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Abstract: For crop growth monitoring and agricultural management, it is important to use hyperspec-
tral remote sensing techniques to estimate canopy nitrogen content in a timely and accurate manner.
The traditional nadir method has limited ability to assess the nitrogen trophic state of cotton shoots,
which is not conducive to high-precision nitrogen inversion, whereas the multi-angle remote sensing
monitoring method can effectively extract the canopy’s physicochemical information. However,
multi-angle spectral information is affected by a variety of factors, which frequently causes shifts in
the band associated with nitrogen uptake, and lowers the estimation accuracy. The capacity of the
spectral index to estimate aerial nitrogen concentration (ANC) in cotton was therefore investigated in
this work under various observation zenith angles (VZAs), and the Relief−F method was employed
to select the best spectral band with weight for ANC that is insensitive to VZA. Therefore, in this
study, the ability of the spectral index to estimate ANC in cotton was explored under different VZAs,
and the Relief-F algorithm was used to optimize the optimal spectral band with weight for ANC that
is insensitive to VZA. The angle insensitive nitrogen index (AINI) for various VZAs was calculated
using the expression (R530 − R704)/(R1412 + R704). The results show that the correlation between the
spectral index and the ANC chosen in this study is stronger than the correlation between off-nadir
observations, and the correlation coefficients between Photochemical Reflectance Index (PRI), AINI,
and ANC are highest when VZA is −20◦ and −50◦ (r = 0.866 and 0.893, respectively). Compared
with the traditional vegetation index, AINI had the best correlation with ANC under different VZAs
(r > 0.84), and the performance of ANC in the backscatter direction was estimated to be better than
that in the forward-scatter direction. At the same time, the ANC estimation model of the optimal
indices AINI and PRI was combined with the machine learning method to achieve better accuracy,
and the prediction accuracy of the random forest (RF) model was R2 = 0.98 and RMSE = 0.590. This
study shows that the AINI index can estimate cotton ANC under different VZAs. Simultaneously,
the backscattered direction is revealed to be more conducive to cotton ANC estimation. The findings
encourage the use of multi-angle observations in crop nutrient estimation, which will also help to
improve the use of ground-based and satellite sensors.

Keywords: aerial nitrogen concentration; cotton; hyperspectral remote sensing; multi-angle;
spectral index

1. Introduction

Nitrogen is the most important mineral nutrient element for crops, and it is also a key
factor for crop growth and yield formation. Timely and accurate estimation of crop canopy
nitrogen content is the key to the scientific and efficient use of nitrogen [1]. Compared with
the traditional method of destructive sampling to obtain crop nitrogen status, the use of
remote sensing technology can non-destructively, accurately, and quickly obtain the spectral
information of crops in a large area and provide decision support for the later formulation of
scientific and reasonable fertilization programs. The use of spectral reflectance to accurately
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monitor crop canopy nitrogen content is based mainly on the response of the biophysical
characteristics of crop leaves to spectral reflectance [2]. Crop canopy spectral reflectance is
affected by crop plant type, canopy structure, solar zenith angle, observation angle, and
canopy coverage [3]. At the same time, the optical remote sensing observation is affected
by the bidirectional reflection of the canopy, and the observation from a single angle cannot
rule out the interference of many factors [3]. This directly results in a large spatiotemporal
variation in the spectral reflectance of the canopy and the physiological characteristics of
plants and often causes the absorption characteristic bands of the nitrogen content of the
canopy to shift [4]. The vegetation index established by using methods such as normalized
difference can reduce the influence of canopy structure and angle to a certain extent; for
example, the optimized soil-adjusted vegetation index (OSAVI) can alleviate the structural
effect to a certain extent, but it has not yet solved Canopy spectral reflectance suffers from
two-way (illumination and viewing geometry) effects [5].

Multi-angle remote sensing, when compared with nadir observation, can obtain more
information about the crop canopy, and this provides a method for characterizing canopy
reflectance anisotropy, which is useful for effectively extracting physicochemical infor-
mation [6,7]. Many studies have proposed the use of anisotropy to reduce the impact of
multi-angle effects and improve exponential performance. Such as, He et al. established
the angle-insensitive vegetation index (AIVI) of winter wheat to improve the estimation
progress of leaf nitrogen content and the stability of the angle [4]. Some studies have
also found that compared with nadir observation, non-nadir observation, and multi-angle
observation can improve the estimation accuracy of crop canopy parameters [8,9], such as
the estimation of leaf area index [10]. Recent studies have also shown that plant biochem-
ical parameters can be monitored using multi-angle data. For example, Kong et al. [11]
and Peter et al. [12] found that when observation is undertaken at a zenith angle of 30◦,
the model estimation accuracy of leaf chlorophyll content (LCC) obtained is the highest
and a larger zenith angle can be used for inversion, which can obtain a more accurate
estimation effect [10].

In order to improve the accuracy and stability of the model, there have been attempts
to use multi-angle remote sensing data to construct new spectral indices, such as the work
of Li et al. [13], which uses the modified Datt index to reduce the directional reflection effect
when estimating leaf chlorophyll content, and which improves the high-precision estima-
tion of leaf chlorophyll content in all observation directions and species. Yang et al. [14]
found that the improved LAI estimation of normalized difference ratio index (NDRI) and
enhanced ratio vegetation index (ERVI) for different crop geometric features achieved a
higher accuracy than other spectral indices or angles at 40◦ viewing angles. The multi-angle
index MAVI, developed by He et al. [4], combines spectral data from two observation
angles to improve the stability and accuracy of the estimation of nitrogen concentration
in wheat leaves; the improved right peak area index (mRPA) at −10◦ to 10◦ can more
accurately evaluate plant nitrogen status [15], and Wang et al. [16] also used 60◦, 60◦, and
50◦ to monitor leaf chlorophyll content in the upper, middle, and lower layers of winter
wheat, respectively.

At present, the research mainly focuses on analyzing the performance of estimating
vegetation physiological parameters under various observation zenith angles (VZAs),
which limits the universality and practical value of remote sensing monitoring. The spectral
characteristics of the canopy are affected by the leaf inclination, canopy structure, shadow,
and soil background spectral reflection, resulting in frequent shifts in the characteristic band
of nitrogen uptake [17–19]. As cotton is a crop with sunward characteristics [20], its leaf
inclination angle changes with the change in the solar zenith angle under different growth
periods and different times of the day, which leads to differences in canopy spectra under
different VZAs, and affects the estimation accuracy of cotton aerial nitrogen concentration
(ANC). In order to improve the model accuracy and stability of canopy spectral information
construction under different VZAs, future research should focus on exploring how different
VZA canopy spectra affect nutrient inversion accuracy and on constructing the spectral
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index with the lowest sensitivity to VZA but the highest ability to estimate ANC through
multi-angle remote sensing data, so as to reduce the directional reflection effect when
estimating ANC. In this study, the Relief-f feature selection algorithm was used to screen
the optimal feature bands that can better retrieve cotton ANC under different observation
angles and to construct an angle-insensitive nitrogen index (AINI). The Relief-f algorithm
belongs to the classic multivariable filtering feature selection method. Compared with the
encapsulation feature selection method, the Relief-f algorithm can reduce the complexity
of feature search, accurately estimate the quality of strong correlation features, and detect
outliers with strong robustness. Therefore, the objectives of this study were as follows:
(1) to study the ability of canopy multi-angle spectra and existing spectral indices to
estimate nitrogen concentration under different VZAs; (2) to find out the bands that can
indicate the nitrogen content of cotton and further develop the spectral index that is most
sensitive to nitrogen changes but not sensitive to VZA; and (3) construct a cotton nitrogen
monitoring model based on the optimal spectral index under the best VZA to achieve rapid
non-destructive monitoring of cotton nitrogen.

2. Materials and Methods
2.1. Experimental Design

The experiment was conducted in 2021 at Shihezi University’s second consecutive
experimental teaching field in Shihezi City, Xinjiang, China (85◦59′41”E, 44◦19′54”N). The
location of the test site is shown in Figure 1. The altitude is 429 m, the frost-free period is
168~171 days, the annual sunshine duration is 2721~2818 h, and the active accumulated
temperature of ≥10 ◦C is 3570~3729 ◦C. The soil of the test field is loam, in which the
alkali-hydrolyzed nitrogen content is 60.88 mg/kg, the available potassium content is
134 mg/kg, the available phosphorus content is 17.95 mg/kg, and the organic matter
content is 19.90 g/kg. The fore-rotating crop is cotton.
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Figure 1. Overview map of study area and layout of the experimental plots. (A) Location of the pilot
area in Xinjiang Uighur Autonomous Region, (B) Location of the pilot area in Shihezi City, (C) layout
of the experimental plots, (D) Layout of row spacing in the test plot.

During the whole growth process of cotton, nitrogen, phosphorus, and potassium
fertilizers were applied dropwise with water, including urea (N, 46%), 345 kg/ha, and
potassium dihydrogen phosphate (P2O5, 52%; K2O, 34%), 240 kg/ha, as the main fertilizers.
There are nine periods of drip irrigation in the whole growth period. The urea application
amount and proportion of each treatment are shown in Table 1. Before each fertilization,
the required fertilizer is weighed in proportion and poured into the fertilizer tank for
dissolution, then dropped into the plot with water.
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Table 1. Time, proportion, and amount of nitrogen application for each treatment in the test plot in 2021.

Date/Dosage Treatment/Proportion N0 (0 kg/ha) N240 (240 kg/ha) N480 (480 kg/ha) N345 (345 kg/ha)

13 June 5% 0 75.16 150.32 108.04
21 June 5% 0 75.16 150.32 108.04
30 June 10% 0 150.32 300.64 216.09
6 July 15% 0 225.48 450.96 324.13

14 July 18% 0 270.58 541.16 388.96
21 July 18% 0 270.58 541.16 388.96
27 July 17% 0 255.55 511.09 367.35

5 August 8% 0 120.26 240.51 172.87
11 August 4% 0 60.13 120.26 86.43

The main cultivars in the surrounding area of Shihezi City, Xinjiang, were “Xinlu Zao
No. 53” (the plant was tube-shaped, and the leaves were dark green). The submembrane
drip-irrigation planting mode (66 + 10 cm) was adopted, with 1 membrane, 3 tubes, 6 rows,
and a membrane width of 2.35 m. We used a fully randomized block design with 4 nitrogen
application rates, namely pure nitrogen at 0, 240, 480, and 345 kg/ha (expressed as N0,
N240, N480, and N345). Each nitrogen application treatment was repeated 3 times for a total
of 12 test cells, and protection rows were set between each cell, as shown in Figure 1.

2.2. Data Acquisition
2.2.1. Measurement of Canopy Multi-Angular Hyperspectral Reflectance

Canopy spectral data were measured at the bud stage (June 24), flowering stage (July 9),
flowering and boll stage (July 24), boll maturation period (August 9), and boll opening
stage (August 31). Between 11.00 and 16.00 local time, an SR-3500 portable ground feature
spectrometer (field of view angle of 25◦, sensor sampling interval of 1 nm, and spectral
detection range of 350–2500 nm) produced by SR3500 full-spectrum portable ground object
spectrometer from (Spectrum Evolution, Southlake, TX, USA) was used to col

Select the spectral reflectance data of cotton canopies under different nitrogen treat-
ments. The sensor was placed on a rotating stand of the multi-angle observation device,
and the different viewing angles of the spectrum were determined according to the angle
knob on the bracket (Figure 2), measured with the sensor probe at a height of about 0.7 m
above the cotton canopy (completely covering the collected sample within the field of
view covering a circle with a diameter of 0.31 m). During the acquisition of backscatter
spectra, shadowing problems are created by sensors and devices in order to eliminate as
much as possible. The multi-angle observation bracket we use uses an inclined support
rod for operation, which can reduce the shadow area of the support rod while achieving
precise adjustment of the observation angle. VZAs were measured from −60◦ to 60◦, at
10◦ intervals, with 10 spectra per angle. The direction of solar irradiation and the opposite
side of the observation direction is defined as the “forward observation direction” (+), and
the same side of the solar irradiation direction and observation direction is defined as the
“backward observation direction” (−). In order to reduce the influence of cloud cover and
solar altitude changes on spectral reflectance, BaSO4 was used for standard whiteboard
correction before and after the measurement of each group of targets. The spectral data
is stored by using the Personal Digital Assistant (PDA) through the CED Mobile-DAR
Win compact software (Spectrum Evolution, Southlake, TX, USA) and then saved as a
CSV format file by the computer’s SED to CSV Converter software (Spectrum Evolution,
Southlake, TX, USA) for subsequent processing.
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Figure 2. Schematic diagram of measurement method.

2.2.2. Determination of Aboveground N Concentrations

All cotton plants in the test were sampled from the budding stage. The sampling
periods were as follows: bud stage, flowering stage, flower bell stage, full bell stage, and
spit stage. Three cotton plants were selected in each test area according to stems, leaves,
bud bells, and other different organs. They were high-temperature desiccation at 105 ◦C for
30 min, baked to constant weight at 80 ◦C, and the dry matter weight was determined. The
nitrogen content was determined by the Dumas method, the aerial nitrogen concentration
was determined by Kjeldahl−N analysis, and the aerial nitrogen concentration (g/kg) was
expressed by dry weight basis [21].

2.3. Evaluation of the Spectral Index of Nitrogen Nutrition in Cotton

In this study, based on the multi-angle spectral data collected under different nitrogen
treatments in the five growth stages of cotton, the precise evaluation of cotton ANC and the
elimination of the angle effect of the observed spectrum were carried out. The research pro-
cess consisted of three modules: feature selection, index construction, and the construction
of an ANC estimation model (Figure 3). Differences among multi-angle canopy spectral
data collected at five cotton growth stages were analyzed by statistical tests (Figure 4).
After the normality test, the forward scatter observations (0◦–60◦, 36 spectra × 5 growth
periods) and backscatter observations (−60◦–0◦, 36 spectra × 5 growth periods) of the
spectral data were subjected to a nonparametric Kruskal–Wallis test, respectively. Under
the analysis of the variance of multiple sample sets, all spectral bands reached extremely
significant differences (p < 0.01), so the Kruskal–Wallis test statistic H value was used to
compare the two observation directions (forward scattering and backscattering scattering).
The magnitude of the difference in spectral reflectance. The larger the H value, the more
statistically significant the difference between the sample medians is, so spectral bands
with relatively small differences in the spectral bands under different observation angles of
the two scattering directions are obtained.
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2.3.1. Construction of the Spectral Index

Based on the results of variance analysis and the theoretical basis of plant leaf radiation,
scattering, and absorption, the angle insensitive nitrogen index (AINI) suitable for different
VZAs was constructed using the three-band index construction method, and the nitrogen
nutrient spectral index insensitive to the observation angle was normalized through three
different wavelength reflective factors. The bands with good correlation with nitrogen
under different VZAs were screened using the Relief-F algorithm and the exhaustive
method. The Relief-F algorithm selects the optimal characteristic wavelength with a strong
correlation by accumulating the weight of the relevant wavelength, and it has strong
robustness to outliers. The basic idea is to first obtain a sample R from the sample set D,
and then take k adjacent samples from the sample set of the same type and the sample that
is different from R, and then in the feature set F; if the heterogeneous sample on a certain
feature is greater than the same sample, then this feature is conducive to classification,
increase its weight, repeat n times, and take the mean of all results as the final weight value
of each feature [22].

w
(

Fj
)
→ w

(
Fj
)
− 1

ngk ∑h∈H

∣∣Rj − hj
∣∣+ 1

ngk ∑h∈H

∣∣Rj −mj
∣∣ (1)

where Fj is the weight value of feature j. ∑h∈H
∣∣Rj − hj

∣∣ represents the sum of the distances
of k homogeneous neighboring samples R on feature j; ∑h∈H

∣∣Rj −mj
∣∣ represents the sum

of the distances of the selected k heterogeneous neighboring samples and sample R on
feature j.

In order to find the best band combination, the two reference band ranges were
exhaustively searched, and finally, the optimal wavelength combination was obtained,
which inverted the cotton nitrogen content. The red edge (700–760 nm) is a transition
region with rapid changes in leaf reflectivity caused by strong pigment absorption in the
red spectrum and leaf scattering in the near-infrared spectrum, and it has been found that
the red edge is sensitive to crop canopy nitrogen [23]. Nitrogen is the main raw material of
chlorophyll, and nitrogen deficiency seriously affects photosynthetic utilization efficiency.
The 530 nm band is considered to be a highly correlated band between the lutein cycle and
the non-photochemical quenching of leaves; it can reflect the photosynthetic utilization
efficiency of leaves and is an important band for monitoring nitrogen [24]. Through
the Relief-F algorithm, we obtained two angle-insensitive spectral bands of 704 nm and
1412 nm, so the AINI expression is as follows:

AINI =
Rλ1 − Rλ2

Rλ2 + Rλ3
=

R530 − R704

R704 + R1412
(2)

2.3.2. Classical Vegetation Index Screening

In previous studies, a number of spectral indices have been developed for estimating
crop nitrogen content. In this study, 19 spectral indices were selected to evaluate their
ability to estimate ANC for different cotton VZAs. The selected spectral indexes are shown
in Table 2.

2.4. Model Construction and Verification

The dataset is divided into two parts: 7/10 is the training set, and 3/10 is the validation
set. In this study, according to the correlation between the spectral index and aboveground
nitrogen concentration, the performance of different spectral indices at different VZAs was
compared to determine the most suitable observation angle for the spectral index. The two
spectral (AINI, PRI) exponential model input variables were screened. The output variable
is the aboveground nitrogen concentration, and Python software is used to model four
machine learning algorithms based on support vector regression (SVR), BP neural network,
random forest (RF), and AdaBoost, which were selected to quantify the model accuracy.
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Table 2. Summary of selected spectral parameters reported in the literature.

Spectral Index Name Definition or Equation Reference

1 DVI Difference vegetation index DVI = R890 − R670 Jorden (1969) [25]
2 NDVI Normalized difference vegetation index NDVI = (R890 − R670)/(R890 + R670) Rouse et al. (1974) [26]
3 SAVI Soil-adjusted vegetation index SAVI = [(1 + L) (R890 − R670)]/(R890 + R670 + L), L = 0.5 Huete (1988) [27]
4 PRI Photochemical reflectance index PRI = (R531 − R570)/(R531 + R570) Penuelas (1995) [28]
5 SIPI Structure Insensitive Pigment Index SIPI = (R800 − R445)/(R800 − R680) Penuelas (1995) [29]
6 GNDVI Green Normalized difference vegetation index GNDVI = (R750 − R550)/(R750 + R550) Gitelson et al. (1996) [30]
7 OSAVI Optimized Soil Adjusted Vegetation Index OSAVI = (1 + 0.16)(R800 − R670)/(R800 − R670 + 0.16) Rondeaux et al. (1996) [31]
8 TCARI Transformed chlorophyll absorption reflectance index TCARI = 3[(R700 − R670) − 0.2(R700 − R550) (R700/R670)] Daughtry et al. (2000) [32]
9 NRI Nitrogen reflectance index NRI = (R570 − R670)/(R570 + R670) Schleicher et al. (1998) [33]
10 TCARI/OSAVI TCARI/OSAVI TCARI/OSAVI = TCARI/OSAVI Haboudane et al. (2002) [34]
11 NDCI Double-peak canopy nitrogen index NDCI = (R762 − R527)/(R762 + R527) Marshak et al. (2000) [35]
12 NPCI Normalized pigment chlorophyll ratio index NPCI = (R430 − R680)/(R430 + R680) Peuelas et al. (1994) [36]
13 PRIC Photochemical reflectance index correction PRIC = (R570 − R539)/(R570 + R539) Gamon et al. (1992) [37]
14 DDNI Novel double-peak area index DDNI = (R755 + R680 − 2 × R705)/(R755 − R680) Feng et al. (2014) [38]
15 mSR705 Modified Red-edge Ratio mSR705 = (R750 − R445)/(R705 + R445) Sims et al. (2002) [39]
16 IPVI Infrared Percentage Vegetation Index IPVI = R800/(R800 + R670) Crippen et al. (1990) [40]
17 MTCI Modified triangular vegetation index MTCI = (R754 − R709)/(R709 − R681) Dash et al. (2007) [41]
18 NPQI Normalized Phaeophytinization Index NPQI = (R415 − R435)/(R415 + R435) Barnes et al. (1992) [42]
19 CIred-edge3 Red edge model CIred-edge3 = (R790/R720) − 1 Gitelson et al. (2005) [43]
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Support Vector Machines (SVM) is a machine learning model that uses hyperplanes to
segment data, and its method of segmenting data is to find a plane (or a straight line for
two-dimensional data) to classify the data and then vector to maximize the segmentation of
the data. Support vector regression (SVR) is a generalized form of support vector machine
(SVM), which is mainly used to solve nonlinear regression problems. It solves the nonlinear
regression problem of samples by selecting kernel function ideas. This article uses the
linear kernel function in SVR, whose definition is shown in Equation (3):

k(u, v) = u′v (3)

Back Propagation (BP) artificial neural networks are the most widely used algorithms
in the Artificial Neural Network (ANN) architecture and follow the basic principle of the
Gradient Steepest Descent Method to iteratively minimize errors. The processing unit is
the most basic component unit of the neural network, and the calculation equations for the
input and output of the processing unit are shown in Equation (4):

fi = f (neti) = f
(
∑i WijXi − θi

)
(4)

where fi is the output signal of the artificial neural network processing unit; neti is an
integration function; and f is the transfer function of the artificial neural network processing
unit. Wij is the connection weight value between the processing units of the artificial neural
network, Xi is the input vector, and θi is the threshold for the processing unit.

Random Forest (RF) is an ensemble learning bagging method designed for decision
trees, which combines the inverse values of multiple decision trees to output the final
prediction result, and each decision tree is built according to the random vector value of
the random forest, and then outputs a high accuracy result.

Commonly used ensemble learning methods include bagging and boosting; this study
uses the Adaboost algorithm in boosting, which is an iterative algorithm whose principle
is to train different classifiers (weak classifiers) for the same training set, set these weak
classifiers together to form a stronger final classifier (strong classifier), and use the voting
method and vote by majority to determine the final prediction result. Among them, the
base learner selected by the Adaboost algorithm in this study is Ridge Regression, which
is a biased estimation regression method dedicated to collinear analysis. The structure
of the Ridge Regression model is similar to the ordinary linear regression model; the
difference is mainly reflected in the loss function, and the loss function calculation is shown
in Equations (5) and (6).

J(θ) =
1

2m

m

∑
i=1

(yi − wxi)
2 +

λ

2

n

∑
j=1

θ2
j (5)

n

∑
j=1

θ2
j ≤ λ (6)

w is a vector of length n; the coefficient θ excludes the intercept term; m is the sample
number; and n is the number of features. Ridge regression tends to shrink some coefficients
to 0, which can alleviate the problem of multiple collinearity and overfitting.

The coefficient of determination (R2) and the root-mean-square error (RMSE) were
selected to evaluate the model. If the model R2 is higher and the RMSE is lower, the model
precision and accuracy of the predicted ANC are higher, and a 1:1 plot of the observed and
estimated values can be plotted to prove the degree of model fit.

3. Results
3.1. Change in the Law of Spectral Reflectance of the Cotton Canopy under Different VZAs

In order to more clearly show the differences in spectral reflectance at different obser-
vation angles, this study conducted non-parametric tests on the spectral data of all periods
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(Figure 4). The results show that after eliminating the bands affected by atmospheric noise
around 1400 nm, 1920 nm, and 2400 nm, the entire spectral range (350 nm–2400 nm) shows
that the backscattering reflectance is higher than the forward scattering, and the difference
is extremely significant (p < 0.01). In the two scattering directions, the results under different
observation angles show that all bands show extremely significant differences (p < 0.001),
so the test statistic h value is used to show the spectral bands with relatively small dif-
ferences. The results show that the test statistics in the visible light band (350–670 nm)
show that the minimum value of the backscattering direction (0◦ to 60◦) is in the red light
band (672 nm), and the maximum value is in the green light band (555 nm); the minimum
value in the forward scattering direction (−60◦ to 0◦) is in the green light band (554 nm),
and the maximum value appears in the blue light band (430 nm). It shows that the two
scattering directions have different changes in the spectrum under different observation
angles. The overall test statistics of the −60◦ to 0◦ observation angle are relatively stable
and lower than the 0◦ to 60◦ observation angle, indicating that the cotton canopy spectrum
The reflectance backscatter direction is less affected by the viewing angle than the forward
scatter direction.

3.2. Nitrogen-Sensitive Spectral Band Screening of Different VZAs

The study aimed to establish the VZA-insensitive cotton canopy nitrogen nutrition
spectrum index, the Relief-F algorithm was used to screen the VZA-insensitive charac-
teristic bands, as shown in Figure 5, and the result was that the ANC of cotton had the
strongest correlation with different angles at 705 nm and 1414 nm, and occupied the largest
weight in all bands. At 1414 nm, VZA showed the optimal weight between −10◦ and
10◦, 705 nm showed the optimal weight between 0◦ and 10◦, and the rest showed a down-
ward trend with the increase in VZA. This shows that simply using the spectral band
to construct an angle-insensitive cotton nitrogen estimation model is disturbed by many
external environments, and the vegetation index of the band combination can enhance
a certain characteristic or detail of vegetation, which is more suitable for establishing a
VZA-insensitive cotton canopy nitrogen estimation model.

3.3. Nitrogen-Sensitive Spectral Index Screening of Different VZAs

To further clarify the abilities of spectral indices to estimate ANC and whether ANC is
affected by VZA, 20 spectral indices are listed in Table 3, including 19 published indices,
as well as the correlation relationship between the constructed index and 180 samples of
cotton ANC under different VZAs, expressed by the correlation coefficient (r); The two
best-performing spectral indices (PRI and AINI) show a strong correlation (r ≥ 0.849) in
the backscattering direction, so bolded r-values greater than 0.849 are represented. It can
be seen from Table 3 that the correlation between most spectral indices and ANC changes
greatly with the change in VZA, such as SIPI, TCARI/OSAVI, IPVI, GNDVI, etc., and some
spectral indices are not strongly correlated with ANC in different VZAs, such as DVI, SAVI,
SIPI, OSAVI, NRI, NDCI, and NPCI, indicating that they are not suitable for estimating
ANC. It is worth noting that the correlation coefficients of all spectral indices in the table for
nadir observations are smaller than those for off-nadir observations. Among them, PRI and
AINI did not differ much under each VZA, indicating that PRI and AINI were relatively
stable in estimating nitrogen using multi-angle remote sensing. In addition, PRIC, DDNI,
MTCI, NPQI, and mSR705 can also be used as spectral indices to monitor nitrogen. SIPI,
DDNI, mSR705, and MTCI are the most advantageous when observing at 60◦, and the
correlation coefficient is above 0.63. The above results show that, compared with nadir
observation, the spectral information obtained by off-nadir observation can improve the
inversion accuracy of ANC.
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Figure 5. Based on the Relief-F algorithm, the single-wavelength weight value of ANC with cotton
under different VZAs was evaluated. (A) Single-wavelength weight value with cotton ANC under
different VZA, (B) Weight value of ANC near 705 nm and cotton under different VZA, (C) Weight
value of ANC near 1414 nm and cotton under different VZA.

By comparing the relationship between spectral index and ANC, it can be seen that
the change in correlation has obvious angle sensitivity. Therefore, after removing the
spectral indices with no significant correlation with ANC, 14 spectral indices with good
correlation with ANC were screened out, and an analysis of variance was performed on
different observation angles of the two scattering directions (Figure 6). The results showed
that there were no significant differences in the angles of PRI, PRIC, NPQI, and AINI in
the backscattering direction (−60◦ to 0◦), and the F value of AINI was the smallest. In
the forward scattering direction (0◦ to 60◦), only GNDVI and NPQI are not sensitive to
angle differences, and the rest show statistically significant differences. Except for GNDVI
and CIred-edge3, the F values of other spectral indices at 0◦ to 60◦ observation angles are
higher than those at backscattering (−60◦ to 0◦ observation angles), indicating that in the
direction of backscattering, the spectral indices are affected by the angle with little effect.
We found that the spectral index constructed from the near-infrared band is more affected
by the observation angle, while the spectral index constructed from the visible light band
range and the position of the red edge is less affected by the observation angle. The newly
constructed AINI is superior to the spectral index with excellent correlation with ANC in
Figure 6B in both scattering directions and can realize the estimation of cotton canopy ANC
under the elimination of the influence of observation angle.
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Table 3. Correlation coefficient between ANC and spectral index of cotton with different VZAs.(r)
* and ** represent spectral index and ANC correlation. * represents a significant correlation of p < 0.05,
** represents a very significant correlation of p < 0.01. values greater than 0.849 are expressed in bold.

Spectral
Indices −60◦ −50◦ −40◦ −30◦ −20◦ −10◦ 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦

visible band

PRI 0.849 ** 0.857 ** 0.853 ** 0.861 ** 0.866 ** 0.849 ** 0.849 ** 0.848 ** 0.835 ** 0.836 ** 0.847 ** 0.857 ** 0.829 **

PRIC −0.796 ** −0.801 ** −0.790 ** −0.804 ** −0.796 ** −0.777 ** −0.818 ** −0.832 ** −0.822 ** −0.832 ** −0.842 ** −0.842 ** −0.796 **

NPQI −0.465 ** −0.666 ** −0.541 ** −0.563 ** −0.582 ** −0.592 ** −0.671 ** −0.702 ** −0.658 ** −0.782 ** −0.800 ** −0.746 ** −0.565 **

visible band,
Red edge

GNDVI 0.071 0.379 ** 0.286 ** 0.286 ** 0.275 ** 0.288 ** 0.333 ** 0.358 ** 0.364 ** 0.316 ** 0.278 ** 0.281 ** 0.041

TCARI −0.138 −0.281 ** −0.202 ** −0.192 ** −0.217 ** −0.279 ** −0.349 ** −0.386 ** −0.364 ** −0.341 ** −0.276 ** −0.286 ** −0.371 **

NRI 0.065 0.173 * 0.092 0.08 0.137 0.095 0.098 0.113 0.201 ** 0.229 ** 0.229 ** 0.206 ** 0.116

NDCI −0.034 0.229 ** 0.142 0.144 0.152 * 0.162 * 0.213 ** 0.234 ** 0.269 ** 0.215 ** 0.170 * 0.173 * −0.036

NPCI 0.166 * 0.231 ** 0.08 0.034 0.115 0.05 0.105 0.077 0.152 * 0.186 * 0.129 0.078 0.147 *

mSR705 0.676 ** 0.656 ** 0.629 ** 0.651 ** 0.658 ** 0.633 ** 0.656 ** 0.664 ** 0.637 ** 0.678 ** 0.709 ** 0.750 ** 0.790 **

AINI 0.851 ** 0.893 ** 0.890 ** 0.880 ** 0.871 ** 0.862 ** 0.852 ** 0.857 ** 0.830 ** 0.827 ** 0.844 ** 0.851 ** 0.816 **

visible band,
Red edge,

NIR

SIPI −0.061 −0.406 ** −0.290 ** −0.326 ** −0.342 ** −0.328 ** −0.408 ** −0.368 ** −0.425 ** −0.503 ** −0.570 ** −0.562 ** −0.630 **

TCARI/OSAVI −0.164 * −0.328 ** −0.255 ** −0.250 ** −0.279 ** −0.342 ** −0.403 ** −0.445 ** −0.422 ** −0.408 ** −0.363 ** −0.378 ** −0.461 **

Red edge,
NIR

DVI 0.052 0.041 0.077 0.106 0.095 0.099 0.055 0.049 0.097 0.076 0.161 * 0.168 * 0.097

NDVI 0.04 0.361 ** 0.260 ** 0.291 ** 0.300 ** 0.292 ** 0.363 ** 0.371 ** 0.408 ** 0.377 ** 0.361 ** 0.323 ** 0.021

SAVI 0.02 0.068 0.084 0.113 0.117 0.157 * 0.127 0.122 0.181 * 0.146 0.208 ** 0.227 ** 0.071

OSAVI −0.007 −0.042 0.021 0.056 0.059 0.121 0.08 0.07 0.107 0.103 0.183 * 0.198 ** 0.122

DDNI 0.510 ** 0.619 ** 0.633 ** 0.656 ** 0.661 ** 0.649 ** 0.660 ** 0.663 ** 0.637 ** 0.642 ** 0.643 ** 0.687 ** 0.737 **

IPVI −0.002 0.370 ** 0.276 ** 0.306 ** 0.314 ** 0.305 ** 0.376 ** 0.385 ** 0.423 ** 0.395 ** 0.380 ** 0.341 ** 0.031

MTCI 0.665 ** 0.664 ** 0.671 ** 0.683 ** 0.686 ** 0.669 ** 0.669 ** 0.680 ** 0.647 ** 0.672 ** 0.685 ** 0.721 ** 0.754 **

CIred-edge3 0.607 ** 0.661 ** 0.640 ** 0.650 ** 0.648 ** 0.637 ** 0.638 ** 0.653 ** 0.619 ** 0.620 ** 0.633 ** 0.654 ** 0.559 **
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Figure 6. Correlation between spectral indices and ANC under different VZAs. (A) VZA sensitivity
index, (B) VZA insensitivity index. In the brackets of the legend, F1 is the F value of variance analysis
in the backscattering direction (−60◦ to 0◦), F2 is the F value in the forward scattering direction
(0◦ to 60◦), * p < 0.05; ** p < 0.01; *** p < 0.001.

Through the results of variance analysis and correlation, six optimal spectral indices
(PRI, NPQI, AINI, PRIC, mSR705, and MTCI) were selected, and the linear relationship with
ANC was compared under the optimal VZA and nadir observation angle (Figures 7 and 8).
The results show that the six indices all have higher estimation accuracy at larger observa-
tion angles. At the same time, the three indexes of AINI, PRI, and PRIC have little change
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in the linear model accuracy of ANC at the lowest point observation angle, and the best
observation angle compared with other indexes and are less affected by the observation
angle. The index with the best test accuracy is AINI, which improves the estimation accu-
racy R2 by 0.13–0.29 at the best observation angle compared with other spectral indices,
and at the same time, at the lowest observation angle, the estimation accuracy R2 increases
by 0.04–0.43. In summary, the AINI constructed in this study can be better used for ANC
estimation and is less affected by the observation angle.
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3.4. Cotton Nitrogen Content Estimation Model Based on Multi-Angle Spectral Data

It can be seen from Table 3 that after correlation analysis, the indices PRI and AINI
are significantly correlated with ANC, and the correlation between each VZA reaches
more than 0.8, so these two spectral indices were selected as the input variables for the
construction of machine learning models. A total of 70% of the data volume was randomly
selected as the training data set, and 30% was used as the test data set. The four models,
support vector regression (SVR), BP neural network, random forest (RF), and AdaBoost,
were used for training, and the Python programming language was used to implement
the algorithm.

Taking the −20◦ PRI index and −50◦ AINI as the model input variables, the measured
and predicted values of the four machine-learning models were compared; Figure 9 shows
the two best spectral-index VZA estimation models and the combined index estimation
model. As can be seen from Figure 10, the measured value and the predicted value of the
model based on −20◦ PRI are R2 0.76 and 0.71, and the RMSE values are 2.314 and 2.190,
respectively, based on −50◦ AINI. The measured and predicted R2 values of the model are
greater than−20◦ PRI, and the RMSE is less than the−20◦ PRI index model. Although both
the −50◦AINI model and the −20◦PRI model can be used for nitrogen estimation, they are
based on a single VZA, and combining the two can greatly improve the accuracy of the
model. Compared with SVR, BP neural network, and AdaBoost, the RF model predicts the
change in cotton ANC better, with a prediction accuracy R2 of 0.98 and an RMSE of 0.590 in
the training set. The above results show that, compared with the single VZA spectral index
model, the model based on the combination of the best VZA and the best spectral index can
better estimate the ANC. The above results also show that the spectral index constructed in
this study can improve the estimation accuracy of nitrogen.

In order to further examine the performance of the four machine learning methods,
nitrogen estimation models are constructed based on spectral index PRI and AINI in the
band under the optimal VZA. Figures 10–12 are based on the spectral index AINI−50◦

based on 530 nm, 704 nm, and 1412 nm band machine learning modeling, based on spectral
index PRI−20◦ 531 nm, 570 nm, band machine learning modeling, based on spectral index
AINI−50◦ and PRI−20◦ 530 nm, 531 nm, 570 nm, 704 nm, 1412 nm band machine learning
modeling, as can be seen from Figures 10–12, The four machine learning models based on
the AINI band are better than the ones based on the PRI band. Whether based on spectral
index modeling or band modeling, the random forest method has the best modeling effect;
the R2 of the training set reaches more than 0.97, and the RMSE is less than 0.819; the
combination of the two improves the accuracy of the model.
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based on AINI−50◦, PRI−20◦, and their combinations (n = 180, training set = 126, validation set = 54):
(A) −50◦ AINI, (B) −20◦ PRI, (C) SVR Modeling of two spectral indices combination, (D) BP Mod-
eling of two spectral indices combination, (E) RF Modeling of two spectral indices combination,
(F) AdaBoost Modeling of two spectral indices combination.
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4. Discussion
4.1. Effect of VZA on Canopy Reflectivity

In this study, we studied the variation of spectral reflectance of cotton canopy under
different VZAs and the correlation between the spectral index and cotton ANC. The
results show that the spectral reflectance in the backscatter direction was greater than
that in the forward-scatter direction, and the two spectral indices (AINI, PRI) screened
out achieved the optimal nitrogen estimation effect in the backward observation. This is
because, in the backscatter region, the spectrometer probe and the sun are on the same
side, the observation field of view mainly contains the direct radiation of the sun, and the
vegetation itself is brighter, so the observed observation reflectance is also larger. When the
spectrometer probe and the sun are on the opposite side (that is, in the forward-scattering
direction), the observation field of view will receive information about the shadow part of
the canopy that is not irradiated by solar radiation, resulting in low reflectance [44]. When
estimating the cotton nitrogen content, backward observations obtained better results than
forward observations, possibly due to the fact that backward observations are stronger
than forward [11,45].

In addition, the VZA affects the proportion of the soil background or other information
captured in the observation field of view, resulting in a different canopy reflectivity in
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cotton, and some researchers have pointed out that the difference in the target components
significantly affects crop canopy reflectance [46,47]. Compared with the visible band, the
near-infrared band shows a bigger difference in reflectivity under different VZAs, which is
also demonstrated by Figure 4; this is caused by spatial heterogeneity of spectral properties
in the field of view [48]. The fact that pigments are strongly absorbed in the visible region
and abundant in healthy vegetation leads to the fact that the reflectance spectrum of
plants is generally low and less variable in the visible region relative to near-infrared
wavelengths [49].

4.2. The Spectral Index Estimates the Difference in ANC

In this study, the indices AINI, PRI, and PRIC were strongly correlated with nitrogen
accumulation, and the correlation coefficient reached an average of more than 0.8. The
bands constituting the above spectral indices were distributed in the green band and the
red edge area, which is because the green band is more sensitive to plant nitrogen status.
Previous studies have shown that the degree of blue shift at the red edge of vegetation
is significantly related to the physiological characteristics of the vegetation canopy [50].
Red edge (700–760 nm) is a transition region with rapid changes in leaf reflectivity caused
by strong pigment absorption in the red spectrum and leaf scattering in the near-infrared
spectrum, and it has been found that the red edge is sensitive to crop canopy nitrogen [23].
The previous research illustrated the reliability of spectral information in the red-edged
region, and the results of this study confirm that view. The better indices (AINI, PRI, PRIC,
MTCI, and mSR705) include the wavelength of green light or the red−edge region.

Under non-lowest point observation, more canopy structure information can be ob-
tained in the detection field of view, especially for cotton as a sunflower crop. The spectral
data obtained in the backscattering direction will obtain more physiological information on
cotton leaves, so the estimation of nitrogen concentration is better than nadir observation
in a multi-angle detection [51]. At the same time, factors such as crop canopy distribution
and soil background will estimate the spectral index [52]. The larger the VZA, the larger
the proportion of crop information within the sensor’s field of view and the smaller the
proportion of soil [10]. Therefore, AINI and PRIC have the strongest correlation with cotton
ANC in larger VZAs. When making small VZA observations, the intensity and depth
of light entering the crop canopy are relatively strong, the proportion of the scattering
and reflection information captured increases, and the spectral index estimation ability
will be improved, so the model accuracy is the highest when the index PRI is observed
at −20◦. Therefore, by selecting the appropriate spectral index, both the backward- and
forward-scattering directions can obtain better estimation effects.

As PRI is an anisotropic spectral index, the canopy structure, soil background, and
solar observation geometry all comprehensively affect its value [53]. The difference in
nitrogen content estimated by the PRI in different VZAs is not directly driven by VZA but
rather by changing the proportion of the contribution of the target components to canopy
reflectance to produce indirect effects so that the PRI performance is relatively stable for
different VZAs. The three-band index constructed in this study is also consistent and stable
at all angles, which may be because the bands involve three relatively independent spectral
regions (green light, the red edge region, and shortwave infrared), which reduces the
interaction of information between bands. AINI is a spectral index that is constructed using
band combination, which can enhance a certain characteristic or detail of vegetation so that
the accuracy of the model is improved and its operation is relatively simple, making it more
widely applicable in the monitoring of nitrogen accumulation. Although the study was
conducted in the field, its estimated performance needs to be verified many times before
it can be widely used. Therefore, in the next step, it is necessary to verify the different
cultivation conditions of a variety of crops to prove the superior performance of multi-angle
remote sensing based on the spectral index.
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4.3. Future Applications and Limitations of Research

This study improves the retrieval accuracy of cotton canopy nitrogen to a certain extent
and conducts multi-angle observations within a fixed time range to reduce the influence
of the sun angle, effectively realizing accurate monitoring of cotton canopy nitrogen at
different times of the day. Acquisition and application of multi-angle remote sensing
data based on ground platforms can achieve more accurate results, but its low efficiency
and limitation of measurement range limit its application in large-scale farmland [54].
UAV equipment has the advantages of high flexibility and low cost and can quickly and
efficiently acquire data with higher spatial resolution [55–57]. For example, Lu et al. used
the multi-angle images of UAV multi-spectral cameras, especially the multi-spectral images
in the backsight direction, to help more accurately estimate the nitrogen concentration
parameters of winter wheat, and the combination of multi-angle images and nadir view
images also improved the estimation of nitrogen concentrations in winter wheat [48].
The rapid integration and development of various observation platforms provide data
guarantees for multi-angle remote sensing. Compared with drones and satellite platforms,
the VZA obtained by ground multi-angle observation equipment is more stable; the multi-
angle remote sensing information of the ground, aviation, and space complement each
other and can realize rapid and large-scale accurate monitoring of farmland information.
As a result, the follow-up research results will be validated at the UAV scale, and large-
scale accurate monitoring of cotton nitrogen can be achieved by combining the high
maneuverability and flexibility of UAVs with the elimination of the influence of observation
angles and sun angles.

Although the AINI-based cotton ANC estimation model has been established and
has good estimation accuracy, it is limited by the low efficiency of ground remote sensing
and the limitation of the measurement range, which limits its application in large-scale
farmland. In addition, this study only focuses on the effect of VZA on the spectral index
estimation of cotton nitrogen status and does not consider the underlying mechanisms
of these influencing factors. This work only analyzed and validated AINI for cotton
canopy, so additional quantitative field validation should be performed in the future to
investigate the feasibility of using AINI for canopy nitrogen estimation for different crops
and planting patterns to establish crop nitrogen estimation models common in different
growing environments.

5. Conclusions

The timely and accurate estimation of canopy nitrogen levels is essential for crop
growth monitoring and agricultural management. In this study, multi-angle remote sensing
observations showed that nitrogen monitoring was sensitive to VZA and that off-nadir
observation allows a more accurate estimate of cotton nitrogen content. We used the
Relief−F algorithm to identify bands that are sensitive to nitrogen but not to VZA, and we
created a nitrogen spectral index AINI = (R530 − R704)/(R1412 + R704) suitable for different
VZA to estimate cotton canopy nitrogen. We studied (i) the variation of the spectral
reflectance of the cotton canopy under different VZA conditions, (ii) the ability of the
existing spectral index to estimate nitrogen concentration under different VZAs, and (iii)
the construction of a cotton canopy nitrogen monitoring model. The following conclusions
can be drawn from this work:

(1) The spectral reflectance in the backscatter direction is greater than that in the forward
scattering direction, and the constructed spectral index AINI is also better estimated
by retroactive observation at −50◦ (Figures 4 and 7).

(2) The existing spectral indices selected in this study have obvious angular sensitivity to
changes in the correlation between ANC, and the correlation coefficients in the zenith
direction are smaller than those of off-nadir observations (Table 3).

(3) RF models combining the −50◦ AINI index and the −20◦ PRI index can better predict
the change of ANC in cotton (test set R2 = 0.98, RMSE = 0.590, validation set R2 = 0.85,
RMSE = 1.532) (Figure 9).
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