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Abstract: Due to climate change and human activities, the eco-environment quality (EEQ) of eco-
fragile regions has undergone massive change, especially in the Tibet Plateau. The Qilian Mountains
(QLM) region is an essential ecological function zone in the northeastern Tibet Plateau, which plays a
vital role in northwestern China’s eco-environmental balance. However, EEQ changes in the QLM
during the 21st century remain poorly understood. In this study, the spatiotemporal variations of the
EEQ in the QLM were analyzed from 2000 to 2020 using a remote sensing ecological index (RSEI).
The EEQ driving factors are identified by the geographic detector, and the spatial influence of critical
factors is represented by a geographically weighted regression model. The results show low EEQ
in the QLM. From 2000 to 2020, the EEQ initially slightly improved, then deteriorated, and finally
gradually recovered. Spatially, the EEQ shows an increasing trend from northwest to southeast.
Moran’s I of EEQ remains at around 0.95, representing high spatial aggregation. “High–High” and
“Low–Low” clustering features dominate in the local spatial autocorrelation, indicating the EEQ of
the QLM is polarized. Precipitation is the dominant positive factor in the EEQ, with a q statistics
exceeding 0.644. Furthermore, the key factors (precipitation, distance to towns, distance to roads)
affecting EEQ in different periods vary significantly in space. From results we can draw the conclusion
that the natural factors mainly control the spatial patterns of EEQ, while the human factors mainly
impact the temporal trend of EEQ, the EEQ in the QLM has been significantly improved since 2015.
Our findings can provide theoretical support for future eco-environmental protection and restoration
in the QLM.

Keywords: RSEI; spatial autocorrelation; geographical detector; geographically weighted regression;
alpine area

1. Introduction

As a result of economic growth, increasing human activities, and climate change, the
global eco-environment has changed significantly in recent decades, especially in regions
with fragile environments [1]. In this context, once the ecological environmental quality
(EEQ) decreases to a certain level, many eco-environmental problems arise, including bio-
diversity decline, grassland degradation, soil erosion, and ecosystem service damage [2,3].
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Thus, it is necessary to systematically evaluate EEQ and analyze its driving mechanisms to
identify existing problems and further protect ecological integrity.

However, timely and quantitatively assessments of EEQ are challenging due to the
links between EEQ and multiple driving factors, in addition to its structural complexity
and spatiotemporal variability in ecosystem functions [4]. Nonetheless, it is urgent to
systematically evaluate EEQ to formulate socioeconomic sustainable development plans
and eco-environmental protection approaches [5]. In recent years, remote sensing has
become an effective method to investigate spatiotemporal changes in EEQ at different scales
due to the high efficiency, accuracy, availability, and low cost of remote sensing data [6].
Many studies have used a single ecological indicator from remote sensing to investigate
eco-environment status; for example, the normalized difference vegetation index (NDVI) is
often used as a single ecological indicator to assess vegetation coverage [7,8]. However, it
is difficult to fully reflect the EEQ of eco-fragile regions using a single indicator given the
complexity of its ecosystem.

To consider the ecosystem comprehensively, integrated remote sensing-based eco-
logical indicators have also been applied [9,10]. In 2006, the Ministry of Environmental
Protection of China issued the eco-environment evaluation technical specifications as an
industry standard. These specifications propose a remote sensing-based ecological index
(EI), which is widely used for eco-environment evaluation at the county level in China [11].
However, EI evaluation is greatly affected by expert experience and knowledge; in addition,
there are still numerous problems involved in developing remote sensing-based indicators
and weights [12,13]. Some researchers have aimed to develop an integrated ecological
index to objectively reflect EEQ. Xu [14] developed a remote sensing ecological index (RSEI)
that relies entirely on remote sensing technology to integrate multiple factors and that can
comprehensively reflect the ecological status at different regional scales. The RSEI incor-
porates four important remote sensing-based ecological indicators (greenness, wetness,
dryness, and heat) by using principal component analysis (PCA) [8,15]. RSEI overcomes
the limitations of using a single indicator, makes the integration of sub-indicators objective
and reasonable, and avoids the need for subjective manual settings, which are widely used
in other studies [16–19]. Therefore, the RSEI can be reliably applied to rapidly evaluate
the EEQ.

EEQ changes are linked to several factors, including topography, climate, human activ-
ities, and policy. It is vital to understand the change characteristics and factors influencing
EEQ to identify conflicts between economic development and ecosystem health [20]. To
date, researchers have applied various methods to explore the impact of potential EEQ
driving factors, such as multiple linear regression [17], gray relational analysis [21], and
forward stepwise linear regression [19]. However, these methods generally do not quantify
the relative importance of different EEQ driving factors and do not consider spatial differ-
ences in these factors. Furthermore, these methods disregard the spatial non-stationarity
and autocorrelation of driving factors in a region; therefore, these are key limitations to the
results obtained from above methods [22].

To gain deeper insights into EEQ changes, it is necessary to consider the contribu-
tions and interactions of various driving factors. The geographical detector (GeoDetector)
method, as proposed by Wang et al. [23] can be used to quantify the contributions of
independent variables to the dependent variables. This approach has been widely used
to determine the factors influencing vegetation change [7], ecosystem services [24], and
soil organic carbon [25]. Additionally, the distributions of EEQ and its driving factors are
spatial heterogeneous. The geographically weighted regression (GWR) model can be used
to explain the spatial heterogeneity between the independent variables and the dependent
variables [13,26]. Accordingly, this study combines the GeoDetector and GWR models
to comprehensively explore the impact intensity and spatial variability of natural and
anthropogenic factors on EEQ.
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The Qilian Mountains (QLM) region is located in Northwest China. This area contains
the headwaters of three important inland rivers in the Hexi Corridor region: the Heihe,
Shiyanghe, and Shulehe rivers [27]. However, increasing levels of human activity, including
mining, hydropower construction, and tourism development, have caused severe damage
to the area’s eco-environment [2]. These activities not only impact ecosystem stability in
the QLM but also threaten sustainable development of the eco-environment. To address
these eco-environmental problems, the Chinese government has successively established
National Nature Reserves and National Parks in the QLM and implemented ecological
projects such as returning farmland to forests and grasslands and the “Three North” Shelter-
belt Project. These projects and policies may have profound effects on the eco-environment
of the QLM, which may result in EEQ changes. Thus, it is urgent to evaluate the EEQ of the
QLM for eco-environmental protection.

The main aim of this study is to quantitatively represent the spatiotemporal distri-
bution of EEQ and explore its main driving factors using a combination of GeoDetector
and GWR models. Specifically, the study’s objectives are to: (1) evaluate spatiotemporal
distributions of EEQ in the QLM from 2000 to 2020; (2) explore the dynamic change charac-
teristics of EEQ; (3) quantify the relative importance of various impact factors and their
interactions on the EEQ; and (4) analyze the spatial differences of key factors driving EEQ
changes. The results of this study are expected to provide an important scientific basis for
protecting and managing eco-environments in the QLM.

2. Materials and Methods
2.1. Study Area

The QLM region (35.8–40◦N and 93.3–103.9◦E), a typical alpine area, is located on
the northeastern edge of the Qinghai–Tibet Plateau, which is known as the “roof of the
world”. The QLM area extends approximately 1000 km from the southeast to the northwest,
covering around 184,000 km2 (Figure 1). Administratively, the QLM region belongs to
Gansu and Qinghai provinces in northwest China. The overall terrain of the QLM is higher
in the west and lower in the east. The elevation ranges from 2141 m to 5748 m, with
an average value of 3500 m above sea level. This area has a typical plateau continental
climate, with a mean annual temperature of −0.8 ◦C, and annual precipitation ranging
from 150 mm to 800 mm, increasing from west to east [28]. Grassland covers the largest
fraction of the QLM, accounting for 53.45% of the total area. Barren land occupies the
second-largest area (40.15%) and mostly occurs in the western QLM [29]. The QLM region
has complex topographic and climatic conditions, and the area’s natural ecosystem is fragile
and sensitive to climate change and human activities [30]. In addition, many mining and
waterpower resources are present in the region. Such resource exploitation causes regional
vegetation damage, water quality degradation, and environmental pollution [31]. In this
context, eco-environmental issues in the QLM have received widespread attention. To
prevent degradation of the area’s eco-environment, the Qilian Mountain National Park
was established in 2018. Therefore, we hope that this case study of spatiotemporal EEQ
changes in the QLM will provide a reference for investigating and preserving other similarly
fragile areas.
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Figure 1. The Location, Digital Elevation Model (DEM), and the spatial distribution of land cover in
the QLM.

2.2. Data Source and Preprocessing
2.2.1. RSEI Datasets

Moderate Resolution Imaging Spectroradiometer (MODIS) images have been widely
used to monitor ecological status at large regional scales [19]. According to the RSEI
construction framework proposed by Xu [14], greenness, wetness, dryness, and heat are
the four ecological components of RSEI, which can be described by the NDVI, wetness
index (WET), normalized difference build-up and soil index (NDBSI), and land surface
temperature (LST), respectively. To obtain the four indexes, three types of MODIS V6
datasets were used in this study: MOD13A1 to obtain NDVI (500 m and 16-day), MOD09A1
(500 m and 8-day) to calculate WET and NDBSI, and MOD11A2 to obtain the LST (1000 m
and 8-day). To avoid the uncertainty caused by seasonal changes, we selected MODIS
images from the optimal growing season (June–August) each year from 2000 to 2020. The
MOD13A1 NDVI dataset was combined using the maximum value composite method.
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For the MOD09A1 dataset, we first used the quality layer to remove cloud and fog to
synthesize high-quality images, which were then used to calculate the WET and NDBSI.
The MOD11A2 LST product was obtained by calculating the average value of LST for
each year. All preprocessing of MODIS images and the calculation of four indexes were
performed on the Google Earth Engine (GEE) platform (https://earthengine.google.org,
accessed on 30 December 2022).

2.2.2. Driving Factor Datasets

EEQ changes are comprehensively affected by natural conditions and human activity.
To identify the factors driving EEQ changes, we selected nine factors based on the features
of the QLM and previous studies [32,33] (Table 1). The natural factors include temperature,
precipitation, altitude, slope, and distance to water sources. The temperature data were
derived from a dataset released by the National Earth System Science Data Center. The
precipitation data are the downscaled Global Satellite Mapping of Precipitation (GSMap)
dataset for the QLM from our previous work [34]. The digital elevation model (DEM) data
were derived from the Geospatial Data Cloud Platform, from which the slope values were
extracted. The human factors explored in this study include population density, nighttime
light intensity, distance to roads, and distance to towns. The population density data were
obtained from the WorldPop Project. The nighttime light data were obtained from a dataset
corrected and published by Chen et al. [35]. The water source, road, and town data were
downloaded from OpenStreetMap, and the distances of each pixel to water sources, roads,
and towns were calculated using the cost distance tool in ArcGIS 10.6. Finally, all the data
were unified at a spatial resolution of 1 km using the WGS84 geographic coordinate system
for consistency. The spatial distribution of driving factors is shown in Figure 2.

Table 1. Driving factors preprocessed in this study.

Factor
Type Variables Unit Abbreviation Data

Description Data Source

Natural
factors

Temperature ◦C TEMP Raster, 1 km http://www.geodata.cn/data/, (accessed
on 30 December 2022)

Precipitation mm PCPN Raster, 1 km Wang et al. [34]
Digital elevation

model m Dem Raster, 90 m http://www.gscloud.cn/, (accessed on 30
December 2022)

Slope ◦ Slope Raster, 90 m Extracted from DEM
Distance to water

sources km D-water Raster, 1 km https://www.openstreetmap.org,
(accessed on 30 December 2022)

Human
factors

Population density people/km2 Pop Raster, 1 km https://www.worldpop.org, (accessed on
30 December 2022)

Nighttime light
intensity nW cm−2 sr−1 NTL Raster, 500m https://doi.org/10.7910/DVN/YGIVCD,

(accessed on 30 December 2022)
Distance to roads km D-road Raster, 1 km https://www.openstreetmap.org,

(accessed on 30 December 2022)Distance to towns km D-town Raster, 1 km

https://earthengine.google.org
http://www.geodata.cn/data/
http://www.gscloud.cn/
https://www.openstreetmap.org
https://www.worldpop.org
https://doi.org/10.7910/DVN/YGIVCD
https://www.openstreetmap.org
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Figure 2. The spatial distribution of nine driving factors in 2020.

2.3. Methods

An overview workflow of this study is shown in Figure 3. The major steps are as fol-
lows: (1) calculate the four ecological indexes (greenness, wetness, dryness, and heat) using
on the GEE platform, (2) construct the RSEI and analyze the spatiotemporal differences in
the EEQ in the QLM in five periods, (3) detect intensity changes of different RSEI levels
and identify the spatial autocorrelation characteristics of the RSEI, and (4) determine the
impact of EEQ driving factors in the QLM.

2.3.1. Construction of RSEI
Calculation of Four Indicators Based on the GEE Platform

(1) Greenness index

Vegetation indexes are generally considered important indicators for monitoring
regional and global environmental change [7]. Among these, NDVI is one of the best
indicators for monitoring the growth status of plants and measure global greening [36].
Therefore, the greenness index in this study is represented by NDVI, with NDVI datasets
were extracted from the MOD13A1 imagery.
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Figure 3. Flow diagram of the study.

(2) Wetness index

The WET was obtained by the Tasseled Cap transformation widely used in ecological
monitoring studies, reflecting vegetation status, soil moisture, and soil deterioration [37].
As defined in previous studies [8,19], the wetness index is calculated as follows:

WET = 0.1147 ∗ Red + 0.2489 ∗ NIR1 + 0.2408 ∗ Blue + 0.3132 ∗ Green
−0.3122 ∗ NIR2− 0.6416 ∗ SWIR1− 0.5087 ∗ SWIR2

(1)

where Red, NIR1, Blue, Green, NIR2, SWIR1, and SWIR2 represent the reflectance values
in the red, near-infrared 1, blue, green, near-infrared 2, short-wavelength infrared 1, and
short-wavelength infrared 2 bands of MOD09A1, respectively.

(3) Dryness index

Dryness, in the context, indicates areas of no vegetation or very little soil moisture
such as in open areas and built-up areas in cities [36]. Dryness is represented by the NDBSI,
which is constructed based on the bare soil index (SI) and the index-based built-up index
(IBI) [15]. The IBI was proposed by Xu [38] and has been commonly used to accurately
map built-up land. In addition, the QLM region has an extensive area of bare soil, which
also causes dryness conditions; thus the SI is used to identify these bare areas [15]. The
formulas for these indices are as follows:

NDBSI = (IBI + SI)/2 (2)

IBI =
2 ∗ SWIR1/(SWIR1 + NIR)− [NIR/(NIR + Red) + Green/(Green + SWIR1)]
2 ∗ SWIR1/(SWIR1 + NIR)− [NIR/(NIR + Red) + Green/(Green + SWIR1)]

(3)

SI = [(SWIR1 + Red)− (NIR + Blue)]/[(SWIR1 + Red) + (NIR + Blue)] (4)

where SWIR1, NIR, Red, Green, and Blue denote the reflectance values in the corresponding
bands of MOD09A1.

(4) Heat index

LST is an essential indicator for studying ecological processes, climate change, drought,
evapotranspiration, vegetation density, and surface energy balance [8,39]. Thus, we selected
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LST as the heat index for this study. The digital number (DN) value of the LST_Day_1km
band in the MOD11A2 data was converted to degrees Celsius units using the following
equation [17]:

LST = DNLST_DAY × 0.02− 273.15 (5)

where DNLST_DAY is the DN value of the first band of the MOD11A2 image and 0.02 is the
scale factor.

Calculation of RSEI

(1) Water, permanent snow, and ice masking

The QLM region is covered by large areas of water, permanent ice, and snow. To avoid
these areas influencing the RSEI calculation the region’s water, permanent ice, and snow
areas must be masked and removed before normalizing the NDVI, WET, NDBSI, and LST
indexes. The extraction of water, permanent ice, and snow were based on the results of our
previous research [29].

(2) Standardization of indexes

The different indicators described above are not comparable because of their various
units and data ranges. Therefore, the four indicators were standardized and converted to
the range of 0 to 1. The standardized calculation formula is as follows [14]:

NIi = (Ii − Imin)/(Imax − Imin) (6)

where NIi is the normalized index value, Ii is the original value, and Imax and Imin are the
maximum and minimum values of the original data, respectively.

(3) Combination of the indicators

There are numerous methods to determine the weights of ecological evaluation indica-
tors, including the analytic hierarchy process [40], PCA [41], the entropy method [42], and
the fuzzy comprehensive evaluation method [43]. Among these, PCA is used to automati-
cally and objectively calculate the weight of each indicator relative to its contributions to
each principal component; thus, this method can effectively avoid the result deviations that
arise from subjectively setting the weights in the calculation process [15,16]. Spatial princi-
pal component analysis (SPCA) integrates PCA and GIS software, allowing the analysis
results to be visually displayed on a spatial grid [44]. Therefore, we constructed the RSEI of
the QLM based on SPCA. After standardizing the four indicators, SPCA was performed
in ArcGIS 10.6 software. Usually, the representative first component (PC1) is selected to
construct the original ecological index RSEI0 [15]. The formula of RSEI0 is expressed as:

RSEI0 = PC1[ f (NDVI, WET, NDBSI, LST)] (7)

The RSEI0 with a high value and a low value represents poor and good ecological
conditions, respectively [15,19]. To ensure that higher RSEI values correspond to better
eco-environmental status, the RSEI0 value is subtracted from 1. Accordingly, the RSEI
calculation formula is expressed as:

RSEI = 1− RSEI0 = 1− PC1[ f (NDVI, WET, NDBSI, LST)] (8)

To facilitate the comparison of indicators in different study periods, Equation (6) is
used to normalize RSEI to the range of 0 to 1. If the normalized RSEI value approaches
1, it indicates better eco-environmental quality, and vice versa [15]. In addition, to better
analyze the spatiotemporal changes of EEQ in different periods, the normalized RSEI
values are classified into five grades using the equal interval method with intervals of 0.2:
poor (0–0.2), fair (0.2–0.4), moderate (0.4–0.6), good (0.6–0.8), and excellent (0.8–1.0) [8,15].
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2.3.2. Spatiotemporal Change Detection of RSEI

To analyze spatiotemporal changes in EEQ in the QLM, based on the RSEI classification
and the study of Yang et al. [45], the RSEI changes were further divided into three classes:
improved, unchanged, and degraded. We use a transfer matrix to describe the EEQ changes
in the QLM in detail from 2000 to 2020 (Table 2).

Table 2. The definition of EEQ change in the QLM.

T1–T2
T2

Poor Fair Moderate Good Excellent

T1

Poor Unchanged Improved Improved Improved Improved
Fair Degraded Unchanged Improved Improved Improved

Moderate Degraded Degraded Unchanged Improved Improved
Good Degraded Degraded Degraded Unchanged Improved

Excellent Degraded Degraded Degraded Degraded Unchanged
Note: T1 and T2 indicate the start and end years of the period, respectively.

2.3.3. Spatial Heterogeneity Analysis

Spatial autocorrelation analysis can reveal the spatial correlation characteristics of
attribute values in a specific cell and its neighboring cells [46]. This analysis method
comprises both global and local spatial autocorrelation. The most common index used
for expressing global autocorrelation is Moran’s index (I) [47], and the corresponding
measure of local spatial autocorrelation is Local Moran’s I (Ii). Based on the RSEI, both
were calculated in GeoDa 1.10.0.8 software (http://geodacenter.github.io, accessed on
30 December 2022). For global autocorrelation, the Moran’s I values range from −1 to 1,
where values less than 0, equal to 0, and greater than 0 correspond to discrete, random,
and clustered RSEI distributions, respectively [7,48]. For local autocorrelation, if Ii > 0,
the spatial distribution of RSEI presents a high–high cluster (H-H) or low–low cluster
(L-L); if Ii < 0, it represents high–low outliers (H-L) or low–high outliers (L-H) [7]. Local
indicators of spatial association (LISA) clustering maps based on Ii are commonly used to
represent the local spatial autocorrelation patterns [49]. Details of the calculation formula
were described by Wang et al. [50].

2.3.4. Assessment of Influencing Factors

1. GeoDetector method

The GeoDetector method is used to quantitatively analyze the impacts of natural and
anthropogenic factors on EEQ and assess their interactions. GeoDetector is a new statistical
method used to detect the spatial hierarchical heterogeneity of geographic variables and
their influencing factors, including factor detection, interaction detection, risk detection,
and ecological detection [23]. These detection approaches identify the statistical significance
of the dependent variable and the explanatory powers of each independent variable. Here,
we adopt factor detection and interaction detection to explore the individual effects and
interactive effects of different factors, respectively. This method uses q-statistics to measure
the explanatory power of the independent variable (X) to the dependent variable (Y) and
to detect the interactions of any two factors on Y. The q statistic is calculated using the
following formula:

q = 1− ∑L
h=1 Nhσ2

h
Nσ2 (9)

where q is the power of the determinant, N is the total number of samples, Nh is the sample
number of class h (h = 1, 2, . . . , L), and σ2 and σ2

h are the variance of the dependent variable
Y of the whole region and the partition h region, respectively. The feasibility of the q statistic
is determined using an F-test. The range of the q value is from 0 to 1: the greater the q value,
the stronger the influence of factor X on Y, and vice versa. In this study, the q statistic was

http://geodacenter.github.io
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calculated using the Excel Geodetector software (http://www.geodetector.cn, accessed on
30 December 2022).

Furthermore, the q statistic can also quantify the interaction effect of two X factors on
the EEQ. The interaction detector can reveal the interaction between factors X1 and X2 is
weakened, enhanced, or independent of the influence on Y. The interaction relationship
can be divided into five categories by comparing the q value of the two interacting factors
and the q value of each of the two factors [23,51] (Table 3). The Jenks Natural Breaks Classi-
fication method was used to divide all driving factors into six grades before implementing
the GeoDetector method.

Table 3. The interactive categories of two factors and the interactive relationship.

Description Interaction

q(X1 ∩ X2) < Min(q(X1), q(X2)) Weaken, nonlinear
Min(q(X1), q(X2)) < q(X1 ∩ X2) < Max(q(X1), q(X2)) Weaken, univariate

q(X1 ∩ X2) > Max(q(X1), q(X2)) Enhanced, bivariate
q(X1 ∩ X2) = q(X1) + q(X2) Independent
q(X1 ∩ X2) > q(X1) + q(X2) Enhance, nonlinear

2. GWR model

GWR is a regional regression model proposed by Brunsdon et al. [52]. GWR is a simple
and practical local spatial analysis method that indicates changes in spatial relationships in
the study area. GWR is an extension of ordinary least squares regression, in which local
parameters can be estimated [53]. It can address the problem of parameter estimation
as a function of spatial position in non-stationary processes by introducing the concept
of spatial weight. In addition, GWR can explain the influence of each driving factor at
different geographic locations [54]. The GWR model is expressed as follows:

yi = β0(µi, νi) + ∑p
k=1 βk(µi, νi)xik + εi (10)

where yi and εi are the dependent variable and random error at sample point i in space,
respectively. β0(µi, νi) is the intercept for location i, βk(µi, νi)is the regression coefficient
of the kth independent variable at sampling point i, xik is the kth independent variable
at sampling point i, and k is the independent variable number. The regression coefficient
βk(µi, νi) was calculated based on previous studies [55,56]. The model results can be used to
explore the spatial differences in each direction and the intensity of influencing factors [57].
In this study, the dependent variable is the RSEI, and the independent variables are the key
influencing factors. The GWR model was implemented in ArcGIS 10.6 software.

3. Results
3.1. Spatiotemporal Distribution of EEQ

The SPCA results of the four ecological indicators and the mean RSEI values from
2000 to 2020 are shown in Table 4. PC1 has the largest eigenvalue, with a contribution rate
exceeding 74% from 2000 to 2020 and a maximum contribution rate in 2010 (79.115%). Thus,
PC1 can provide the most information regarding these indicators and is used to construct
the RSEI in this study. The mean RSEI values range from 0.408 (2000) to 0.460 (2020),
indicating an overall EEQ growth trend in the QLM during the study period, implying a
gradual improvement in the area’s eco-environment. Specifically, the RSEI increases from
0.408 in 2000 to 0.438 in 2010; it then decreases to 0.413 in 2015 before increasing to 0.460
in 2020. Thus, the EEQ in the QLM first slightly improved (2000–2010), then deteriorated
(2010–2015), and finally gradually recovered (2015–2020).

http://www.geodetector.cn
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Table 4. SPCA and the mean values of RSEI from 2000 to 2020.

Year Item PC1 PC2 PC3 PC4 RSEI ± SD

2000
Eigenvalue 0.042 0.009 0.002 0.001

0.408 ± 0.237Contribution rate (%) 78.907 16.916 3.119 1.059

2005
Eigenvalue 0.044 0.010 0.002 0.001

0.432 ± 0.240Contribution rate (%) 77.729 17.599 3.594 1.079

2010
Eigenvalue 0.044 0.009 0.002 0.001

0.438 ± 0.244Contribution rate (%) 79.115 16.070 3.505 1.309

2015
Eigenvalue 0.036 0.009 0.002 0.000

0.413 ± 0.219Contribution rate (%) 75.466 19.721 3.976 0.837

2020
Eigenvalue 0.033 0.010 0.002 0.000

0.460 ± 0.229Contribution rate (%) 74.243 21.307 3.597 0.853
Note: PC1, PC2, PC3, and PC4—the first, second, third, and fourth principal component, respectively; SD—
standard deviation.

The spatial distribution of EEQ in the QLM from 2000 to 2020 indicates an increasing
trend from northwest to southeast (Figure 4). Concretely speaking, the poor and fair EEQ
levels are mostly recorded in the northwestern QLM (Dahaletenghe, Danghe, Shulehe, Da
Qaidam Lake, and Hala Lake watersheds) due to the presence of bare land, low temperature,
and rare precipitation. Moderate EEQ levels are recorded in the central part of the QLM
region. The good and excellent EEQ levels are mainly clustered in the southeast of the area
(Heihe, Datonghe, Shiyanghe, and Qinghai Lake watersheds), which is characterized by
low elevation, relatively abundant precipitation, and high levels of vegetation coverage.
Considering the fractions of different EEQ levels in the study area, excellent EEQ levels
cover the least area (9%, Figure 4). The proportion of poor EEQ levels declined continuously
from 2000 to 2020, but the moderate and good levels show fluctuating increase trends. In
general, the EEQ shows an increasing trend from 2000 to 2020 in the QLM.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 24 
 

 

 
Figure 4. Spatial distribution and area ratio of different EEQ levels in the QLM from 2000 to 2020. 

3.2. Dynamic Changes in EEQ from 2000 to 2020 
To observe EEQ changes at each ecological level, we use a transition matrix to express 

detailed EEQ change processes from 2000 to 2020. Throughout the studied period, the 
EEQ is mainly at poor, fair, moderate, or good levels (Figure 5). Specifically, from 2000 to 
2010, the EEQ shows an upward trend: the area of poor and fair levels decreased, and the 
area of good and excellent levels increased, with EEQ level transitions mostly from poor, 
fair, moderate, and good to fair, moderate, good, and excellent, respectively. During 2010–
2015, the EEQ begins to deteriorate. The area of excellent EEQ level decreases signifi-
cantly, while increasing trends are recorded for the areas of good, moderate, and fair lev-
els (Figure 5). The EEQ shows an improved trend from 2015 to 2020, with a decrease in 
the area of poor and fair levels, with most EEQ transitions recorded from fair, moderate, 
and good levels to moderate, good, and excellent, respectively (Figure 5). 

Figure 4. Spatial distribution and area ratio of different EEQ levels in the QLM from 2000 to 2020.

3.2. Dynamic Changes in EEQ from 2000 to 2020

To observe EEQ changes at each ecological level, we use a transition matrix to express
detailed EEQ change processes from 2000 to 2020. Throughout the studied period, the EEQ
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is mainly at poor, fair, moderate, or good levels (Figure 5). Specifically, from 2000 to 2010,
the EEQ shows an upward trend: the area of poor and fair levels decreased, and the area
of good and excellent levels increased, with EEQ level transitions mostly from poor, fair,
moderate, and good to fair, moderate, good, and excellent, respectively. During 2010–2015,
the EEQ begins to deteriorate. The area of excellent EEQ level decreases significantly, while
increasing trends are recorded for the areas of good, moderate, and fair levels (Figure 5).
The EEQ shows an improved trend from 2015 to 2020, with a decrease in the area of poor
and fair levels, with most EEQ transitions recorded from fair, moderate, and good levels to
moderate, good, and excellent, respectively (Figure 5).
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We use a spatial analysis method to study the EEQ spatiotemporal changes in different
periods from 2000 to 2020 (Figure 6) based on the transition matrix in Table 2. During
2000–2015, the area of unchanged and improved EEQ decreased. However, the area of
degraded EEQ increased, that was especially prominent in 2010–2015 when the area of
improved EEQ was much less than that of degraded EEQ. After 2015, the area of unchanged
EEQ continued to decrease. However, the area of improved EEQ is much greater than
that of degraded EEQ, indicating that ecological deterioration in this period had largely
been controlled. For example, during 2000–2005, the improved EEQ area was mainly
concentrated around Qinghai Lake, while the area of degraded EEQ was distributed in the
north of the area (Figure 6). However, from 2005 to 2015, the EEQ gradually degraded, with
changes mainly concentrated in the southeastern QLM (Xichuanhe, Baokuhe, Datonghe,
and Qinghai Lake watersheds). In contrast, in 2015–2020, the EEQ gradually improved;
improved EEQ areas accounted for 24.68% of the total study area during this period, with
improvements mainly concentrated around Hala Lake (Figure 6). In summary, from 2000
to 2020, the eco-environment of the QLM shows a trend of initial deterioration followed by
improvement.
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3.3. Spatial Autocorrelation Pattern of EEQ

To analyze the spatial autocorrelation of RSEI in the QLM from 2000 to 2020, the
Moran’s I values, significance map, and LISA clustering map are used (Figure 7). The
Moran’s I value remained between 0.95 and 0.96 from 2000 to 2020, indicating that the
spatial distribution of EEQ in the QLM is highly positively spatially aggregated (Figure 7a).
From the significance map, the insignificant area is mainly distributed in the central QLM
(Hala Lake), implying that the environmental conditions are complex in this area (Figure 7b).
In Figure 7c, at the 95% confidence level, “H-H” clusters are widely distributed in the
southeast (Heihe, Babaohe, Datonghe, Xichuanhe, and Qinghai Lake watersheds). In
contrast, the “L-L” clusters are concentrated in the northwest. Thus, the eco-environment
of the QLM is polarized: the EEQ is low in the northwest while it is high in the southeast,
potentially due to homogeneity in the main influencing factors.

3.4. Analysis of the Influencing Factors Based on Spatial Differences in RSEI
3.4.1. Analysis of Geographical Detector Results

The GeoDetector approach is used to calculate the individual and interaction effects of
EEQ influencing factors (Table 5 and Figure 8). The q-statistics values, in order from high to
low, are: PCPN > D-town > D-water > D-road > Slope > TEMP > Pop >Dem > NTL
(Table 5). From 2000 to 2020, all factors have significant impacts on EEQ (p < 0.01), ex-
cept NTL, potentially due to the faint night light in the remote region. PCPN exerted the
strongest influence on EEQ, with an explanatory power of more than 0.644 during the study
period. The D-town is the second most important factor with an explanatory power of more
than 0.219, followed by D-water with q-statistics between 0.188 and 0.209. The remaining
factors all had significant impacts on the EEQ but relatively low q-statistics (Table 5).
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Table 5. The q-statistics of factor detection.

Factor Type 2000 2005 2010 2015 2020

Natural
factors

TEMP 0.078 ** 0.090 ** 0.086 ** 0.057 ** 0.042 **
PCPN 0.654 ** 0.693 ** 0.644 ** 0.664 ** 0.699 **
Dem 0.027 ** 0.024 ** 0.028 ** 0.020 ** 0.016 **
Slope 0.058 ** 0.057 ** 0.056 ** 0.072 ** 0.075 **

D-water 0.188 ** 0.205 ** 0.194 ** 0.209 ** 0.208 **

Human
factors

Pop 0.035 ** 0.052 ** 0.035 ** 0.027 ** 0.031 **
NTL 0.000 0.001 0.001 0.001 0.002

D-road 0.110 ** 0.126 ** 0.125 ** 0.121 ** 0.112 **
D-town 0.224 ** 0.242 ** 0.255 ** 0.251 ** 0.219 **

Note: ** p < 0.01.
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The results of interaction detection of influencing factor pairs on the EEQ of the QLM
are illustrated in Figure 8. Overall, the explanatory powers (q-statistics values) of the inter-
actions between factor pairs on EEQ are greater than those of any single factor. Specifically,
the interaction between TEMP and PCPN is the greatest, with q-statistics values between
0.749 and 0.830 from 2000 to 2020 (Figure 8). The interactions between PCPN and other
factors showed, q-statistics values between 0.644 and 0.785 with a bivariate enhancement
interaction type, except for PCPN ∩ Dem. Furthermore, the q-statistics values of D-town
and D-water with other driving factors range from 0.188 to 0.408. However, the interactions
between NTL and other factors are the smallest (<0.087), except for NTL ∩ PCPN.

3.4.2. Spatial Heterogeneity Analysis of Driving Factors

Based on the GeoDetector analysis results from 2000 to 2020, PCPN, D-town, and
D-water are the three main factors influencing EEQ in the QLM (Table 5). Therefore, we
use the GWR model to further explore the impact of these three factors on the spatial
heterogeneity of EEQ in the QLM region. In the GWR model, regression coefficients are
used to represent the spatial distributions of the impact intensity of the three factors on EEQ
(Figure 9). The mean regression coefficients of PCPN in the five periods from 2000 to 2020
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are 0.915, 0.769, 0.596, 0.709, and 1.138, suggesting that PCPN positively influences EEQ in
the QLM. From the spatial distribution of regression coefficients, the influence of PCPN
decreases from the northwest to the southeast, with the northwestern part of the study area
and the western Qinghai Lake affected the most (Figure 9). The mean regression coefficients
of D-town and D-water are small (−0.117–0.019) with both positive and negative values;
thus, the impact of these two factors on EEQ is considered uncertain.
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4. Discussion
4.1. Spatiotemporal Variations in EEQ in the QLM

Quantifying EEQ is essential for establishing eco-environmental protection measures.
In general, the overall eco-environment of the QLM gradually improved during our studied
period. Yang et al. [30] and Gao et al. [58] also recorded significant improvements in NDVI
in the QLM, indicating improvements in the eco-environment. From 2000 to 2015, the
eco-environment showed a slight improvement followed by a deterioration trend (Figure 6).
This may be due to human activities, such as overexploitation of mineral resources, unsus-
tainable use of water resources, extensive development of tourism, and overgrazing. All of
these aspects may have caused severe damage to the eco-environment in the QLM [2]. In re-
sponse, the government has issued extensive ecological rectification policies and plans since
2015. In October 2018, the Qilian Mountain National Park Administration was officially
established. Regulations for managing the Qilian Mountain National Parks were imple-
mented, which further strengthened the eco-environment protection efforts in the QLM [2].
From 2015 to 2020, the overall RSEI increased from 0.413 to 0.460 (Table 4), indicating a
significant improvement in the EEQ of the QLM. Furthermore, according to a recent report,
eco-environment restoration of the QLM has achieved remarkable effects, with steady
improvements in EEQ (http://sthj.gansu.gov.cn/sthj/c112982/202109/1795416.shtml, ac-
cessed on 30 December 2022), thus supporting our findings.

Based on the overall spatial distribution of EEQ in the QLM, the areas with high EEQ
values were mainly concentrated in the southeast of the QLM from 2000 to 2020, with
low EEQ values in the northwest of the area (Figure 4). The spatial distribution of EEQ
is consistent with that of the area’s vegetation [59]. Areas with a fair ecological level are
mainly covered by barren land, whereas those with good and excellent EEQ levels are
covered by grassland, shrubland, and forest (Figure 1). In addition, the spatial distribution
of the EEQ is consistent with the spatial distribution of precipitation in the QLM [59]. In
general, in the southeastern part of the QLM, water resources are plentiful due to the
impacts of monsoons, the temperature is suitable for plant growth, and vegetation coverage
is high [29], leading to high RSEI values. Furthermore, our findings show that the EEQ was
degraded from 2000 to 2015 but gradually improved from 2015 to 2020 (Figure 6). This
result may be attributed to the severe eco-environmental damage in pursuit of economic
development from 2000 to 2015; however, the government has adopted active and effective
ecological rectification measures since 2015 and reversed this trend.

Although the overall eco-environment of the QLM shows an improvement trend, there
is still marked spatial heterogeneity (Figure 7). The global Moran’s I of the RSEI is greater
than 0.95 with a high degree of spatial clustering from 2000 to 2020. The LISA cluster
maps mainly show “H-H” and “L-L” clustering types, which may be due to differences
in the area’s natural conditions. The spatial patterns of precipitation lead to low average
NDVI values in the growing season in the northwest and high values in the southeast of
the QLM [28,59]. Xu et al. [60] also found that the gross primary production of the QLM
followed a similar spatial distribution.

4.2. Dominant Factors Affecting EEQ

Identifying the main factors influencing EEQ changes can provide a helpful reference
for policymakers. In the present study, the GeoDetector results demonstrate that PCPN is
the dominant factor affecting EEQ in the QLM. This may be due to the location of the QLM
and the effect of monsoons and the westerlies. These factors lead to spatial differences in
precipitation which, in turn, affect the spatial distribution of the vegetation [61]. Therefore,
they predetermine the spatial distribution of EEQ. Teng et al. [62] and Sun et al. [63] also
found that precipitation is the main factor affecting changes in net primary productivity
and vegetation phenology in the QLM. In addition, our GWR analysis results show that
PCPN has a positive effect on EEQ in the QLM, which is in agreement with Gao et al. [58].
Other natural factors also have a significant impact on EEQ. The influences of D-water,
TEMP, Slope, and Dem decrease progressively, with mean q-values of 0.201, 0.071, 0.064,

http://sthj.gansu.gov.cn/sthj/c112982/202109/1795416.shtml
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and 0.023, respectively (Table 5). The effects of D-water on EEQ may be related to the spatial
distribution of rivers and lakes. The EEQ is less sensitive to TEMP than PCPN because the
QLM region is characterized by low temperatures. The low q-values of Slope and Dem
indicate that topographic factors have minimal effects on the EEQ.

In comparison with natural factors, human factors have less impact on EEQ throughout
the study area. Among these, D-town is the most significant human factor influencing
EEQ in the QLM, followed by D-road. In contrast, Pop and NTL have relatively little
impact on the EEQ, which may be due to the low population density and low development
level of the QLM (Figure 2e,f). Temporal changes in EEQ are closely related to the strong
support of effective measures by relevant national and local government departments. Our
results show that the overall EEQ of the QLM improved from 2000 to 2020, especially after
2015, because the Gansu and Qinghai Provinces issued a series of policies and plans to
rectify and improve the eco-environment of the QLM. Li et al. [2] note that the government
departments of the Gansu Province issued 543 planning documents relating to the QLM.
Additionally, the central and provincial governments have invested 19.5 billion yuan in
special funds for ecological protection to support eco-environment restoration in the QLM
since 2017 (http://sthj.gansu.gov.cn/sthj/c112982/202109/1795416.shtml, accessed on 30
December 2022). The establishment of Qilian Mountain National Park was essential for
the area’s EEQ through promoting relevant system management specifications and further
strengthening eco-environment protection in the QLM.

The EEQ changes identified in this work were not determined by an individual
influencing factor, and the interactions between independent factors on EEQ play an
important role. Our findings show that the interaction between TEMP and PCPN exerts
the largest influence on EEQ (Figure 8). Temperature and precipitation are stress factors
that inhibit vegetation growth [32]; thus the interaction of these two factors will inevitably
have a significant impact on EEQ changes. We also identified relatively large interactive q-
statistics value for PCPN and other factors, indicating that PCPN is the main factor driving
EEQ changes in the QLM. In summary, PCPN is the leading natural factor impacting
the spatial variation of EEQ, and the interaction impacts of PCPN with other factors are
greater than those of PCPN itself, consistent with the findings of Wu et al. [64]. In addition,
policy support is identified as the primary human factor impacting temporal trends in
EEQ changes.

4.3. Uncertainty and Prospects

This study adopts the RSEI proposed by Xu [14] to comprehensively reflect the ecolog-
ical status of the QLM and analyze its EEQ. Compared to other single eco-environmental
indexes, RSEI employs the SPCA method to integrate four important indicators closely re-
lated to EEQ, which can more objectively reflect regional eco-environmental conditions [44].
Shan et al. [65] compared the EI and RSEI and found that RSEI can reasonably and effec-
tively reflect the regional EEQ status. However, the RSEI is primarily used to monitor the
ecological state of urban areas [45], and has been gradually used to evaluate the EEQ of
basins and wetlands [9,12]. Similar to other studies, there are still some uncertainties in
the current work. First, in the QLM, which is characterized by complex terrain, only four
indicators are used to reflect the structure and function of the ecosystem, which cannot
comprehensively describe the area’s ecological conditions. Second, the road, town, and
water data used in the study are limited to one period. In future studies, if data for these
aspects could be obtained for different periods, the driving mechanisms of EEQ in the
QLM over time could be explored in more depth. Third, although MODIS image data have
good quality and a short revisit period, they have a low spatial resolution; thus, higher
resolution multi-source remote sensing data should be considered in the future. Overall,
despite these limitations, the results of this research can assist researchers and policymakers
in understanding the change trends and influencing factors of EEQ in the QLM and can
offer a scientific basis for eco-environmental protection and restoration in the region.

http://sthj.gansu.gov.cn/sthj/c112982/202109/1795416.shtml
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5. Conclusions

In summary, we use the RSEI to monitor spatiotemporal changes in EEQ in the QLM
from 2000 to 2020 and quantitatively explore the factors influencing EEQ by combining
GeoDetector and GWR models. Spatially, the EEQ increases from northwest to southeast;
temporally, the EEQ initially slightly improved, then deteriorated, and finally gradually re-
covered from 2000 to 2020. The explanatory power of the driving factors for EEQ from high
to low are: PCPN > D-town > D-water > D-road > Slope > TEMP > Pop >Dem > NTL. Nat-
ural factors mainly control the spatial patterns of the EEQ, represented as “H-H” clusters
in the southeast and “L-L” clusters in the northwest, which are primarily influenced by
precipitation. Human factors have an important impact on temporal EEQ trends in the
QLM, with significant EEQ improvements recorded since 2015, which are closely linked
to the implementation of effective measures by relevant government departments. Over-
all, our results help to fill a current research gap in the assessment of EEQ in the QLM
and can provide a new research perspective to understand eco-environment sustainable
development in arid and semi-arid regions.
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