the CNN branch, the receptive field of the
GNN branch is global and irregular; thus, effective global context features can be extracted.
The value setting of k is shown in Section 4.1, and the effect of different k values on network
performance is discussed in Section 4.4.3. Once the interpixel adjacency matrix A and
the node feature matrix F′ are obtained, graph G(A, F′) with context structures can be
constructed. Note the contextual features obtained by the EISGNN module are up-sampled
to the same scale of the local spatial features in the CNN branch by a deconvolution layer
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(the up-sampling function in Figure 3). This guarantees that the local spatial features from
the CNN branch and the context features from the GNN branch have the same spatial
structure when they are fused by learnable hyperparameters α and β.

3.4. EGCN

EGCN is a landslide recognition framework with an encoder–decoder structure (U-Net
as the baseline). It is a semantic segmentation model and fuses low-level high-resolution
semantic information and high-level low-resolution semantic information to produce high-
level high-resolution semantic features. Therefore, it can better depict the shape and
boundary characteristics of small landslides. EGCN uses CGBlock as the basic module
(Figure 5) and mainly includes the CGBlock layers, LN (Layer Normal) layers, GELU
(Gaussian Error Linear Units) activation layers, pooling layers, deconvolution layers, and
concatenation layers. X and Y′ are the input and output of EGCN, respectively, and EGCN
is defined as Equation (14).

Y′ = EGCN(X) = Decoder(Encoder(X)) (14)

where X ∈ Rc,h,w, and Y′ ∈ Rnclass,h,w. c indicates the number of channels in the input
samples, and nclass represents the target category number. The input feature encoding
process is shown in Equations (15)–(18), and the feature decoding process is shown in
Equations (19)–(21).
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Similar to U-Net [39], at each depth in the encoder or decoder, two CGBlock layers are
used to extract local spatial features and context dependency relationships. Each CGBlock
is followed by an LN layer and a GELU activation layer, so the feature-extraction process
by the first CGBlock is shown in Equation (15).

F1,1 = GELU(LN(CGBlock1,1(F1,0)))
F1,0 = X

(15)

where CGBlock1,1 indicates the first CGBlock layer at the 1-st depth in the encoder and
F1,0 represents the input features at the 1-th depth. F1,1 represents the local spatial and
contextual fusion features at the 1-th depth extracted from input feature F1,0. Then, the
output features at the 1-th depth are as follows (Equation (16)):

F1,2 = f1,2(f1,1(F1,0)) (16)
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where f1,1 indicates the function consisting of CGBlock1,1, an LN layer, and a GELU layer.
f1,2 indicates the function consisting of CGBlock1,2, an LN layer, and a GELU layer. F1,2
represents the output features at the 1-th depth of the encoder. In order to reduce the
computation effort, when the higher-level features are extracted, every two CGBlock layers
are followed by a pooling layer (the down-sampling function in Figure 5) (Equation (17)).

F2,0 = pool(F1,2) (17)

where pool(·) represents the maximum pooling operation with a kernel size of 2 × 2.
Then, the output features at the d-th depth in the encoder can be defined as follows
(Equation (18)):

Fd,2 = fd,2(fd,1(Fd,0)); Fd,0 = pool(Fd−1,2) (18)

where d ∈ [2, 5]. In particular, the depths in both the encoder and decoder are 5, and the 5-th
depth has only one CGBlock. Following U-Net, the numbers of features from the 1-st depth
to the 5-th depth in the encoder or decoder are 64, 128, 256, 512, and 1024, respectively. The
down-sampling factors r in a CGBlock are 16, 8, 4, 2, and 1, respectively. After a series of
hierarchical features are extracted, the features in different layers are fused and transformed
in the decoder. At the 5-th depth, there is no higher-level feature to merge with; thus, at
this depth, CGBlock is only used for transformation operations (Equation (19)).

FD
5,2 = fD

5,1(F5,1) = GELU(LN(CGBlockD
5,1(F5,1))) (19)

in which fD
5,1 indicates the first function at the 5-th depth in the decoder, consisting of

CGBlockD
5,1, LN, and GELU. At the other depths in the decoder, the lower-level features

output from the d-th depth in the encoder will be fused with the higher-level features input
to the d-th depth in the decoder. Before fusion, higher-level input features in the decoder
need to be up-sampled to the same resolution as the lower-level features output from the
d-th depth in the encoder (Equation (20)).

FD
d,0 = upconv(FD

d+1,2) (20)

where d ∈ [1, 4] and upconv(·) indicates the deconvolution layer with a kernel size of 2 × 2.
Therefore, the output feature at the d-th depth in the decoder is shown in Equation (21).

FD
d,2 = fD

d,2(f
D
d,1(

∣∣∣∣∣∣(FD
d,0, Fd,2))) (21)

where || represents a concatenation operation. After the second CGBlock layer at the 1-st
depth in the decoder, features are mapped to the probability belonging to each category by
a convolution layer with a kernel size of 1 × 1 and by a softmax layer (Equation (22)).

Y′ = softmax(conv1× 1(FD
1,2)) (22)

3.5. Loss in Landslide Recognition

Compared with non-landslide samples, landslide samples have much smaller areas
and are fewer in quantity. Thus, coseismic landslide recognition is a class imbalance
problem. Given this problem, a learning weight is used to balance the sample numbers
of different classes. Focal Loss [40] is employed to increase the learning weight values
for difficultly recognized samples. Therefore, Focal Loss with balanced weight values is
employed as the loss function for coseismic landslide recognition.
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For the class imbalance problem, the current approach generally refines the cross-
entropy loss function and adopts the reciprocal of the number ratio of each class of samples
in the groundtruth to weight the predicted probabilities of the class (Equation (23)).

L =
h∗w
∑
n

nclass

∑
c

wcyn,c log y′n,c; wc =
h ∗ w

∑h∗w
n int(yn,c == 1)

(23)

where y′n,c ∈ [0, 1] indicates the predicted probability that Sample n belongs to Class c.
yn,c ∈ {0, 1} indicates the groundtruth of Sample n. wc represents the class-balanced weight
of Class c, i.e., the reciprocal of the number ratio of Class c samples in the groundtruth.
This class-balanced weight is sensitive to the learning rate value, requires a large number
of iterations, and easily causes overfitting. To solve the difficulty in class-balanced weights
during network training, the balanced weight based on effective sample sizes [41] is
adopted in the loss function (Equation (24)).

wc =
1− η

1− ηnumc
; numc =

h∗w
∑
n

int(yn,c == c) (24)

where η indicates the hyperparameter controlling the ratio of effective samples (pixels).
numc indicates the number of pixels that belong to Class c in the groundtruth. In order
to reduce the learning difficulty in misidentified targets, Focal Loss is employed, and a
learning weight is added to the misidentified pixels according to the negative number of
recognition probability (Equation (25)). Thus, the network can better learn the features of
the misidentified targets.

L f ocal = −
h∗w
∑
n

nclass

∑
c

(1− y′n,c)
γ log(y′n,c) (25)

in which γ indicates the factor that controls the amplification scale of learning weights.
Therefore, the loss function for landslide recognition is defined as Equation (26).

Lcb f ocal = −
h∗w
∑
n

nclass

∑
c

wc(1− y′n,c)
γ log(y′n,c) (26)

4. Results and Discussion
4.1. Algorithm Parameters and Datasets
4.1.1. Algorithm Parameters

The value setting of the network parameters in the EGCN is shown in Table 3. The
initial values of λ and µ are both 1.0. This makes the initial fusion of node representations
obtained from attention aggregation and from selective aggregation more stable. Referring
to the value setting in ACmix, the initial values of α and β were both set to 1.0. This ensures
that the local spatial features and context features are equally fused, so the initial landslide
recognition performance of the EGCN is relatively good.

Table 3. Value setting of the network parameters. The values of α, β, λ, and µ are the initial ones.

Parameter k select_factor α, β, λ, µ Optimizer Initial
Learning Rate

Weight
Decay Batch Size Epoch

Value 8 0.8 1.0 Adam 0.0001 0.0007 4 70

Regarding the spatial structure in the CNN branch, the convolutional layer with a
kernel size of 3 × 3 possessed a receptive field of eight neighbors; thus, k was set to 8. It
could decrease the amounts of redundant context structures and computational complexity.
Similar to the Swin Transformer, the value of head C in the multi-head EISGNN was set
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to 8. In addition, select_factor in selective aggregation controlled the number of selected
neighbor nodes and was set to 0.8. This ensured that most of the neighbor nodes could
participate in feature aggregation and prevented the reduction in network performance
due to the sharp decrease in the number of nodes participating in aggregation.

The Adam optimizer was applied to iteratively train the network based on the Poly
strategy. According to Deeplab V3 [42], the initial learning rate was set to 0.0001, and the
weight decay was set to 0.0007 [11]. Moreover, the values of the loss parameters of η and γ
were the same as those in Cui et al. [41].

4.1.2. Selection of Training and Testing Sets

The collected multi-source data in Section 2 were used to establish recognition indices.
The established recognition indices in Section 3.1 were stacked in the band dimension and
formed a large raster data set combined with landslide inventory. To train and evaluate
the model, the samples from the raster dataset were randomly split into training and
testing samples. The selection process of training and testing samples was composed of
three steps.

(a) Region clipping. The raster data set of the whole study area was clipped into
samples with a size of 128 × 128 from the bottom-left to the top-right by a sliding window
with a stride of 96, and they were numbered from 0.

(b) Sample selection. To alleviate the impact of class imbalance on landslide recogni-
tion, the degree of imbalance in the numerical proportions of landslide pixels and back-
ground pixels needed to be decreased. The samples from the background category and the
samples with very low proportions of landslide pixels were both discarded after region
clipping. In this work, the sample selection process is shown in Equation (27).

Pri =
N+

i
N+

i + N−i
; select samples = where(Pr > selectratio) (27)

where Pri indicates the proportion of landslide pixels in the ith sample, and N+
i and N−i

indicate the numbers of landslide pixels and non-landslide pixels in the ith sample, respec-
tively. selectsamples represents the indices of the selected samples. The function where(·)
computes the index of elements conforming to a special condition. As the proportions
of landslide pixels in samples mostly fell between 0 and 0.02, selectratio took a medium
value of 0.01. Thus, among the 1085 samples in the study area, 1040 samples remained after
sample selection.

(c) Establishment of training and testing samples. After sample selection, about half of
the total randomly shuffled samples were selected as the training set, and the remaining
samples were taken as the testing set. It is worth noting that samples with some overlapping
regions were added to the same sample sets when selected. Finally, the number ratios of
landslide to non-landslide pixels in the training dataset (522 samples) and testing dataset
(518 samples) were 1:27 and 1:29, respectively.

4.1.3. Evaluation Criteria of Landslide Recognition

All quantitative criteria for the experiments are shown in Table 4. As OA and mIOU
evaluated the identification accuracy of all categories equally, they could not reflect the
recognition balance degree of various categories. Therefore, they could not evaluate the
landslide recognition results very well for those samples with a very small proportion
of landslide pixels. F1, Kappa, Precision, and Recall could comprehensively evaluate
the accuracy of each category and also reflect the degree of balance of each category’s
accuracy well. The Kappa coefficient could evaluate the consistency of the number of each
category in the prediction results and labels. It was more sensitive to the small difference
between the predicted landslide distribution and the real landslide distribution; thus, it
could well-evaluate the landslide recognition results. In particular, Params was also applied
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to evaluate the performance of models. As a static evaluation criterion, Params could help
to measure the model parameter size.

Table 4. Description of the quantitative criteria for the experiments. TP and FN indicate the number of
landslide and non-landslide pixels that were correctly predicted in the prediction results, respectively.
TN is the number of landslide pixels that were predicted to be backgrounds. FP indicates the number
of non-landslide pixels that were predicted to be landslides. K indicates the convolutional kernel size,
C represents the feature number, and M represents the feature map size.

Criterion Formula Description

OA (Overall Accuracy) OA = TP+FN
TP+TN+FP+FN

Represents the ratio of correctly predicted
pixels among all pixels

mIOU (mean Intersection Over Union) mIOU = TP+FN
2(TP+TN+FP+FN)−(TP+FN)

Represents the degree of overlap between
the predicted semantic segmentation

map and the groundtruth

P (Precision) P(Precision) = TP
TP+FP

Represents the ratio of correctly predicted
pixels in the predicted positive samples

R (Recall) R(Recall) = TP
TP+FN

Indicates the ratio of correctly
predicted pixels in the positive

samples of groundtruth

F1 F1 = 2PR
P+R

Indicates the harmonic mean
of the Precision and the Recall

Kappa
Kappa = Po−Pe

1−Pe
; Po = OA;

Pe =
(TP+TN)(FP+FN)+(TN+FN)(TP+FP)

(TP+FN+FP+FN)2

Indicates the consistency among the
predicted results and the label

Params Params =
D
∑

l=1
K2

l · Cl−1 · Cl +
D
∑

l=1
M2 · Cl

Indicates the model parameter size

4.2. Recognition Results of Coseismic Landslides

To illuminate the superiority of the proposed EGCN, it was compared with other state-
of-the-art landslide recognition methods, including change detection-based methods and
semantic segmentation-based methods. The change detection-based methods for landslide
recognition consist of DP-FCN [2] and CDCNN [11]. The semantic segmentation-based
methods for landslide identification include DeepUnet [15], FCN-PP [17], LandsNet [18],
AcmixUnet, and U-Net [39]. The parameter values in DP-FCN, DeepUnet, CDCNN,
LandsNet, and FCN-PP were the same as the ones in the original papers. ACmix [30]
configures convolution and self-attention in a shared-parameter way. It extracts and
adaptively merges local spatial features and semi-global context dependencies. AcmixUnet
is a semantic segmentation network constructed following the U-Net structure, including
ACmix layers, LN layers, GELU activation layers, pooling layers, and deconvolution layers.

The recognition result of coseismic landslides in the study area is shown in Figure 6.
In order to highlight the advantages of the proposed method in various environments,
three regions (Region A, Region B, and Region C in Figure 6) were selected as examples.
The three regions were all test regions that were not employed to train the network. The
identification results of the eight methods in the three regions are shown in Figures 7–9.

The environmental characteristics and landslide sizes in the three regions are shown
in Table 5. The EGCN outperformed the other seven methods and generally possessed the
highest accuracy, the lowest false alarm rate, and the lowest false dismissal rate. Note that
the environment in the study area mainly included woodland, grassland, bare land, rivers,
and roads; thus, the three regions contained all the environmental types.

Furthermore, the field validation photos of the identified coseismic landslides are
shown in Figure 10.



Remote Sens. 2023, 15, 977 17 of 26

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 27 
 

 

Kappa 
Kappa ; OA;

1
o e

o
e

P P P
P

-
= =

-

 

2
( )( ) ( )( )

( )e
TP TN FP FN TN FN TP FPP

TP FN FP FN
+ + + + +

=
+ + +

 

Indicates the consistency among 
the predicted results and the 

label 

Params 2 2
1

1 1
Params

D D

l l l l
l l

K C C M C-
= =

= ⋅ ⋅ + ⋅å å  Indicates the model parameter 
size 

4.2. Recognition Results of Coseismic Landslides 
To illuminate the superiority of the proposed EGCN, it was compared with other 

state-of-the-art landslide recognition methods, including change detection-based 
methods and semantic segmentation-based methods. The change detection-based 
methods for landslide recognition consist of DP-FCN [2] and CDCNN [11]. The semantic 
segmentation-based methods for landslide identification include DeepUnet [15], FCN-PP 
[17], LandsNet [18], AcmixUnet, and U-Net [39]. The parameter values in DP-FCN, 
DeepUnet, CDCNN, LandsNet, and FCN-PP were the same as the ones in the original 
papers. ACmix [30] configures convolution and self-attention in a shared-parameter way. 
It extracts and adaptively merges local spatial features and semi-global context 
dependencies. AcmixUnet is a semantic segmentation network constructed following the 
U-Net structure, including ACmix layers, LN layers, GELU activation layers, pooling 
layers, and deconvolution layers. 

The recognition result of coseismic landslides in the study area is shown in Figure 6. 
In order to highlight the advantages of the proposed method in various environments, 
three regions (Region A, Region B, and Region C in Figure 6) were selected as examples. 
The three regions were all test regions that were not employed to train the network. The 
identification results of the eight methods in the three regions are shown in Figures 7–9. 

 

Figure 6. Recognition results of the proposed EGCN. Regions A, B, and C and subfigures (a–c) are six
subregions in the testing set. (d–f) are the subparts of (a–c), respectively.

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 27 
 

 

Figure 6. Recognition results of the proposed EGCN. Regions A, B, and C and subfigures (a), (b), 
and (c) are six subregions in the testing set. (d), (e), and (f) are the subparts of (a), (b), and (c), 
respectively. 

The environmental characteristics and landslide sizes in the three regions are shown 
in Table 5. The EGCN outperformed the other seven methods and generally possessed the 
highest accuracy, the lowest false alarm rate, and the lowest false dismissal rate. Note that 
the environment in the study area mainly included woodland, grassland, bare land, rivers, 
and roads; thus, the three regions contained all the environmental types. 

 
Figure 7. Comparison of the identification results of 8 methods in Region A. Bold values mean the 
highest number of the corresponding evaluation criterion. 

Figure 7. Cont.



Remote Sens. 2023, 15, 977 18 of 26

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 27 
 

 

Figure 6. Recognition results of the proposed EGCN. Regions A, B, and C and subfigures (a), (b), 
and (c) are six subregions in the testing set. (d), (e), and (f) are the subparts of (a), (b), and (c), 
respectively. 

The environmental characteristics and landslide sizes in the three regions are shown 
in Table 5. The EGCN outperformed the other seven methods and generally possessed the 
highest accuracy, the lowest false alarm rate, and the lowest false dismissal rate. Note that 
the environment in the study area mainly included woodland, grassland, bare land, rivers, 
and roads; thus, the three regions contained all the environmental types. 

 
Figure 7. Comparison of the identification results of 8 methods in Region A. Bold values mean the 
highest number of the corresponding evaluation criterion. 
Figure 7. Comparison of the identification results of 8 methods in Region A. Bold values mean the
highest number of the corresponding evaluation criterion.

Remote Sens. 2023, 15, x FOR PEER REVIEW 19 of 27 
 

 

 

 
Figure 8. Comparison of the identification results of 8 methods in Region B. Bold values mean the 
highest number of the corresponding evaluation criterion. 
Figure 8. Comparison of the identification results of 8 methods in Region B. Bold values mean the
highest number of the corresponding evaluation criterion.



Remote Sens. 2023, 15, 977 19 of 26Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 27 
 

 

 
Figure 9. Comparison of the identification results of 8 methods in Region C. Bold values mean the 
highest number of the corresponding evaluation criterion. 

Furthermore, the field validation photos of the identified coseismic landslides are 
shown in Figure 10. 

Figure 9. Comparison of the identification results of 8 methods in Region C. Bold values mean the
highest number of the corresponding evaluation criterion.

Table 5. Environmental classes and landslide sizes in three subregions.

Region Environment Minimum
Landslide Area (m2)

Minimum
Landslide Size

(Pixels)

Maximum
Landslide Area (m2)

Maximum
Landslide Size

(Pixels)

A Woodland, bare land 1100 11 10,200 102
B Grassland, river 800 8 10,900 109
C Grassland, road 1000 10 9600 96

4.3. Precision Comparison of Various Algorithms

The precision evaluation of eight methods on the test set is shown in Figure 11. Among
the seven methods for comparison, LandsNet, DeepUnet, and CDCNN had relatively
higher OA and mIoU values and fewer parameters. However, they possessed relatively
low values for Precision, Recall, F1-score, and Kappa. FCN-PP and AcmixUnet based on
the semantic segmentation feature high performances in landslide recognition and had the
highest mIoU and Recall values, respectively. However, they were both characterized by
huge numbers of parameters. In other words, their higher mIoU and Recall values were at
the cost of an increase in the number of parameters. U-Net maintained a moderate number
of parameters and a medium landslide recognition performance.
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Compared with the above seven methods, the proposed EGCN had the highest OA,
Kappa, F1-score, and Precision values. Moreover, it had fewer parameters than AcmixUnet
and FCN-PP. However, the feature extraction types of EGCN and AcmixUnet were similar
(the only difference between EGCN and AcmixUnet was that EGCN used parameter-shared
convolution to simulate Patch MSA to model semi-global context dependencies, while
EGCN utilized EIGNN modules to model global context dependencies), and the OA and
mIoU of AcmixUnet reached a relatively high level; however, the improvement space for
EGCN was too small. As a result, EGCN and AcmixUnet seemed to be almost the same in
terms of OA and mIoU, and the OA and mIoU of EGCN did not improve significantly. In
contrast, the F1-score and Kappa coefficient of EGCN were significantly higher than those
of AcmixUnet and the other six methods. This indicates that EGCN could identify various
categories (landslides and backgrounds) in a more balanced and accurate manner with
fewer model parameters. In summary, the suggested EGCN generally achieved the highest
performance in landslide recognition.
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4.4. Influence of Recognition Indice Set and Network Hyperparameters

Ablation experiments were conducted on the following four aspects: (1) different
recognition indice sets, (2) different attention modules in the modeling of context depen-
dency relationship (Figure 12b), (3) different pixel numbers in the construction of a graph
(Figure 12c), and (4) different m values in the selective aggregation strategy (Figure 12d).
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the parts that changed in ablation experiments. (a) Original structure of CGBlock, with a CNN branch
on the left and a GNN branch on the right. (b) CGBlock after the GNN branch is replaced by an
attention module. (c) Different numbers of pixels selected to construct a graph. k indicates the pixel
number in the selective aggregation. (d) Different numbers of neighbor nodes in feature aggregation.
m indicates the number of selected neighbor nodes.

These ablation experiments could explore the influence of different recognition indice
sets on landslide recognition and verify whether the context dependency modeled by
EISGNN was more efficient than that modeled by the typical attention methods of MSA
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(Patch-based multi-head self-attention) and ESA. In addition, they could explore the ability
of EISGNN to model context dependency from graphs of different complexities. Moreover,
these experiments could analyze the influence of different numbers of neighbor nodes in
feature aggregation on landslide recognition performance.

4.4.1. Do Different Recognition Indice Sets Affect the Results of Coseismic
Landslide Recognition?

Recognition indice sets were applied to identify coseismic landslides, and the influence
of different recognition indice sets on landslide recognition is shown in Table 6. Table 6 (a)
indicates the recognition indice set composed of the spectral indices before and after an
earthquake; (b) represents the recognition indice set characterized by the spectral indices
before and after an earthquake and terrain indices (slope angle, slope aspect, and curvature);
(c) indicates the recognition indice set characterized by the spectral indices before and after
an earthquake, terrain indices (slope angle, slope aspect, and curvature), and environmental
indices (NDVI); and (d) indicates the recognition indice set that considers the causal
mechanism of coseismic landslides (details of the recognition indice set is introduced
in Section 3.1).

Table 6. Ablation experiments on different recognition indice sets. (a), (b), (c), and (d) indicate
the different indice sets for landslide recognition. Bold values mean the highest number of the
corresponding evaluation criterion.

Ablation Type OA mIoU Kappa F1 Precision Recall

(a) 0.99551 0.99107 0.92492 0.92723 0.89666 0.96170
(b) 0.99378 0.98766 0.90061 0.90382 0.86243 0.95138
(c) 0.99617 0.99239 0.93478 0.93675 0.91572 0.96020
(d) 0.99854 0.99709 0.97321 0.97396 0.97344 0.97422

Compared with (a), the experiment on (b) obtained higher OA, mIoU, Kappa, F1-score,
and Precision values. This suggests that the addition of terrain indices and environmental
indices increased the discrimination of extracted features. However, compared with the
landslide recognition results of (a) and (c), the mIoU, Kappa, and F1-score of the experiment
on (b) decreased significantly. This may suggest that terrain indices may not be used as inde-
pendent recognition indices for coseismic landslides; only the interaction of terrain indices
and other indices (environmental indices, etc.) can produce highly discriminative features.

Compared with (a), (b), and (c), the experiment on the recognition indice set that
considered the causal mechanism of coseismic landslides obtained higher OA, mIoU,
F1-score, and Kappa values. This indicates that the recognition indice set composed of
spectral indices, geology indices, terrain indices, environment indices, and earthquake
indices was more effective for coseismic landslide recognition.

4.4.2. Is the GNN Branch More Efficient than Other Attention Modules of MSA and ESA?

Context dependency was modeled by an attention module, and the influence of
different attention modules on the network performance is shown in Table 7 (b). The
current popular attention modules of MSA and ESA were employed to conduct com-
parisons. MSA and ESA were the attention modules adopted in Swin Transformer and
SegFormer, respectively.

When the GNN branch was replaced with other attention methods, it could still
achieve high recognition accuracies. Thus, the fusion of attention-modeled context features
and local spatial features was effective in landslide recognition. Moreover, the GNN branch
outperformed the attention modules of MSA and ESA and possessed the highest accuracy.
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Table 7. Ablation experiments on different network hyperparameters. MSA means patch-based
multi-head self-attention, and ESA indicates efficient self-attention. F1 indicates the F1-score. Bold
values mean the highest number of the corresponding evaluation criterion.

Ablation
Type

Context-Dependent
Modeling Approach k select_factor OA mIoU Kappa F1 Precision Recall

(b)
Patch MSA — — 0.9983 0.99661 0.96875 0.96962 0.96493 0.97517

ESA — — 0.99829 0.9966 0.96932 0.97019 0.96708 0.97403
GNN branch — — 0.99854 0.99709 0.97321 0.97396 0.97344 0.97422

(c)
GNN branch 8 — 0.99854 0.99709 0.97321 0.97396 0.97344 0.97422
GNN branch 16 — 0.99853 0.99707 0.97322 0.97397 0.97271 0.97589
GNN branch 32 — 0.99862 0.99725 0.97476 0.97547 0.97746 0.97375

(d)

GNN branch 32 0.2 0.99841 0.99683 0.97138 0.9715 0.97464 0.96914
GNN branch 32 0.4 0.99858 0.99716 0.97352 0.97425 0.97458 0.97423
GNN branch 32 0.6 0.99854 0.99709 0.97344 0.97418 0.97383 0.97494
GNN branch 32 0.8 0.99862 0.99725 0.97476 0.97547 0.97746 0.97375
GNN branch 32 1.0 0.99827 0.99654 0.96889 0.96978 0.96751 0.97243

4.4.3. Is EISGNN Adaptable to Graphs of Different Complexity?

The complexity of a graph is embodied as the number of nodes (pixels) constituting
a graph. The influence of different node numbers on the network performance is shown
in Table 7 (c).

The graph structure exhibited growing complexity when the node number k increased
from 8 to 32. The recognition accuracy generally increased, accompanied by the increasing
graph complexity, because more comprehensive and abundant context features were ex-
tracted from a more structure-complicated graph. Despite the variation in graph complexity,
the identification accuracies all reached high levels; thus, EISGNN had a strong adaptability
to changing graph complexity.

4.4.4. Does the Number of Neighbor Nodes in Feature Aggregation Influence the
Network Performance?

The selection proportion select_factor controls the number (m) of neighbor nodes
selected for feature aggregation, i.e., m = int(select_factor*k). The influence of different
select_factor values on recognition accuracy is shown in Table 7 (d).

When the value of select_factor increased, the number of selected neighbor nodes corre-
spondingly grew. Thus, the features from more useful nodes participated in aggregation,
and the identification accuracy also increased. However, when all of the neighbor nodes
joined in aggregation (select_factor = 1.0), the recognition accuracy decreased because the
superfluous and invalid features were involved in aggregation. Thus, the best value of
select_factor was 0.8.

5. Conclusions

Small landslides under various complicated environments are challenging to recog-
nize. To solve this problem, EGCN is proposed to integrate the global and useful context
features and local spatial characteristics at both high and low levels for coseismic landslide
recognition. Its features and innovations are embodied as three aspects: (1) The recognition
indices of EGCN are established according to the causal mechanism of coseismic land-
slides, guaranteeing the rationality of landslide identification. (2) The EISGNN module
in the GNN branch is suggested to model global useful context dependency by feature
aggregation among nodes with high entropy importance. The global context features are
relatively stable, independent of environment backgrounds, and integrated with the local
varying detail features (unstable features) extracted by the CNN branch to generate the
relatively stable identifiable characteristics of landslides by adaptive weights. As a result,
the environment’s adaptability can be improved. (3) Owing to the use of CGBlock as the
basic module and U-Net as the baseline, EGCN fuses relatively stable identifiable low-level
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high-resolution characteristics and relatively stable identifiable high-level low-resolution
characteristics to generate identifiable high-level high-resolution features. Therefore, the
shape and boundary of small landslides can be better depicted and the identification
accuracy of small targets can be improved.

The EGCN method achieved high accuracy in the meizoseismal region of the Ms 7.0
Jiuzhaigou earthquake and outperformed the popular deep learning methods of DP-FCN,
FCN-PP, LandsNet, DeepUnet, U-Net, CDCNN, and AcmixUnet. In addition, EGCN could
be not only used for coseismic landslide recognition, but also be applied to the recognition
of other small targets. When the input data are the recognition indice set established by
the multi-temporal spectral features before landslides and other auxiliary identification
indices, EGCN can also be used to extract the minimal land changes that could be used as a
predecessor to a landslide (the single minimal land change area should be greater than or
equal to 800 m2) after the parameters of the shallow and last CGBlock layers are adjusted.
Our future work will explore the application of the CGBlock module and EISGNN module
to other tasks, such as object detection for landslides and landslide susceptibility mapping.
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