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Abstract: Electricity has become an indispensable source of energy, and power lines play a crucial role
in the functioning of modern societies. It is essential to inspect power lines promptly and precisely
in order to ensure the safe and secure delivery of electricity. In steep and mountainous terrain,
traditional surveying methods cannot inspect power lines precisely due to their nature. Remote
sensing platforms, such as satellite and aerial images, thermal images, and light detection and ranging
(LiDAR) points, were utilised for the detection and inspection of power lines. Nevertheless, with the
advancements of remote sensing technologies, in recent years, LiDAR surveying has been favoured
for power line corridor (PLC) inspection due to active and weather-independent nature of laser
scanning. Laser ranging data and the precise location of the LiDAR can be used to generate a three-
dimensional (3D) image of the PLC. The resulting 3D point cloud enables accurate extraction of power
lines and measurement of their distances from the forest below. In the literature, there have been
many proposals for power line extraction and reconstruction for PLC modelling. This article examines
the pros and cons of each domain method, providing researchers involved in three-dimensional
modelling of power lines using innovative LiDAR scanning systems with useful guidelines. To
achieve these objectives, research papers were analysed, focusing primarily on geoscience-related
journals and conferences for the extraction and reconstruction of power lines. There has been a
growing interest in examining the extraction and reconstruction of power line spans with single
and multi-conductor configurations using different image and point-based techniques. Our study
provides a comprehensive overview of the methodologies offered by various approaches using laser
scanning data from the perspective of power line extraction applications, as well as to discuss the
benefits and drawbacks of each approach. The comparison revealed that, despite the tremendous
potential of aerial and mobile laser scanning systems, human intervention and post-processing
actions are still required to achieve the desired results. In addition, the majority of the methods have
been evaluated on the small datasets, and very few methods have been focused on multi-conductor
extraction and reconstruction for power lines modelling. These barriers hinder the automated
extraction and reconstruction of power line using LiDAR data and point to unexplored areas for
further research and serve as useful guidelines for future research directions. Several promising
directions for future LiDAR experiments using deep learning methods are outlined in the hope that
they will pave the way for applications of PLC modelling and assessment at a finer scale and on a
larger scale.

Keywords: power lines; LiDAR; span; conductor; extraction

1. Introduction

Electricity is essential to the functioning of contemporary societies. To ensure the
uninterrupted distribution of electricity, power lines must be effectively monitored and
maintained. Transmission networks, regional networks, and distribution networks are
typical components of electrical networks. One of the most important parts of the power
transmission system is the high-voltage power line, which makes it possible to send elec-
tricity over long distances with little power loss [1]. The transmission system network is
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expanding as a result of population growth and increased reliance on electricity. Due to
the rapid expansion of transmission networks, it is therefore impossible to avoid moun-
tainous terrains and forests within a power line corridor (PLC) [2]. The global length of
high-voltage power lines has increased from 5.5 million kilometres in 2014 to 6.8 million
kilometres in 2020 [3]. In the long-term, power lines are frequently obstructed by severe
weather conditions (e.g., high temperature differences, humidity, and vegetation encroach-
ment [4,5], which can amplify flash over discharge leading to large area blackouts, resulting
in substantial financial costs and heavy national economic losses [6,7]. In order to ensure
the safe and secure delivery of electricity, it is crucial to inspect the power lines promptly
and precisely [8].

Traditional power line inspections are carried out through the use of field surveys. The
inspectors keep an eye on the power lines and make estimation about the distance between
them and the forest floor [9,10]. Due to the nature of this approach, the inspection cycle is
lengthy and the workload is heavy. Some power line segments cannot be inspected on a
regular basis due to the steep terrain and dense forest that surround them. On the other
hand, helicopter methods have a lower detection rate because of the high speeds used and
the crew’s inability to simultaneously observe all possible problem types. Both methods,
however, are reliant on the observations of the human eye. The use of video recordings
and various cameras in addition to visual inspections is now commonplace. It is necessary
to cover a large area when conducting power line surveys, and remote sensing techniques
offer interesting alternatives.

Recent developments in hardware and data processing techniques have advanced
remote sensing technology. There are various modern remote sensing methods (optical
sensors [11,12], synthetic aperture radars (SAR) [13], thermal imaging [14], mobile laser
scanning (MLS) [15], and light detection and ranging (LiDAR) [1,7,16] as well as sev-
eral other monitoring devices (such as satellite, airborne, and unmanned aerial vehicles
(UAVs) [17]. Each of these techniques has its own advantages and disadvantages in terms of
PLC mapping. Optical satellite and aerial images, for instance, operate near infra-red wave-
lengths and passively gather energy from the earth’s surface; these images are unsuitable for
PLC mapping due to their passive mode; images cannot be captured in the dark and cannot
extract or model power lines due to their thinness and proximity; however, they can detect
wires [18]. In thermal imaging, sensors detect the infra-red radiation emitted by an object
and create an image based on this data. Thermal imaging is not typically used for power
line mapping and extracting PLC objects, but it is useful for detecting wire faults. SAR
sensors take microwave images that can be taken in clouds as well but geometrical defor-
mations and multipath scattering make SAR image analysis problematic for intricate power
line structures.

Laser scanning technology captures and measures objects in the environment using
laser beams. The 3D data generated by laser scanning are also referred to as a LiDAR point
cloud. Scanning with lasers has come a long way in the last few years. Laser scanning
systems, in contrast to conventional camera sensors, are not affected by lighting conditions
because LiDAR can operate in the absence of external illumination [19]. Laser ranging
information and the precise location of the LiDAR point can be used to create a 3D view
of PLC [20], which is an excellent starting point for automated analysis. The resulting 3D
point cloud makes it possible to accurately extract power lines and measure the distances
between them and the forest beneath [21–23]. A point cloud created by LiDAR can be
extremely dense and contains a wealth of information, thanks to its high precision, quick
scanning speed, and ability to gather a large amount of spatial data.

A comprehensive review on various PLC surveying methods is given in Matikainen et al. [15],
and it was concluded that airborne and land-based systems provide more detailed data
than satellite images and are the most practical remote sensing method for extracting power
lines. Numerous publications have focused on automated classification and reconstruction
techniques for the extraction of power lines, specifically conductors. A typical procedure
involves the generation of a digital terrain model (DTM), classification of the laser data
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to distinguish power line points from other objects, especially vegetation, and 3D mod-
elling of the individual conductors. Previously, emphasis was placed on classifying power
line points using supervised and unsupervised ALS methods; in addition, the methods
were tested on very small datasets or without visual or quantitative results [24,25]. With
the advancement of ALS technologies, however, new methods are focusing on robust
approaches for single and multi-conductor extraction and have been tested on complex
terrains with large data sets [26,27]. In addition, with the advent of mobile laser Scanning
MLS and UAV, numerous researchers have proposed new extraction and reconstruction
techniques for power lines utilising MLS and UAV platforms [28,29]. The purpose of
this review is to provide a critical review of the state-of-the-art laser scanning-based tech-
niques for the extraction and reconstruction of overhead power lines. The review will
provide an overview of the techniques and discuss the advantages and disadvantages of
each technique.

Nearly 35 studies are included in total, the majority of which were published in
scientific journals and conference proceedings. Following the overarching objective stated
previously, our focus will be on discussing various applications in which the proposed
algorithms have been used, as well as their applicability in real-world situations. The
fundamental concepts of analysis methods are presented, along with some representative
quantitative analysis results, in order to demonstrate the capabilities of various remote
sensing techniques.

Due to the broad scope of the subject and the volume of research articles, it was not
possible to include all studies or details of analysis methods. To begin, the data collection
methods used in the PLC survey using LiDAR technology have been discussed in Section 2.
For each type of data, some fundamental principles are introduced first, with an emphasis
on aspects pertinent to power line surveys. This enables us to discuss the general merits
and drawbacks of various approaches. Then, studies in the literature pertaining to power
line mapping are reviewed and discussed in light of the findings of previous studies on
power line extraction and reconstruction in Section 3. Finally, a summary including the
future possibilities is presented in Section 4.1 and concluding remarks in Section 5.

2. LiDAR Data Collection Systems

Figure 1 shows categories of LiDAR data collection. In general, laser scanning systems
are divided into two main categories:airborne- and terrain/ground-based systems [30].
Airborne acquisition allows us to cover large areas quickly. A terrain or ground-based
acquisition system employs a LiDAR mounted on a vehicle or on a device on the ground
(see Figure 2).

Figure 1. Different LiDAR data collection systems.



Remote Sens. 2023, 15, 973 4 of 23

2.1. Basic Principles of Airborne- and Ground Based Laser Scanning

ALS uses LiDAR measurements from an aircraft (fixed-wings, rotary wings, UAV) to
acquire environmental data (see Figure 2). The GNSS (Global Navigation Satellite System)
and IMU (Inertial Measurement Unit) measurements reveal the sensor’s orientation. The
sensor generates data in the form of point clouds with coordinates (x, y, z). Additionally,
the location of the pulses as well as their intensity are recorded. When a laser ray is pointed
at an object, the receiver can detect up to four echoes per pulse [31]. Targets produce
different echo signals for the same ray. Multiple echoes can represent detect treetops,
intermediate plants, the ground, and other objects. The number of returning echoes and
height discrepancies can be used to analyse the data. Full-waveform laser scanning records
the shape of returning echoes.

In recent years, rapid technological advances in UAV component and battery technolo-
gies have increased the viability of UAV-based data collection for power line inspection. The
increased availability of lightweight sensor systems and the development of UAV-related
legislation have contributed to UAVs’ commercial applicability.

Terrain laser scanning used ground-based remote sensing systems. These systems can
be mounted on static tripods (Terrestrial Laser Scanning, TLS) or on vehicles (Mobile Laser
Scanning, MLS). TLS scans closer to targets than ALS systems, allowing for collecting data
with greater precision. In spite of this, MLS must travel on roads that do not always exist
because of overhead high-voltage power lines.

The basic working principle of TLS and MLS is same as that of ALS, in In ground-based
systems (TLS and MLS), the INS and the GNSS are mounted on vehicles or on tripods.
These systems can move in all directions, including upwards. Once scans of a single area
are complete, the tripod or vehicle is moved to another location to scan from another angle
or capture data from a new area.

Stationary systems can produce more detailed and high-density point clouds because
the sensor is kept perfectly still throughout the scan. This reduces the risk of point cloud
outliers. Static systems can also move so multiple scans can be carried out of a single area
from various angles, creating a more accurate and detailed picture of the environment.

2.2. Mapping of Power Lines from Airborne and Ground-Based Laser Scanning

The ALS data over power lines are typically collected by helicopter or by fixed-wing
air planes, and the point density is typically in the tens of points per m2 but can reach
hundreds. On hard surfaces, the points have an absolute accuracy of 5–10 cm in the
horizontal plane and 2–5 cm in the vertical direction [32]. Such information can be used to
precisely map the shape of power lines. Because of the density and accuracy of the points,
detailed mapping and monitoring of power lines and their surroundings are possible.
Commercial companies have been mapping PLCs with LiDAR since 1995, and FLI-MAP
has recently mapped thousands of kilometres of power lines [31,33]. A complete work
flow of processing, analysis, and corridor clearance can be completed in less than 72 h as
a state-of-the-art data acquisition method, allowing an airborne LiDAR data processing
platform to provide uninterrupted rapid mapping services [34]. Helicopters have been
used most frequently in power line studies because they can easily follow PLCs and take
measurements from extremely low altitudes.

The use of UAVs carrying new sensors for electric power inspection has been devel-
oped largely since the end of the 20th century [35]. Given that the high-voltage power line
facilities in remote or harsh environments are generally difficult to reach, UAV mapping
presents huge advantages by saving manpower and producing more reliable results. UAV
systems have been increasingly used by communities due to their low cost, less strict
requirements for take-off and landing, and their ability to load different types of sensors
(e.g., camera and LiDAR) [36]. As a light-weight and close-range ALS technology, UAV
LiDAR, usually equipped with middle-sized or small laser sensors, has been rapidly de-
veloped for transmission line inspection as a time-saving and cost-friendly solution. It
can directly generate dense point clouds in 3D with a higher level of precision compared
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to aerial optical imagery and video [37–39] because image-based techniques can produce
noisy results from the stereo-matching stage [39]. According to comparative studies of
power line monitoring, the accuracy of height estimation for poles and trees is clearly better
when using UAV LiDAR data than aerial images [9,40]. Compared to robotic inspection [9],
UAVs have higher flexibility and larger coverage.

UAV is likely to become a popular technique in the future because it increases data
acquisition flexibility while decreasing costs. ALS sees power lines and their surroundings
from above, whether from helicopters or UAVs, which is useful for mapping power lines
and trees near them. However, it also means that vertical poles and small components are
not always visible in the data. Tree cover can also reduce power line visibility, and weather
conditions can limit the ability to fly over power lines [29].

A variety of UAV platforms have been used for power line surveys. Fixed-wing
UAVs, in general, must fly higher and faster and are best suited for vegetation monitoring
and rough inspection of long power lines, whereas helicopter and multi-rotor UAVs can
acquire detailed images by hovering close to the objects [17,41]. Deng et al. [41] proposed
a multi-platform system made up of different types of UAVs designed for specific missions.

Ground-based laser scanning is a relatively new technology that has been primarily
used to precisely map urban and street environments. It is particularly well-suited for
corridor-type applications (for example, roads), and power lines are well-defined corridor-
type objects of interest to some extent. MLS and TLS enable simple deployment and
data collection with high precision and detail for asset modelling and monitoring. The
mapping is not limited to the power line; it can also generate accurate data on the terrain
and vegetation adjacent to the line. Outside of the corridor’s roads, mobility can be
accomplished by deploying an all-terrain vehicle (ATV) or a backpack-mounted LiDAR
mapping system, also known as personal laser scanning (PLS) [42].
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2.3. Advantages and Disadvantages of ALS, MLS and TLS in Power Line Mapping

The above-mentioned laser scanning systems types have their own advantages and
disadvantages depending upon the application as shown in Table 1. They are further
described in detail below.
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Table 1. Comparison of LiDAR systems mounted on different platforms

Platforms System Scanning Density PL Mapping Weakness and
Abbreviation Perspective Application Strength

Airborne ALS Top view low Forest
mountain terrains

cost-effective and
time-saving for large areas

Airborne UAV Top view high Forest
mountain

Light weight,
time-saving

Mobile/vehicle MLS side view high Urban areas,
road side

cost-effective for
small areas

Tripod/static TLS side view high Urban areas cost-effective for
small areas

The primary advantages of ground-based surveys over ALS surveys are the increased
detail obtained from close proximity to the objects of interest and the ability to operate in
inclement weather (e.g., wind). For example, MLS operates on the vehicle, brings it much
closer to power lines than ALS (0–20 m in MLS vs. typically tens of metres in ALS). Thus,
both the point density of TLS (up to 1000 points per m2 at a 10-m range from the scanner)
and the three-dimensional precision of MLS (2–3 cm in good GNSS conditions (see [44–46])
are significantly greater than those of the ALS data. Increased point density enables a
more thorough mapping of the surrounding environment, while increased point cloud
accuracy enables the retrieval of more precise features such as surface normals and pole or
trunk diameters. Additionally, the MLS/TLS laser beam is smaller in size (i.e., footprint)
than the ALS laser beam, allowing for more detailed mapping of pylons and assets. As
a result, TLS and MLS produce a more precise map of the power line components and
corridor than ALS does. MLS and TLS scanning geometry, in comparison to ALS’s, is better
suited to mapping the components of power lines [15]. Because the ALS data are scanned
vertically, it is difficult to detect power lines stacked on top of one another. From above, the
uppermost power line casts a shadow on the ones below.

However, such power lines are easily visible in MLS data [21], as it is straightforward
to control the sensor’s trajectory to collect complete data on the power line components.
Cameras are frequently included in MLS systems, and image data can be used to model
and monitor the condition of power line components such as insulators [47]. The MLS is
an excellent choice for collecting up-to-date information about power lines and potential
damage, which would be extremely valuable following a natural disaster such as a storm.
The effort required to collect data for an MLS campaign is significantly less than that
required to shoot an ALS campaign and flying in restricted areas and in moderate wind
poses no problems. When a LiDAR system is mounted on a tripod to collect data statically,
it suffers from two major drawbacks: (1) point density decreases as the proximity from the
scanner increases, and (2) occlusion occurs when other objects are present in between.

The use of MLS to map power lines in urban areas is justified, given the difficulty and
inefficiency of flying a UAV or helicopter there. There have been few reports on the use
of MLS in areas other than the road network, including forests. When mapping power
line corridors, areas outside the road network differ in several ways from urban and road
environments, including the roughness of the ground surface, mobility constraints (e.g.,
vegetation, rough terrain, and rocks) and satellite visibility (trees blocking signals). As
a result, the positioning accuracy of the MLS system is reduced, and the point density
along the trajectory in the point clouds becomes more heterogeneous outside of the road
environment. Thus, extracting power line components automatically outside of a road
network is more difficult than in an urban or road environment.

Acquiring an TLS system is less expensive, and a variety of LiDAR sensors are available
to meet the grid operator’s needs. Additionally, the operating costs are significantly lower
than those associated with ALS. On the other hand, the TLS system cannot provide data
covering a large area, particularly when the terrain is impassable to ATVs or other wheeled
vehicles. Due to the lower acquisition and maintenance costs, multiple systems can be
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purchased for the price of a single ALS system, allowing for the use of a more time- and
space-efficient fleet for increased mileage. However, ALS systems are often cost-effective
for locating and surveying high voltage transmission lines in wide and forest areas where
personnel surveys and access by vehicles and humans are exceedingly difficult. However,
for larger projects, the airborne LiDAR system could be more cost-effective. This is because
an airborne LiDAR system can cover more ground in a shorter space of time than terrestrial
LiDAR system—saving time and budget.

3. Processing Methods

Figure 3 shows how LiDAR data are processed for power line extraction. Processing
issues with point clouds are typically brought on by their high data volume. Point clouds’
high levels of detail make it difficult to properly extract power lines because they are
packed with a variety of noise and other objects. To address this issue, methods avail-
able in literature first classify the power line scene to obtain power line points. Then,
points for single conductors or multi-conductors are extracted to reconstruct them using
mathematical models.

This section summarises numerous existing approaches that tend to remove undesired
objects from the power line scenes to obtain the power line point class. They may begin
with ground filtering, then execute supervised classification, or follow rules to identify
power line points; however, the purpose is to obtain the power line point class. This step
is an important prerequisite for the extraction and reconstruction of single or multiple
conductor power lines.

Table 2 shows the summary of power line scene classification methods. The table
details the classification procedures involved for extraction of power line points as a pre-
processing step to remove unwanted object points or to extract power line points as one
class. Typically, methods used supervised [48] or rules [49] to obtain power line points.
The second column in Table 2 shows the classification type, followed by the method used
for the given classification in the third column. The fourth column indicates whether
ground filtering was applied prior to classification. The fifth and sixth columns describe the
neighbourhood and features used for classification, followed by the density of evaluated
data sets and the precision of the results in seventh and eight columns, respectively. Each
of these columns of Table 2 is explained below in detail:

Figure 3. LiDAR data processing methods for power line mapping. (a) LiDAR point cloud data;
(b) separation of power line points Section 3.1, Table 2; (c) single power line extraction and reconstruc-
tion Section 3.2, Table 3; (d) multi-conductor power line extraction and reconstruction, Section 3.2,
Table 4.

3.1. Classification of Power Line Scene
3.1.1. Classification Type

The second column of Table 2 shows the classification type. The present meth-
ods for classifying power lines can be divided into supervised classification and rules-
based/unsupervised classification depending on the approaches used to solve the classifi-
cation problem.
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Table 2. Power line scene classification. PCA—Principal component analysis; ML—Machine learning;
HT—Hough transform; NA—Not available; TIN—Triangulated irregular network; CSF—Cloth
simulation filtering; RTF—Recursive terrain filter; DTM Digital terrain model; DSM—Digital surface
model; RF—Random forest; JB—Joint boost; SVM—Support vector machine; EC—Euclidean distance.

Author
Method Density

Results
Type Technique Ground

Filtering Neighbourhood Feature (Pt/m2) Accuracy (%)

Jwa [50] -Rules -Segmentation
-Filtering

× -Voxel -HT
-Eigen
-Density

24 NA

Munir [51] -Rules -Statistical analysis -Height -Voxel -Vertical profile 24 NA

Huan [52] -ML -Object-based
-RF

× -Segment surface -Eigen
-Intensity

NA 75.3

Liang [25] -Rules -Software × NA NA 1.2 NA

Yang [53] -Rules -Height filtering TIN NA NA 41–100 NA

Melzer [54] -Rules -Culling filtering -DTM -2D grid NA 25.5 NA

Otega [55] -Rules -Statistical
-Image-based

× -Pixel -Height
-Intensity
-Return number

307–402 97.4

Zhang [29] -Rules -Statistical -Height
-DEM
-DSM

-2D grid -Density
-Height

307–402 96

Guo [56] -ML -Point-based
-JB

× -Voxel
-Sphere
-Cylindrical

-Geometric
-Radiometric
-Topographic

NA 88.69

Zhou [57] -Rules -Segmentation -Height -2D grid
-3D grid

-Height 213.6 98.18

Jung [28] -Rules -Height
-Image
filtering

-Morphological -3D grid -Eigen 213.6 NA

Lehtomaki [58] -Rules -PCA -Software -Voxel -Eigen NA NA

Zhenwei [59] -Rules -PCA -CSF -K-d tree -Eigen NA NA

Fan [60] -Rules -Filtering -DTM
-Height

-Voxel NA NA NA

Gaha [61] -Rules -EC
-RANSAC

-Morphological -Cylindrical NA NA NA

Yadav [19] -Rules -Segmentation -Height -2D grid -Density NA NA

Cheng [21] -Rules -Filtering -Height -Voxel -Density
-Eigen
-HT

19 NA

Guan [22] -Rules -Filtering -TIN -Voxel -Density
-size
-shape

286.4 NA

zhang [62] -ML -Object-based
-RF

× -Segment surface -Eigen
-Intensity

1.2 75.3

Kim [48] -ML -Object-based
-RF

-RTF -Segment -line 30 98.5

Kim [63] -ML -Point-based
RF

-RTF -Voxel
-Sphere

- Geometric
-Radiometric
-Topographic

30.29 98.5

Wang [10] -ML -Point-based
-SVM

Tiff
toolbox

-Cylindrical
- Sphere
-Slant
cylindrical

-Geometric
distribution

30 98.04

Supervised classification is the classification of PLC points into different classes us-
ing a machine learning classifier. Machine learning is a powerful supervised statistical
method that can be used to separate power line points from 3D LiDAR data. Popular
classifiers for laser point classification include Support Vector Machine (SVM) [10,62], Ran-
dom Forests [48,64], JointBoost [56], and others. Thus, supervised classification necessitates
training data, features, and a classifier.
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The need for training data is the greatest drawback of supervised algorithms, yet they
are excellent for multi-class classification. By utilising machine learning and automatic
feature selection, a significant amount of the arduous design and programming work inher-
ent in conventional voxel feature classification methods is eliminated. Consequently, for
complicated landscapes due to their efficiency, machine learning classification techniques
are preferred to traditional/rule-based classification techniques for classifying objects with
many kinds.

Rule-based classification attempts to discover general rules that are based on piecewise
linearity and other geometric characteristics of power lines. Usually, this approach focuses
on specific object types. It can attempt to discover general rules that can be used to classify
point clouds of many different kinds of landscapes, but a disadvantage is that it makes
many assumptions. This classification approach does not require training data; hence, it is
unsupervised. As rules are derived from the data sets, therefore the classification rules are
not necessarily transferable from one point cloud to another.

3.1.2. Method

An approach based on supervised classification is typically used object-based [48]
and/or point-based [63] methods for classification (see Column 3, Table 2). Segmentation-
based classification methods aggregate related objects in segments using different algo-
rithms such as surface-grown [62], region-grown [52], and extract features from each
segment. Usually, this approach focuses on classification of specific object type and di-
vides all point clouds into one geometric form, which is irrational. Despite the limitations,
segment-based classification methods have two main benefits over point-based classifica-
tion methods: (i) segments help compute geometric features, relieving the need for neigh-
bourhood optimisation [56,65] and (ii) segments give several new attributes that can be
used to apply semantic rules [52]. On the contrary, the point-based classification separates
the point clouds into different classes directly. Segment-based classification methods pro-
duced low accuracy for wire class if planes are used to detect object which is not suitable for
wires [52,62]. These methods are good for building classification but offer low accuracy for
wires as wires are of line geometric shape. Kim et al. [48] achieved better accuracy as they
remove the ground point beforehand and used lines to detect segments which are suitable
for wires.

On the other hand, rule-based classification is on hierarchical rules to achieve classifi-
cation [28,60]. These rules may include statistical analysis [50,51] or hierarchical filtering
procedures [21,28].

3.1.3. Ground Filtering

The fourth column of Table 2 shows different methods to perform ground filtering
prior to classification. Ground and height filtering is critical prerequisites for reducing
unwanted objects. The point cloud data for power line extraction include not only power
lines but also a large number of outliers that are lower than power lines (ground, shrubs,
low buildings, and so on), which will impede extraction. Ground is considered the most
dominant class in datasets, whether from the urban or forest areas. The elimination of the
dominant class improves classification accuracy [48] and makes the following step more
efficient [28]. Ground point classification is an important step in creating a DTM (Digital
Terrain Model) from LiDAR point cloud.

Researchers have used a variety of LiDAR data ground filtering algorithms, such
as morphological ground filtering [28,61], cloth simulation [60], triangulated irregular
network (TIN) [22], and RTF (Recursive Terrain Filter) [63]. The TIN densification filtering
algorithm is thought to be robust and stable for modelling discontinuous surfaces such
as urban areas [66,67]. In addition, a simple morphological filter (SMRF) and a multi
resolution hierarchical filter (MHF) rank first in urban and forest areas, respectively [68].
The cloth simulation filtering (CSF) algorithm has recently gained popularity on relatively
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flat terrain. Because it has small number of parameters and simple to configure, most
objects in the cropped data are lower than power lines.

Since there is typically vegetation below power lines, some methods use height criteria
to remove LiDAR points below or above the lines. These height thresholds are 4 m [28],
6 m [22], and 5 m [60]. However, height filtering alone is ineffective because tall or long
buildings or trees will not be eliminated. For example, points which are 4 m above the
ground are the candidate points for power lines. However, If the terrain is complicated, it
is impossible to eliminate ground points using the absolute height of the data points alone.

3.1.4. Neighbourhoods

For classification of power lines either by using supervised or unsupervised methods,
methods make use of different 2D [19,55] and 3D [50] neighbourhoods to compute the
properties of individual points for power line point classification (see forth column Table 2).
The 2D neighbourhood either utilize a grid to interpolate the 3D point cloud into 2D grid as a
raster image, and each grid (pixel) represents one object points [55], or the methods divide the
point cloud onto 2D grid data [19]. The 2D neighbourhood provides the advantages of efficient
management of enormous quantities of LiDAR. However, the grid-based neighbourhoods
implicitly assume that each grid represents one object only; however, pixel represents only,
vertical overlaps exist between wire and terrain, vegetation and wire, wire and pylon, so this
the main limitation of the grid-based neighbourhood.

Determining the type and size of a neighbourhood is vital [63]. Methods select scale
values using heuristic or empirical knowledge of the scene or data. Large neighbourhood
sizes are efficient, but they may contain several object points, whereas small neighbourhood
sizes may have few or no object points and require more time to estimate features. The
smaller neighbourhood makes it more difficult to identify wires and other objects. Neigh-
bourhoods can be spherical [56], cylindrical [64], voxel [63], or k-closest [10]. Wang et al. [10]
introduced a new neighbour (slant cylindrical) based on power line direction. Mclaugh-
lin [69] discussed the disadvantage of using ellipsoid neighbourhood in their paper, i.e.,
if neighbourhood has the intersection for vegetation and transmission line will lead to in
classified data. If an ellipsoid grid has a few points in direction of power lines, they will
be classified as vegetation. Features can be derived from one neighbourhood type with a
variable scale parameter or from many neighbourhoods.

The sphere-based method was more exact and reliable and had a high success rate
than the voxel-based method. Nevertheless, due to its quick feature extraction, voxel-
based neighbourhood can rapidly categorise large-scale corridor data. Mostly, the methods
voxel-based neighbour hood for rules-based classification (see Table 2). Wang et al. [10]
compared the classification of power line scene and argued that spherical neighbourhood
yielded superior results in comparison to voxel, cylindrical, and k-nearest neighbourhood,
and also claimed that slant cylindrical provided the best performance. Determining the
ideal neighbourhood size for each location is still challenging unfortunately, as these
neighbourhood optimisation methods necessitate repeated calculations of eigenvectors and
eigenvalues for each point; hence, they are somewhat time-consuming; this is the primary
drawback of this type of classification [52]. In object-based supervised classification, the
segment is considered as neighbourhood, and each segment represents geometric structure
by using model-fitting-based methods or region-growing-based methods [52].

3.1.5. Feature

The proper identification of power line points is contingent on the extraction of valu-
able features that can differentiate power lines from other objects [10]. There are two
primary kinds of features for identification power line points: reflectance-based or radio-
metric features and topographic or geometric features. These features can be estimated
using 2D or 3D neighbourhood or directly from the segments. Frequently, radiometric
parameters are associated with the intensity [25] and echo [55] captured by scanner sys-
tems. Therefore, the uniqueness of these types of characteristics is strongly dependent



Remote Sens. 2023, 15, 973 11 of 23

on the signal quality of the scanner. The common sets of features that are used for a 2D
neighbourhood are Hough transform (HT), height, intensity and return number. The
groups for power line components have lower and less diverse returns than the rest of the
categories [55]. Power lines, pylons or dense vegetation areas imply a low reflectivity
and hence show low intensity values. However, power lines have very similar low in-
tensity values to trees, which made it difficult to discriminate them from their intensity
values [25]. The initial classification by using intensity, echo, and return by the first can in-
clude false positives and require post processing to improve classification accuracy [25,55].

The 3D features are computationally extensive but preserve the 3D details. The
common sets of features in 3D neighbourhood are eigenvalues (power lines represent
very large); HT to find the lines and density which is low for power line points in a given
neighbourhood as compared to pylons and vegetation. The HT is an effective tool for
straight line detection. However, the standard HT incurs a high computational cost and
often results in the detection of spurious lines [25,55]. The computation of eigenvalue
ratio is much faster than HT [50]. The contemporary methods for determining power line
characteristics make extensive use of geometric features [52]. The 3D features provide
greater precision than grid-based features [63]. Their characteristics are more suited for
objects that overlap.

It is important to note here, for object-based supervised classification, that the features
are extracted from segment characteristics. These characteristics contain qualities between
objects. Segmentation-based features are helpful to compute geometric features, relieving
the need for neighbourhood optimisation [56,65] methods, and segments give several new
attributes that can be used to apply semantic rules [52]. However, this approach focuses on
classification of specific object type.

3.1.6. Density and Classification Accuracy

The last column of Table 2 shows the classification accuracy. Most of the rule-based
methods lack classification accuracy results. The majority of methods for rule-based clas-
sification use this technique as a pre-processing step for the extraction of single power
lines. The elimination of ground points prior to classification improving the classification
accuracy can be seen in Table 2 [10,63]. This is due to the fact that ground is a major
class while pylons and wires are minor classes, so the imbalanced training will affect
the classification accuracies. Kim et al. [64] observed that imbalanced learning reduced
classification accuracy. It can also noted that the RF [63] and SVM [10] classifiers yielded
better classification accuracies, i.e., 98% as compared to the JB classifier [56], i.e., 88%. In
addition, Kim et al. [48] used segment as a line for feature extraction as compared to sur-
face [52,62] and yielded better results. Overall, classification using multi-classifier achieved
the highest classification accuracy [64]. Post-processing, such as contextual limitations, can
also improve classification. Guo et al. [56] improved power line classification accuracy
from 86.5% to 87.1% by adding graph-cut segmentation as a post-processing step.

3.2. Power Line Extraction and Reconstruction

After separating power line points from other object points such as vegetation, pylons,
and buildings, the next step is to identify the points that belong to individual power lines.
As mentioned in Section 3.1, the previous methods classified PLC points into various classes
using both supervised and unsupervised methods. However, for reconstruction, the point
cloud data have to be classified, and points on single power lines need to be rendered. The
wires are very thin as compared to buildings, trees and pylons; thus, the actual number of
points reflected from wires is far smaller than the number of input points. This issue makes
single power line rendering very difficult [27]. In this category, the techniques for single
and multi-conductor power line extraction and reconstruction have been reviewed. The
proposed methods, algorithms, and results are compared, and their real-time application
effectiveness is estimated.
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Table 3. Single power line extraction using ALS. LS—Least square; PL—Power line; HT—Hough transform; CLF—Compass line filter; EC—Euclidean clustering;
NM—Numerical method; SC Stochastic constraints; NA—Not available; Cp—Completeness; Cr—Correctness.

Author
Method Extraction Reconstruction Density Results

Extraction
Results
Reconstruction

Grid Span Curve Technique Pt/m2 Point-Based Object-Based Fitting Error

Mclaughlin [69] -Piecewise
-Mean and
dominant Eigen

-Ellipsoid 3 -Catenary -NM 2.5 NA Cr 72.1 NA

Jwa [50] -Piecewise
-CLF
outlier testing

-Cuboid 3 -Catenary -SC 24 NA -Cp 96 <0.05 m

sohn [70] -Piecewise
-CLF
outlier testing

-Cuboid 3 -Catenary -SC NA NA -Cp 100 <0.05 m

Guo [71]
-Profile
segmentation
-Geometry matching
ratio

NA 3 -Polynomial -RANSAC NA NA -Cr 89.8 NA

Munir [72]
-Profile
segmentation
-HT
-Geometry matching
ratio

NA 3 -Polynomial -LS 23.6 to
56.4

NA -Cp 97.6
-Cr 99.5

0.0001 m

Liang [25] -CLF
-RANSAC
-Linear model

NA × -Polynomial -NM 1.2 Cr 96.5 NA NA

Yang et al. [53] -EC
-RANSAC

3D grid × -Catenary -LS 1.2 NA -Cp 98.1
-Cr 95.9

NA

Melzer [54]
-Clustering
-HT
-Neural gas
network

NA 3 -Catenary -RANSAC NA NA NA NA

Zhang [29]
-Clustering
-Eigen
-Height
-Spatial continuity
-CLF

-3D grid 3 -Catenary -RANSAC 307–402 -Cp 96.3
-Cr 96

AN 0.241 m
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Tables 3–5 summarise the methods used for single conductor and multi-conductor
extraction using ALS and MLS data, respectively. All of these approaches use some methods
such as clustering and geometry matching, segmentation to extract the points belonging to
each power line in single or multi-conductor configuration (see Column 2 of Tables 3–5).

3.2.1. Method

The traditional single power line extraction methods are mainly based on region
growing [50,69]. The algorithms begin with an arbitrarily chosen neighbourhood (ellipsoid
or voxel) in the direction of power line, and then generate models by estimating parameter
of members in group and iteratively add adjacent matched neighbourhoods with similar
parameters, progressively refining the catenary parameters. However, the extraction and
reconstruction of individual power lines could fail in some situations causing power line to
be divided in two or more power lines or undetected. This is primarily due to sparseness
of the data, resulting in a failure to first compute a reliable local model or to find the
connected neighbourhood. These approaches are extremely dependent on the direction of
the power line. Using campus line filter (CLF), Jwa and Sohn [50] approximated the power
line direction of a classified power line points. Similarly, Mclughlin [69] emphasised in
their work that the orientation of the power lines should be parallel to the major axis of the
ellipsoid neighbourhood; otherwise, the approach will fail to extract power lines.

In order to overcome these challenges, several clustering techniques, such as Euclidean
clustering [53] and agglomerative clustering [73], have been utilised to group individual
power line points into clusters and power line clusters merged using spatial continuity
and local collinearity [29,53,74]. However, clustering can work in ideal situations when
the density of data is high, and there are moderate gaps between power lines. However,
in practice, the extraction and reconstruction of power line could fail in certain situations,
resulting in multiple clusters for the same power line because the algorithm is unable to
find the merging clusters due to the gap [28,53,74].

Typically, prior to clustering, some approaches convert the classified data to a 2D
grid [19] or an image [75], and then utilise HT [75] or RANSAC [58,61] to extract the lines
from the classified power line points. In the grid size, the power line should be isolated
within a horizontal segment. In addition, the resolution of the grid is determined by the
sparsity of a given LiDAR point cloud. A low resolution will reduce the size of the image,
making the individual objects on the power line appear too small, but a high resolution
will make the points in image too sparse.

The HT algorithm is an effective tool for obtaining the straight line detection. However,
the standard HT incurs a high computational cost and often results in the detection of
spurious lines [25,25]. However, for the RANSAC algorithm, the computational complexity
is highly sensitive to the user parameters. In both cases, if the two wires are located close to
each other, it is difficult to separate them.

Some other approaches [71,76] used profile segmentation with a region growing
algorithm to connect comparable points belonging to each individual line in a given span
in order to circumvent the limitations of clustering and piecewise algorithms; however,
they largely relied on pylon positions.

3.2.2. Grid Transformation

For extraction of single or multi-conductor power lines, some methods transform
the point cloud into a 2D grid [19,69] or to a 3D voxel grid [28,51,77]. The 2D grid-based
methods have limitations, as they interpolate the 3D point cloud into a 2D grid, which
causes the overlapping of multiple objects [51,73]. Among these grids, a voxel grid is
considered as more efficient and reliable [29]. The grid selection and size is an important
factor for the extraction of single power line points. The 3D voxel grid helped to compute
the geometric features of power line by ensuring that other objects were separated from
voxel blocks containing power lines [29].
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The size of grid depends on various factors such as sparseness of data [69], the
cross section of bundle conductors [29], and span length [50]. To determine an adequate
neighbourhood size, two parameters were considered: the distance between two power
lines to avoid a situation in which the target points are mixed with other power line
points; and the density of the community to provide sufficient points. Usually, the size of
5 × 5 × 5 m3 for voxel is used in many papers [29,51].

3.2.3. Sub-Conductor

Extraction of individual sub-conductors from bundles is generally an uncommon
area of research; most existing methods extract power line points as a class or consider
bundle conductors as a single conductor for power lines extraction and modelling [51].
Multi-conductor spans comes in different configurations, i.e., four sub-conductors in a
bundle or two sub-conductors in a bundle. As shown in Figure 4, these conductors in a
bundle are very close to each other, and the extraction of sub-conductors is not an easy task.
Notably, the precise modelling of power line is highly reliant on the accurate extraction of
each sub-conductor. Identification and extraction of bundle conductors are essential for
accurate modelling and mapping of each power line. A few studies have concentrated on
extraction and reconstruction of sub-conductors.Version January 25, 2023 submitted to Journal Not Specified 15 of 25

Figure 4. Data Collecting Methods Using LiDAR.
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Figure 4. Sub-conductors configuration. (a) high-voltage transmission line tower with bundles in
sub-conductors configuration; (b) magnified version of bundle from (a); (c) LiDAR data for span with
bundles in four sub-conductors configuration; (d) magnified version of bundle from (c); (e) LiDAR
data for span with single power line; (f) magnified version of bundle from (e).

These methods start with classification of the power lines scene using the method de-
scribed in Section 3.1. Column 4 of Table 4 shows the methods which attempt to extract and
reconstruct a sub-conductor. For sub-conductor extraction, most of the work conducted by
Munir et al. [26,51,75,76] using both image-based and point-based methods. All techniques
utilised ALS data with multi-bundle configurations on corridors that traverse outside of
urban regions. These approaches have been evaluated on datasets with a very low point
density. With excellent precision, Munir et al. [26] and Zohu [74] are able to extract up to
four sub-conductors.
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3.2.4. Span

A few approaches also indicated that pylon placement can facilitate the extraction of
power lines in the form of spans [27,51]. These methods make use of the distribution char-
acteristics of power lines, i.e., similarity, parallelism, identical sag and direction between
neighbouring pylons. The additional information, e.g., power line distribution within a
span and contextual pylon data, helps with the improvement of power line extraction and
reconstruction. Locating spans relies heavily on pylon detection. These methods first detect
the location of pylons in order to locate spans, or they use predefined locations from the
dataset. This will reduce the size of the point cloud, making it easier to extract power lines
in each span [71]. Additionally, it reduces the difficulty of analysing LiDAR data.

Extracting pylons prior to power lines is easier in forest settings because the size and
height of pylons is much larger than that of trees, and pylons in forest locations are in
predefined corridors [26], Nonetheless, if pole recognition had been performed prior to the
removal of electricity lines in metropolitan areas, a significant proportion of tree trunks
would have been misidentified as poles because of height similarities [58].

3.2.5. Reconstruction

After rendering individual power lines, they are using different fitting algorithm. Due
to the fact that the power line model is nearly identical to the catenary and, with sagging pos-
ture, power lines are often modelled with a second order polynomial equation in 3D [27,78],
catenary [29], and parabola [19]. As discussed above, some methods have carried out extrac-
tion and reconstruction together using a piece-wise technique [69,79]. Alternatively, power
lines can be modelled separately with a straight line in the horizontal plane and catenary in
the vertical plane by estimating parameters using numerical methods [73].

In literature, many mathematical models such as catenary curve, piecewise line, and
parabola have mostly been used in conjunction with a RANSAC [29,54,71] or least square
(LS) [53] algorithm for power line reconstruction. Many methods used CLF to find direction
and then used RANSAC [78] orthogonal distance [29] to find the points that belong to each
line. RANSAC [71,74] and least square [53] algorithms are also used for estimating parame-
ters for the catenary curve. The RANSAC algorithm is more robust to the outliers [72], but
the reconstruction model heavily relies on reliable initial parameter settings [71] and on
effective seed section [71].

3.2.6. Results

Although there have been many advances in power line extraction from point clouds,
notable limitations can be summarized in terms of efficiency, versatility, and robustness.
Reliance on supplemental data, such as predefined pylon locations [71] and pre-classified
data, limit the versatility of the approaches to a specific system (e.g., MLS, ALS, TLS)).
Furthermore, many approaches have been tested and optimised on a limited number of
datasets and, therefore, may not scale to work effectively with other datasets acquired in
diverse conditions (e.g., urban, rural, and forest areas) and a reliable parameter setting
is still an issue in many studies. It is impossible to draw a precise conclusion about
achievable accuracy or compare various approaches due to the wide variety of study areas
and quality evaluation methods. Some methods [26–28], have collected the ground truth
points to estimate the point-based completeness, correctness and quality. While some other
methods [19,50,61], have estimated the object-based accuracy by counting and comparing
the number of power lines detected, undetected, and split.

Only a few visual demonstrations have been used to present the findings in numerous
studies. Studies with larger tests conducted under realistic conditions and numerical
quality analyses appear to be rare. Due to the slenderness of power lines, the laser point
density must be relatively high for effective power line extraction. The extraction process
can be complicated by vegetation and the complexity of the power line network. Because
power lines are such narrow objects, the density of the laser points should be relatively
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high in order to achieve good power line extraction results. The surrounding vegetation
and the complexity of the power line network can make extraction more difficult.

Tables 4 and 5 show point-based and object-based power line extraction accuracies for
these methods. Mostly, the methods which have extracted power lines in the form of spans
have achieved high completeness and correctness [26,50] as compared to others which did
not consider pylon locations [28,58].

Table 4. Power line multi-conductor extraction using ALS. LS—Least square; PL—Power line; HT—
Hough transform; CLF-Compass line filter; EC—Euclidean clustering; NM—Numerical method; SC
Stochastic constraints; NA—Not available; Cp—Completeness; Cr—Correctness.

Author
Method Extraction Reconstruction Density Results

Extraction
Results
Reconstruction

Grid Sub-
Conductor Span Curve Technique Pt/m2 Point-

Based
Object-
Based Fitting Error

Munir [72] -HT
-Profile
segmentation

-NA 4 3
-Catenary -RANSAC

-LS
23.6–56.4 NA -Cp 95.9

-Cr 100

Munir [26] -Image-based
-Clustering

NA 4 3 NA NA 23.6–56.4 -Cp 97.1
-Cr 100

-Cp 92
-Cr 95

NA

Awrangjeb [27] -Segmentation
-Image-based

2D plane 2 3
-Polynomial -NM 23.4–56.4 -Cp 95

-Cr 100
-Cp 92.6
-Cr 99.6

0.012 m

Munir [76] -EC
-Line fitting

2D plane 4 3 NA NA 23.6–56.4 -Cp 99.15
-Cr 100

-Cp 99
-Cr 100

NA

Munir [51]
-Point-based
-Voxel alignment -Voxel 2 3 NA NA 23.6–56.4 -Cp 97.9

-Cr 98.9
-Cp 92.5
-Cr 96

NA

Zohu [74]
-2D plane
projection
-Line
fitting

NA 4 × -Catenary -RANSAC NA -Cp NA
-Cr 98.9

0.02 m

Table 5. Power line extraction using MLS. LS—Least square; PL—Power line; Cp—Completeness
Cr—Correctness; EC—Euclidean clustering (EC); Ht—hough transform; NA—Not available.

Author
Method Extraction Reconstruction Density

Results
Extraction
(%)

Results
Reconstruction
(m)

Grid Span Curve Technique Pt/m2 Point-Based Object-
Based Fitting Error

Jung
[28]

-Filtering
-EC

-Voxel ×
-Straight line on
X-Y plane
polynomial on
Y-Z plane

-Numerical
method

213.6 -Cp 93.9
-Cr 96.65

NA 0.007

Lehtomaki
[58] -RANSAC -2D plane × NA -NA 24 -Cp 93.6

-Cr 93.9
NA NA

Zhenwi
[59]

-EC
-PL direction

-NA × -Catenary -Numerical
method

NA -Cp 98.06
-Cr 99.8

NA NA

Fan
[60]

-EC
-Segment
matching

NA 3
-Straight line on
X-Y plane
polynomial on
Y-Z plane

-LS NA -Cp 10
-Cr 98

NA 0.015

Gaha
[61]

-RANSAC NA 3
-Straight line on
X-Y plane
polynomial on
Y-Z plane

-Numerical
method

NA NA -Cp NA
-Cr 98.9

NA

Guan
[22]

-HT
-EC

NA 3 -Polynomial -Numerical
method

286.4 NA -Cp 98.84
-Cr 99

0.06

Yadav
[19]

-HT
-EC

2D plane
3 -Parabola -LS 16.70 NA -Cp 90.84

-Cr 98.84
NA

Only a few methods have been able to estimate the root means square error (RMSE).
The overall comparison shows that the methods based on span locations for the extraction
and reconstruction comparatively showed better completeness and correctness [51,70].



Remote Sens. 2023, 15, 973 17 of 23

The Guo et al. [71] method based on segmentation achieved 90% completeness while the
Zhang [29] method based on clustering achieved 100% completeness. However, Guo et al. [71]
claimed that their method can reconstruct power lines with a gap of 10 m, whereas the
Zhang [29] method will be affected if the gap is greater than 4 m, and the Zhou [74] method
would fail if the gap is greater than 6 m. Munir et al. [26] and Zhou et al. [74] were able to
reconstruct four sub-conductors with a precision of 0.2 m, respectively, while Awrangjeb [27]
was able to reconstruct two sub-conductors with a modelling error of 0.001 m.

Until now, only a few studies have focused exclusively on the extraction of power lines
from MLS point clouds. Mostly, these studies have concentrated on urban environments
and extracted single power line spans, not only due to the obvious mobility limitations of a
standard MLS mounted on a car, but also due to the technology’s relatively recent emergence.

4. Discussion
4.1. Summary of Methods for Power Lines Extraction and Reconstruction

Based on our examination in Section 3, we may assume that, when LiDAR technology
was originally released, the classification of power line scenes was the primary focus. The
classification findings obtained using machine learning techniques are more applicable and
accurate than rule-based classification. Furthermore, some studies trained the data with
numerous classifiers and neighbourhoods, resulting in higher precisions and accuracies [48].
Using post-processing procedures can help improve classification [56]. On the other hand,
the rule-based classification does not require training data, but methods rely on a number
of parameter settings.

As LiDAR technology matured, utility companies looked for improved PLC survey
alternatives. Power line modelling calls for conductor-specific points to simulate 3D power
lines. Numerous studies have examined the extraction of a single power line using fixed-
wing and rotor-wing aircraft.

The majority of methods employ some common steps, i.e., classification of power line
scene first using machine learning classifiers [74] or pre-processing steps to remove ground
and other non-power line points using various filtering techniques such as density and
height filtering [28]. To find individual power line points, many studies used Euclidean
clustering algorithms as well [76]. In addition, some methods use the HT algorithm [75] to
detect power lines and then apply clustering to connect the power line segments.

As research increased, the point cloud grew in size, and managing the big file size
became a new difficulty. In numerous studies, a voxel grid was utilised to address this issue
by transforming the irregular structure of point clouds into regularly spaced sub-sampled
points or filtering features to preserve the essential details contained in the point cloud
while drastically reducing the dataset size [28,51]. Some approaches have also showed that
the location of pylons can facilitate the extraction of power lines in the form of spans [76].
As the configuration of power lines remains the same in each span, extracting the spans
first will aid in extracting the bundle conductors and modelling the power lines with the
same parameters. This will reduce the size of the point cloud, making it easier to isolate the
power lines from each span [27]. Additionally, it minimises the effort required to process
LiDAR data.

For reconstruction of power lines, the studies given in literature are grouped into
two categories. The first category of studies used the idea of extracting the un-organised
candidate power line points and then employed clustering algorithms to group power line
points into clusters. Mathematical models were then fitted to seed clusters, which were
grown by adding adjacent points consistent with the trend of the model [21,28,69].

However, in other categories, the mechanism is developed using image-and point-
based methods to extract the segments of power lines and then the segments are modelled
using the mathematical models such as parabola [19], catenary [69,71,79,80], and these
segments are considered as seed regions and extended by estimating the parameters using
the algorithms such as the RANSAC and least square algorithms [71,74].
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High voltage wires in bundle configuration as shown in Figure 4 are required to
meet the increased demand of electricity and to transfer electricity city-to-city. In order
to perform maintenance of high voltage PLC, sub-conductor modelling is required which
subsequently required sub-conductors points extraction from the bundle.

As discussed in Section 3.2 and depicted in Figure 4, extracting the sub-conductor
from the bundle is not a simple task. With a distance of 0.25 metres, the sub-conductors
from the bundle are located very close together. Their separation is extremely difficult.
Awrangjeb [27] first proposed the concept of sub-conductor extraction and was able to
extract bundles with two sub-conductors in each. Only a few studies in literature have
focused on this problem, and among these these studies, Munir et al. [26,51,75,76] was
capable of extracting and reconstructing up to our sub-conductors in each bundle with
high precision and accuracy.

MLS/TLS data have been utilised in numerous power line extraction studies in recent
years. These methods provide techniques for the extraction of a single power line but
make no provisions for the extraction of multiple conductors. As an MLS system generates
extremely dense point clouds, they can be combined with multi-conductor extraction
techniques to detect buildings and other undesirable objects. Most studies employed the
filtering algorithm to refine numerous points [19,22,60] and to extract candidate power line
points by means of segmentation [28]. Then, clusters are filtered using RANSAC [61] or
PCA [58,59].

The testing area of these methods was mostly on urban areas [22] or rural areas
near road way environments [19], due to mobility issues of MLS. However, there are few
studies [28,61] that have tested their methods on forest locales as well and achieve good
accuracies. As MLS is a relatively new technology, the datasets have high densities, which
is very important for the accurate extraction of power lines.

Due to the variety of study topics and evaluation methods, it is impossible to compare
accuracies of the available methods for power line extraction and reconstruction.

4.2. Topics for Further Research

PLC modelling, particularly the automated extraction of power lines, is one of the most
commonly explored applications of LiDAR data. In terms of overall feasibility for reliable
automatic detection and detailed 3D reconstruction of conductors and poles, ALS and
MLS point clouds appear to be the most promising technologies. The methodologies and
expected level of information in the results vary substantially depending on the datasets
and the quality of the LiDAR data. However, due to the diversity of study topics and
quality assessment methodologies, it was hard to draw broad judgements about the amount
of accuracy that could be attained or to compare different approaches. Findings of many
studies have merely been provided in a few figures. Larger real-world tests, as well as
numerical quality analyses, appear to be unusual. This, in conjunction with the vast amount
of continuing research, shows that even simple problems, such as automatic recognition of
power line conductors from point clouds, have yet to be fully solved and tested. Comparing
the available options to assess their applicability in real time required the usage of common
data sets and evaluation tools. As demonstrated in the tables, some approaches used
point-based quality assessments, while others used object-based quality measurements.

In recent years, feature learning approaches have been adapted to address point
clouds [81–83], inspired by dense convolution, which can acquire translation in variance.
The possibility of applying deep learning (DL) to ALS point cloud for power line scene
classification using the graph data structure was recently investigated in [84] with some
initial results. DL approaches for categorising power line scenes are currently in their
infancy and require further development.

Multi-source data, on the other hand, are rarely used in research. The following are
some possible future research topics in this area: Optimal integration of ALS and MLS data
for detailed but cost-effective 3D mapping of power lines. To achieve versatile and detailed
monitoring capability, standard remote sensing techniques are combined with climbing
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robots and camera systems on power line structures. Remote sensing techniques such as
UAVs and laser scanning from airborne and land-based platforms should be given special
attention in any future development.

Typically, the starting point for power line extraction in the existing literature is
typically remotely sensed data from a single date, with no prior knowledge of the power
line structures’ location. However, some map data are available in many cases, and the map
data could be used as a starting point for change detection or as a guide for the detection
and modelling process. This is a topic that should be investigated in order to maximise the
use of existing data and possibly achieve a higher level of automation. This is also critical
in terms of map data updates. Furthermore, existing map data can be used to guide UAVs
flying around power lines.

Change detection based on remote sensing, in which datasets from two or more
dates are compared to each other, is another topic worth investigating in the context of
power line monitoring. This could be a good way to detect network component problems.
Remote sensing techniques such as UAVs and laser scanning from airborne and land-
based platforms, which are rapidly developing, should be given special attention. These
techniques will almost certainly be used to develop effective, flexible, and highly automated
monitoring methods, allowing commercial applications.

Large test datasets in various environments and realistic monitoring conditions are
required to demonstrate and verify the capabilities of automated monitoring approaches.
These should also cover difficult situations such as power lines in the forests. Careful
quality analyses and comparisons between different data sources, methods, and individual
algorithms are required to develop efficient integrated approaches.

5. Conclusions

LiDAR surveying is preferred for regular power line corridor (PLC) inspection. The
literature contains many state-of-the-art laser scanning-based techniques for the extraction
and reconstruction of overhead power lines. Laser scanning techniques are commonly used
in ALS (fixed-wing aircraft, helicopters, unmanned aerial vehicles (UAVs), and terrain-
based (mobile laser Scanning (MLS)/terrestrial laser scanning (TLS)) approaches. ALS
is commonly used for power line detection due to its large scanning range, but its low
accuracy is due to the long distance between the destination and its scanner. MLS, on the
other hand, scans closer to targets than ALS, allowing for more precise data collection.

Numerous publications have focused on classification and reconstruction techniques
for power line extraction, specifically conductor extraction. A typical procedure includes
creating a DTM, classifying the laser data to distinguish power line points from other
objects, particularly vegetation, and modelling the individual conductors in 3D. Previously,
the emphasis was on classifying power line points using supervised and unsupervised ALS
methods, but there has been a growing interest in recent years in examining the extraction
and reconstruction of power line spans with single and multi conductor configurations
using various image and point-based techniques.

This research looked at the technical and methodological limitations and provided
a comprehensive overview of the methodologies offered by various approaches using
laser scanning data from the perspective of power line extraction applications, as well
as discussed the benefits and drawbacks of each approach. This article summarised the
findings of existing works, and major issues are highlighted for power line extraction and
reconstruction using LiDAR point cloud data.

Despite the tremendous potential of aerial and mobile scanning systems, the compar-
ison revealed that human intervention and post-processing actions are still required to
achieve the desired results. Furthermore, the majority of the methods were evaluated on
small datasets on spans rather than large datasets, and only a few methods were focused
on multi-conductor extraction and reconstruction for power line modelling. These impedi-
ments impede the automated extraction and reconstruction of power lines from LiDAR
data. Several promising directions for future LiDAR experiments using deep learning
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methods are outlined in the hope that they will pave the way for PLC modelling and
assessment applications at a finer and larger scale.
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