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Abstract: Geochemical data can reflect geological features, making it one of the basic types of geodata
that have been widely used in mineral exploration, environmental assessment, resource potential
analysis and other research. However, final decisions regarding activities are often limited by the
spatial accuracy of geochemical data. Geochemical sampling is sometimes difficult to conduct because
of harsh natural and geographic conditions (e.g., mountainous areas with high altitude and complex
terrain), meaning that only medium/low-precision survey data could be obtained, which may not
be adequate for regional geochemical mapping and exploration. Modern techniques such as remote
sensing could be used to address this issue. In recent decades, the development of remote sensing
technology has provided a huge amount of earth observation data with high spatial, temporal and
spectral resolutions. The advantage of rapid acquisition of spatial and spectral information of large
areas has promoted the broad use of remote sensing data in geoscientific research. Remote sensing
data can help to differentiate various ground features by recording the electromagnetic response of
the surface to solar radiation. Many problems that occur during the process of fusing remote sensing
and geochemical data have been reported, such as the feasibility of existing fusion methods and
low fusion accuracies that are less useful in practice. In this paper, a new strategy for integrating
geochemical data and remote sensing data (referred to as ASTER data) is proposed; this strategy is
achieved through linear regression as well as random forest and support vector regression algorithms.
The results show that support vector regression can obtain better results for the available data sets and
prove that the strategy currently proposed can effectively support the fusion of high-spatial-resolution
remote sensing data (15 m) and low-spatial-resolution geochemical data (2000 m) in wide-range
accurate geochemical applications (e.g., lithological identification and geochemical exploration).

Keywords: remote sensing; geochemical; machine learning; linear regression; data fusion

1. Introduction

As an important geological data set, geochemical data plays an important role in
ecological environment survey [1,2], geological mapping, mineral exploration [3], industrial
decision-making, land suitability evaluation and other fields. Geochemical data can reveal
the impacts of human activities on ecology and environment. Several studies have pointed
out that some agricultural, mining and industrial activities will lead to the release of
harmful elements to the environment, potentially causing adverse effects to ecosystems and
human health [4,5]. In the field of geology, geochemical data can be analyzed with statistical
theories to help determine the existence of geologic units and delineate mineral exploitation
targets [6]. Moreover, in recent years, there have been considerable developments in the
broad application of deep learning, machine learning and artificial intelligence methods to
integrate geochemical data with other multi-source geoscience data to reach this goal [7,8].

Unlike the time-consuming and laborious process of geochemical sampling, remote
sensing techniques can acquire spectral information about ground features quickly and
efficiently. The spectral information recorded by the remote sensing data is determined
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by the interactive characteristics between electromagnetic waves and ground objects, that
is, the spectral characteristics of ground objects [9]. Previous studies have shown that
diagnostic absorption features (e.g., the wavelength and depth of absorption) of ground
objects are closely related to the molecular vibration forms and electron transition behav-
iors of the different molecules [10]. In recent years, some studies have revealed that the
responses of ground objects to electromagnetic waves displayed in remote sensing data
are also correlated with the content of geochemical elements. For example, the differ-
ence in the aluminum content present in the white micas that are widely distributed in
the intermediate-felsic magmatic rocks can be presented by the wavelength of diagnostic
absorption peak of these minerals. The shorter the wavelength corresponding to the char-
acteristic absorption peak, the higher the content of aluminum in white micas [11]. This
finding makes it possible to determine mineral composition and classify rocks with remote
sensing data, as the types and content of white micas in different lithologies follow certain
rules. For example, Kokaly et al. [12] used HyMap imaging spectrometer data for the area
of Orange Hill–Bond Creek, Alaska, and illustrated longer wavelengths of white mica’s
diagnostic absorption feature that occurs at approximately 2200 nm; these wavelengths
were associated with a porphyry cluster and enrichment of Cu. A longward shift of the
diagnostic absorption peak in the continuum removed the white mica 2200 nm combina-
tion feature in hyperspectral data that was collected at the Cripple Creek & Victor Mine
in Cripple Creek, CO, USA, demonstrating a decrease of Al and an increase in the depth
of the open pit [13]. Swayze et al. [14] successfully developed acidic mineral distribution
maps using AVIRIS data. In addition, the spatial distribution pattern of nutrient content or
heavy metal elements contained in soil and water can be derived using spectroscopy based
on the intrinsic relationship between the geochemical and remotely sensed data [15]. Using
reflectance spectra data to solve geochemical problems has become a common practice in
recent years as the application effects have been proven to be significant.

From the aspect of geology, geochemical data can provide indicative information for
mineral exploration. However, due to the broad span of sampling media and the extensive
presence of various elements in different geologic bodies, the indication of geochemical
anomalies that represent geologic bodies is often obscure. With abundant spectral infor-
mation, remote sensing data can distinguish ground objects with physical characteristics
due to the differences in the reflection spectrum of various ground objects. Combining
remote sensing and geochemical data can effectively make full use of the advantages of
the two data sets in the identification of ground objects. The use of fusion algorithms to
comprehensively analyze geochemical and remote sensing data has a long history. Early
remote sensing and geochemical data image fusion algorithms focused on linear methods;
for example, IHS transformation has been used to fuse Landsat MSS and geochemical data
to find gold anomalies and alteration zones [16]. Geological, geochemical, and remote sens-
ing data are also used in Iran for principal component analysis; this function can identify
two mineralization types, including podiform chromite and epithermal gold-antimony
mineralization types [17]. With the improvement of remote sensing data quality and the
development of computer science, nonlinear methods in the field of image fusion have
been gradually developed. Particularly, by introducing machine learning methods into geo-
information integration, computer technology can help to obtain high-quality and efficient
data fusion. Nowadays, machine learning algorithms (such as random forests, support
vector machines, etc.) have been widely applied in the field of geology. Significant progress
has been made in target recognition, such as geological disaster analysis and detection [18],
mineral exploration [19], geochemical anomaly identification [20], etc. Machine learning
methods based on lithologic mapping techniques have been significantly developed and
improved, and remote sensing data is used to reveal the composition of materials and/or
the relationship between geochemical components and their contents [21,22]. The intrinsic
basis of these studies is to fuse remote sensing data with geochemical data to analyze the
physicochemical properties of lithologic units. The commonly used remote sensing and
geochemical data fusion methods include random forests, independent principal compo-
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nents, etc. [22–24]. However, due to the prominent differences in the spatial scales of remote
sensing and geochemical data, the current fusion methods struggle to reflect the detailed
information contained in remote sensing data [25], which may cause failures in generating
ideal fusion results that are feasible or ready-to-use for real work. In addition, traditional
geochemical interpolation methods, such as Inverse Distance Weighting (IDW) and Kriging,
present their own inconveniences in practice. IDW is not effective for clustered samples,
and the statistical conditions used for Kriging method are stricter. These may make the
interpolation results of these two algorithms unsatisfactory for further analysis [26]. This
contribution proposes a fusion strategy of remote sensing data and geochemical data, which
supplements spatial details contained by the former to the latter, allowing the limitations of
using traditional interpolation methods on the data to be fundamentally solved. Therefore,
when remote sensing data is added, the generation of high-resolution geochemical data
is no longer “self-simulation” but is instead “evidence based”. From the perspective of
economy and convenience, both remote sensing data with rich spatial information and
geochemical data at a smaller scale are relatively easy to acquire. The integration of remote
sensing data and geochemical data based on the strategy proposed in the current research
can reduce the difficulty of mineral exploration, resource and environmental survey and
other related geological work without increasing the cost.

The Dacaotan area of the eastern Tianshan mineralization belt in Xinjiang, China is
selected as this study’s research area of this study and where the fusion experiment of
geochemical and remote sensing data will be conducted. The eastern Tianshan area is well
known for its prominent polymetallic mineralization, such as copper, nickel, gold, etc. [27].
At the same time, this area is sparsely vegetated, and the extensive exposure of strata can
maximize the advantages of remote sensing techniques in geological work. Through this
study, high-precision geochemical data fused with remote sensing images can be obtained,
which may provide new information for mineral exploration in the study area.

2. Material and Methodologies
2.1. Geological Background

Research was conducted in the eastern Tianshan Orogen area (Figure 1, red box) at
coordinates from 91◦9′32′′E to 92◦59′10′′E and 41◦52′53′′N to 42◦14′28′′N. As part of the
Central Asia Orogenic Belt, the eastern Tianshan Orogen is located in the junction zone of
the Siberian, the Juggar-Kazakhstan and the Tarim blocks. The tectonic evolution of this oro-
genic belt is complex; each block has experienced collage formation, accretion–subduction
and collisional orogeny of each block during the formation–extinction process of the Paleo-
Asian ocean interplate [28–31]. The complex tectonic movement in the eastern Tianshan
region not only formed the Paleozoic arc-basin systems [32–34], but also promoted the
polymetallic mineralization which defined this area as an important metal mineral base
in China [35].

Controlled by the main faults, the strata and magmatic rocks in eastern Tianshan are
nearly E–W distributed and trending. The Dananhu-Tousuquan (or Dananhu-Harlik) arc in
the north and the Aqishan-Yamansu arc in the south are separated by the Kanggur ductile
shear zone [36]. The study area in this paper is located in the middle of the eastern Tianshan
mineral district (Figure 1). Along the Dacaotan fault, the Dananhu-Tousuquan arc belt
can be further divided into the Kalatag subzone in the north and the Xiaorequanzi-Tuwu
subzone in the south [34]. The Kalatag subzone is characterized by a sequence of volcanic
rocks made of intermediate-mafic volcanic rocks (e.g., basalt and andesite) in the Middle-
Upper Ordovician Daliugou Formation, volcanic-sedimentary rocks (e.g., dacitic tuff) in the
Lower Silurian Hongliuxia Formation, felsic volcanic rocks (mainly dacite) and pyroclastic
rocks in the Lower Silurian Kalatag Formation, marine volcanic sedimentary rocks (i.e., py-
roclastic rocks interlayered with intermediate-mafic volcanic rocks and carbonate buildups)
in the Lower Devonian Dananhu Formation, and molasse sediments in the Middle Devo-
nian Kanggurtag Formation. In addition, intermediate-felsic intrusions (e.g., granodiorite,
granitic porphyry, granite, quartz diorite and diorite) and mafic-ultramafic intrusions were
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mainly developed in the Ordovician-Devonian and Permian time, respectively. The lithol-
ogy in the Xiaorequanzi-Tuwu subzone is characterized by the Carboniferous volcanic
strata: the western part is primarily occupied by the marine volcanic and pyroclastic rocks
in the Lower Carboniferous Xiaorequanzi Formation, and the eastern section is mainly cov-
ered by a wide-range of volcanic rocks, including intermediate-felsic volcanoclastic rocks,
basalt, andesitic basalt, andesite, etc., in the Lower Carboniferous Qi’eshan Formation, and
sparsely accompanied by marine pyroclastic buildups in the Upper Carboniferous Dikan’er
Formation. Intrusion of the Paleozoic granitic rocks into the Carboniferous volcanic strata
were quite common in the Xiaorequanzi-Tuwu subzone. Southwardly, the clamping area
between the Kanggur and the Yamansu faults is the Kanggur ductile shear zone. The strata
exposed here is composed of flysch units, as well as disordered strata that was formed by
intense deformation and metamorphism of pillow basalt, silicalite, argillite, etc. [34,37].
The study area, especially the Xiaorequanzi-Tuwu subzone, is one of the most important
porphyry Cu-Au mineralization regions in the eastern Tianshan district. Deposits such
as the Tuwu, Yandong, Chihu, Linglong, etc. are well known for their high grade and
abundant reserves, which have attracted worldwide attention in recent decades. For further
geological and evolutional details about the eastern Tianshan region, refer to Xiao et al. [38].
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Figure 1. Geographical location and geological setting of the study area.

2.2. Data Sets
2.2.1. Remote Sensing

The arid inland environment in the study area resulted in the typical, sparsely veg-
etated Gobi desert landscape. The coverage of the Quaternary sediments has invaded
most of the region; they cause both inconvenience in transportation, and difficulties in
conducting high-precision geochemical sampling and exploration work in this area. Taking
those issues into the consideration, this study attempts to generate a set of high-precision
geochemical data through image fusion techniques based on the low-precision geochemical
data and remote sensing images with relatively higher spatial resolution. By comparing the
results to the real high-precision geochemical data in a small, restricted area, the reliability
of the newly generated high-precision geochemical data will be validated and can then be
further be applied in the extraction of regional geochemical anomalies.
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The ASTER L1T data used in this paper (Figure 2) was downloaded from the United
States Geological Survey (USGS) website and were obtained from April 2003 to August
2005 (the data acquisition dates are 1 June 2003, 20 August 2003, 12 April 2004, 2 April
2004, 19 June 2004, 15 August 2004 and 13 June 2005), in the late spring and summer.
These dates were chosen because stable atmospheric conditions would lead to better image
quality and the higher solar zenith angle would minimize errors caused by the shadows of
ground objects.
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After years of collection, full coverage of ASTER data over the earth surface has been
achieved, which enables wide-range observation of the ground objects. In the field of
geology, valuable experiences and technologies based on ASTER data have been accumu-
lated during various research projects [39,40], providing data support for this subsequent
work. The ASTER data contains 14 bands from the visible to the thermal infrared band
range. Multiple channels contained in the short-wave infrared range (SWIR) can be used
to identify types of minerals, such as Fe-related, carbonates, and hydroxides [40], that
continue to give the ASTER data significant potential in geological applications [41,42].

The quality of remote sensing data can be disturbed by many factors. For example,
factors such as sensor attitude changes, altitude adjustments, and satellite speeds will cause
geometric distortion of remote sensing data [43]. When the sensor receives electromagnetic
waves, factors such as the atmosphere, water, vegetation, shadows, etc., cause interference,
which makes the spectrum of ground objects on remote sensing images uncertain [44]. In
order to solve the above problems, remote sensing data need to be preprocessed correctly,
including radiometric calibration, atmospheric correction (fast line-of-sight atmospheric
analysis of spectral hypercubes has been used in this paper), image registration and fusion,
as well as mosaic and cropping according to the scope of the study area. In order to avoid
the influence of vegetation, this paper calculates NDVI to mask vegetated areas. The quality
of data obtained through the above processing steps can better reflect the actual situation
and better meet the needs of information extraction.

2.2.2. Geochemical Data

Geochemical data for the research was collected from China’s National Mapping
Project (Regional Geochemistry-National Reconnaissance, RGNR project) in 1997. More
details can be found in DZ/T 0167-1995 [45]. Geochemical data with two spatial resolutions
are currently used in this research: (1) the stream sediment geochemical data in a scale of
1:200,000 cover the entire study area and are used to train the geochemical remote sensing
fusing model. The concentration values of 39 elements and oxides including Au, Cu, Mo,
etc. (Ag, As, B, Ba, Be, Bi, Cd, Co, Cr, F, Hg, La, Li, Mn, Nb, Ni, P, Pb, Sb, Sn, Sr, Th, Ti, U, V,
W, Y,Zn, Zr, SiO2, Al2O3, Fe2O3, K2O, Na2O, CaO, MgO) were analyzed mainly through X-
ray fluorescence. The samples collected within drainage basins have been analyzed by the
Chinese National Geochemical Mapping Project. Geochemical points are evenly distributed
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at intervals of 2 km, the values of which were obtained by averaging all samples located
within each 2 km × 2 km unit cell [46–48]; (2) for validating the data fusing results, the
geochemical data currently utilized are at a scale of 1:50,000 and are primarily distributed
in the middle range of the tongue-shape intrusion and its eastern neighborhood (Figure 2);
Heishan and Cuiling Cu mineralized occurrences were discovered in this area. Similar to
the geochemical data in the coarser resolution described above, the geochemical points
of this data set are gridded at intervals of 0.5 km, and the values of elements/oxides are
acquired by averaging all geochemical samples located within each 0.5 km × 0.5 km unit
cell. Previous studies have revealed the paragenetic relationships between Cu and Au, Mo,
etc. Considering the analysis of reginal geochemical anomalies by Wang et al. (2017), it can
be inferred that this area is favorable for Cu–Au polymetallic mineralization.

2.3. Data Fusion Strategy

At present, there are many types and quantities of data available for geological anal-
ysis. Since different kinds of data with various data structures may only provide limited
descriptions of ground objects, researchers rely on fusion techniques to obtain sufficient
information and eliminate uncertainties in different data sets [49].

The various forms of grayscale value in a remote sensing image can reflect the high
or low frequency information. The high frequency information may be represented by
pixel values that change sharply (e.g., clear boundaries between two ground features);
meanwhile, low frequency information may be depicted by the pixel values changing slowly
and continuously (e.g., the interior of a widely extended ground feature). Comparing to
the remote sensing images with medium spatial resolution (e.g., Landsat-8 OLI, 30 m
and ASTER, 15 m), the commonly used stream sediment geochemical data with a scale of
1:200,000 can be treated as low-spatial resolution (2 km) or low-frequency data.

GeoCH_200 = f (RS_H) + C (1)

where f represents the regression model established by 1:200,000 geochemical data (GeoCH_200)
and high-frequency information (RS_H) of remote sensing images. C represents systematic
errors caused by lighting, atmosphere, etc.

Generally, remote sensing images have higher spatial resolutions because high-frequency
information reflects areas where grayscale values change sharply, such as image textures
and edges, and low-frequency information reflects areas where image grayscale values
change slowly and continuously [50]. Compared with medium-resolution remote sensing
images (e.g., Landsat-8 OLI, 30 m; ASTER, 15 m, etc.), the commonly used 1:200,000 water
system sediment geochemical data is low-resolution or low-frequency data (the spatial
resolution after grid is 2 km). In some studies, a variety of situations makes it impossible to
obtain high-precision geochemical data, and to obtain a more detailed spatial distribution
of element content and prerequisite geochemical analysis, the method of interpolation
(IDW or Kriging method) is generally used to obtain high-resolution geochemical data.
However, as mentioned in the first section, neither method is optimal in terms of use and
effect. This paper proposes a strategy for integrating remote sensing data with geochemical
data by using high-frequency information from remote sensing data to encrypt low-spatial
resolution (low-frequency geochemical data). The advantage of this approach is that, on
the one hand, the geochemical data are used for the abnormal distribution of elements
and their combinations [51,52] in surveys; they are also frequently used to identify min-
eral combinations or characteristic geological bodies (such as rock masses, ore bodies,
strata, etc.) [53,54]. On the other hand, free medium-resolution remote sensing images
(spatial resolution) are more readily available, and remote sensing data with SWIR bands
can usually reflect the mineral composition and content of features [55], which has a similar
function to geochemical data in some ways. For example, alteration information can reflect
mineralization information (such as Cu) [56]. Therefore, the integration of remote sensing
and geochemical data can solve many of the difficulties caused by the low spatial accuracy
of geochemical data in geological research. Some researchers have realized the analysis of
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Cu element-related information based on ASTER data [57,58]. As mentioned above, the
previous remote sensing and geochemical data fusion methods have the disadvantage of
fuzzing the spatial details of remote sensing data. In order to make the remote sensing data
better serve the improvement of the spatial resolution of geochemical data and prevent it
from losing its role in reflecting the mineral composition and content in the geomorphology,
a new remote sensing and geochemical data fusion strategy is proposed to meet the above
requirements. Figure 3 shows the fusion steps of remote sensing with geochemical data
using ASTER data as an example.
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Step1: The high-frequency information of remote sensing data is obtained from the
remote sensing image (RS) by the Gaussian pyramid decomposition method. The low-
frequency information (RS_L) of the remote sensing data is obtained by down-sampling
the RS data. The high frequency information (RS_H) of the original RS data can be obtained
by subtracting the original data and the RS_L of the remote sensing data. In order to obtain
the characteristics of the spectral dimension, the RS data takes the first derivative in the
spectral dimension. The obtained spectral first derivative information and high-frequency
remote sensing data are used in model training and prediction. Image data has a strong
local correlation in space and contains a significant amount of redundant information. In
order to prevent redundant information from interfering with the model training process,
the training data is compressed with a mean filter with a size of 5× 5 to smooth the training
data and reduce the interference of noise on the model.

Step2: Regression modeling can obtain the relationship between 1:200,000 geochemical
data (GeoCH_200) and RS_H data. Linear (linear regression) and non-linear methods
(random forests, support vector regression) can be used for the model and allow new
geochemical element interpolation data (GeoCH_H) can be generated; the process can be
represented by Equation (1). Compared with 1:200,000 geochemical data, the generated
geochemical data (GeoCH_50) contains more information about spatial details, which
belong to geochemical high-frequency information.

2.4. Regression Models

In this paper, two nonlinear machine learning methods of random forest and support
vector regression are used to achieve both remote sensing geochemical data fusion (Step2 in
Section 2.3) and the regression of RS_H data and geochemical data. The regression model
chooses one of the three methods to generate GeoCH_H, and finally obtains the fusion
result. In addition, the traditional linear regression-based fusion model is compared with
the results of three machine models to verify the effectiveness of the machine model in
the data fusion process. For nonlinear machine learning models, in order to achieve the
regression of RS_H data and geochemical data, the geochemical data are rounded down to
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form discrete data when the model is built, and the number of labels of discrete data is n.
The regression problem can be converted into n classification problem, so as to realize the
RS_H data and geochemical data regression of nonlinear machine learning methods.

2.4.1. Linear

In statistics, linear regression is commonly used to model the relationship between
one or more independent variables and a dependent variable [59]. This method is widely
used in the study of multivariate geological systems [60]. The principle of linear regression
is as follows.

Y = a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 + a7x7 + a8x8 + a9x9 + a10x10 (2)

where xi (i = 1, 2, . . . , 10) represents the matrix of DN values of all pixels in the corre-
sponding region of the i-th band of the RS_H data (Figure 3), x10 is the first derivative
differentiation, ai (i = 1, 2, . . . , 10) represents the regression coefficient, and Y represents
the measured 1:200,000 geochemical data distribution (Figure 2, red).

2.4.2. Random Forest (RF)

The RF [61] algorithm is one of the most commonly used supervised learning algo-
rithms; it belongs to the Bagging (Bootstrap aggregation) method [62] in integrated learning.
The method used for regression analysis consists of two stages: (1) In the model training
phase, random forest uses bootstrap sampling to randomly collect multiple different sub-
training data sets from the input training data set to sequentially train multiple different
classification and regression trees (CART). During training, it is necessary to consider how
to select segmentation variables (features) and segmentation points, and how to measure
the quality of segmentation variables and segmentation points. For the first problem, it
is possible to find the best segmentation variable and segmentation point by separating
all the features randomly extracted from each tree and all the values of each feature; for
the latter problem, it can be measured by the smaller weighted sum of the impurity (for
regression analysis, impurity can be defined using mean squared error-MSE or absolute
mean error-MAE) of each child node after segmentation. (2) In the model prediction stage,
the RS_H data is put into the RF, and the final predicted result is obtained by taking the
average value according to the predicted results of multiple decision trees. The advantages
of random forest are mainly reflected in: (1) the classification accuracy is generally better
than a single decision tree classifier, provided that the correlation of each decision tree is
small; (2) due to the double randomness of samples and features, the model is not easy to
fall into overfitting; (3) while classifying the data, the importance score of each feature can
also be given to evaluate the role of each feature in the classification. The regression steps
of random forest are as follows (Figure 4).

STEP 1: Extract m training samples from all training data with replacement and obtain
new n sub-training sets (S1 . . . Sn).

STEP 2: Train a CART with the training set data. During the training process, the
segmentation rule of each node is to randomly select k features from all features (different
bands of RS data), and select the optimal segmentation point among these k features to
divide the left and right subtrees. Through this process, multiple different CART regression
trees can be generated.

STEP 3: When predicting, the 9-band remote sensing data is input into the random
forest model as an independent variable, and the final prediction result of each CART
regression tree is obtained.

STEP 4: Each predication of CART regression tree is averaged to obtain the final
prediction result.
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2.4.3. Support Vector Regression (SVR)

SVM is a binary classification model [63] that is a learning strategy based on interval
maximization. The SVM can be formalized as a problem for solving convex quadratic
programming, such as regression problems [64]. The regression steps of SVR are shown
in Figure 5.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 5. Sketch diagram of support vector regression (Green dots and blue dots are both samples. 
Samples. Blue dots are samples on the interval boundaries). 

The training data in the regression problem is 𝑋 = {𝑋 , ⋯ , 𝑋 }. 𝑋  is the ASTER 
data for this region. 𝑌 = {𝑦 , ⋯ , 𝑦 }. 𝑦  is the measured geochemical data correspond-
ing to the training data in this area. 

If there is a hyperplane in the feature space where the training data is located, the 
hyperplane can make the distance between any sample point and the hyperplane less than 
or equal to 1 according to the label. 𝑤 𝑋 + 𝑏 = 0 (3)𝑦 (𝑤 𝑋 + 𝑏) ≤ 1 (4)

The above Equation (3) is the decision boundary, 𝑤 , b is the coefficient of the deci-
sion boundary function, which is used to uniquely determine the decision boundary, so 
that the sample will be correctly fitted. Equation (4) is the distance from the sample point 
to the hyperplane. In SVR, it is necessary to ensure that the distance between all sample 
points and the hyperplane is less than or equal to the point farthest from the hyperplane. 𝑋 , 𝑦  is the point farthest from the hyperplane. When the decision boundary satisfies 
Equations (3) and (4), two parallel hyperplanes can actually be constructed as interval 
boundaries to judge whether a sample is correctly predicted: 𝑤 𝑋 + 𝑏 ≥ 1 (5)𝑤 𝑋 + 𝑏 ≤ −1 (6)

The distance between the two interval boundaries is 𝑑 = || || Defined as margin, ||𝑤|| is the distance from Equations (3)–(5) or (6). Samples located on the interval bound-
ary are called support vectors. SVR allows some samples that are indivisible in linear 
space to have hypersurfaces in the eigenspace to separate samples. Because of this, non-
linear mapping functions are used to map sample distributions from the original feature 
space to the higher-dimensional Hilbert space, thereby converting nonlinear problems 
into linear problems to classify samples. However, the complex form of the mapping 

Figure 5. Sketch diagram of support vector regression (Green dots and blue dots are both samples.
Samples. Blue dots are samples on the interval boundaries).

The training data in the regression problem is X = {X1, · · · , X1643}. Xn is the ASTER
data for this region. Y = {y1, · · · , y1643}. yn is the measured geochemical data correspond-
ing to the training data in this area.
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If there is a hyperplane in the feature space where the training data is located, the
hyperplane can make the distance between any sample point and the hyperplane less than
or equal to 1 according to the label.

wTX + b = 0 (3)

yi

(
wTXi + b

)
≤ 1 (4)

The above Equation (3) is the decision boundary, wT , b is the coefficient of the decision
boundary function, which is used to uniquely determine the decision boundary, so that
the sample will be correctly fitted. Equation (4) is the distance from the sample point to
the hyperplane. In SVR, it is necessary to ensure that the distance between all sample
points and the hyperplane is less than or equal to the point farthest from the hyperplane.
Xi, yi is the point farthest from the hyperplane. When the decision boundary satisfies
Equations (3) and (4), two parallel hyperplanes can actually be constructed as interval
boundaries to judge whether a sample is correctly predicted:

wTXi + b ≥ 1 (5)

wTXi + b ≤ −1 (6)

The distance between the two interval boundaries is d = 2
||w|| Defined as margin, ||w||

is the distance from Equations (3)–(5) or (6). Samples located on the interval boundary
are called support vectors. SVR allows some samples that are indivisible in linear space
to have hypersurfaces in the eigenspace to separate samples. Because of this, nonlinear
mapping functions are used to map sample distributions from the original feature space to
the higher-dimensional Hilbert space, thereby converting nonlinear problems into linear
problems to classify samples. However, the complex form of the mapping function makes
it difficult to calculate its inner product, so the kernel method can be used to subtract the
computation process [65]. The training sample set X is composed of the first derivative
differentiation and RS_H, and the label data Y is geochemical data which sampled by field
work. The number of values present in the label data is n.

2.5. Reference of Data Fusion

In order to evaluate the quality of the fusion strategy proposed in this paper, linear
regression is selected to achieve RS data and geochemical data fusion. This method does
not decompose RS data into high- and low-frequency information, but instead uses the
DN value of ASTER data as the independent variable and the 1:200,000 geochemical data
as the dependent variable to establish a regression model. To distinguish it from the
aforementioned linear regression method (in Section 2.4.1), this method is called direct
linear regression in the current paper. Comparing the fusion result of direct linear regression
with the fusion results of linear regression, RF and SVR can evaluate the effectiveness of
the fusion strategy. The direct linear fusion method is shown in Figure 6.
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2.6. Evaluation Method

Three indicators of mean, standard deviation (Std), and correlation coefficient are used
to evaluate the quality of fusion results. The calculation methods of the three indicators are
different. When calculating the mean and Std, firstly, the fusion result should be compared
with the 1:50,000 geochemical data (GeoCH_50, Figure 7), and then the mean variance
of the error image should be calculated. The mean and Std can measure the degree of
difference between the fused image and the GeoCH_50. The correlation coefficient is
directly calculated from the GeoCH_50 and the fusion result, which can measure the degree
of consistency between the fusion image and the distribution trend of the GeoCH_50. The
calculation methods of the three indicators shown in Figure 7.
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(1) Mean

Mean can indicate the overall difference between the fusion result (1:50,000 geochem-
ical data obtained through fusion) and the real geochemical data distribution (original
1:50,000 geochemical data). The predicted results are compared with the original geochemi-
cal data, and the smaller the mean value of the difference image is, the smaller the overall
deviation between the predicted image and the real geochemical data.

(2) Standard deviation

Standard deviation indicates how far the fusion results deviate from the real distri-
bution of geochemical data. The smaller the variance of the difference image between the
predicted result and the original geochemical data, the smaller the difference between the
predicted image and the real geochemical data.

(3) Correlation coefficient

Correlation coefficients are widely used to measure the degree of correlation between
two variables. The correlation coefficient between the fusion result and the 1:50,000 geo-
chemical data is compared with the correlation coefficient between 1:200,000 and 1:50,000
geochemical data (20-5), so as to quantitatively evaluate the similarity between the fusion
result and the verification data. The correlation coefficient between two variables is defined
as Equation (7).

ρ =
cov(X, Y)

σXσy
=

E[(X− µx)(Y− µy)]
σXσy

(7)

where cov(X, Y) is the covariance of X, Y, X is 1:200,000 geochemical data and Y is 1:50,000
geochemical data. Where σX is the standard deviation of X and σy is the standard deviation
of Y.

3. Results
3.1. Fused Results

A total of 1:50,000 geochemical data were selected as validation data to evaluate the
results obtained by each fusion method. Fusion experiments are carried out in the Dacaotan
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area, which is shown in Figure 2 (green). Cu and remote sensing data are used to acquire
fusion result by linear regression, random forest and support vector regression methods.
The distribution of 1:50,000 geochemical data and 1:200,000 geochemical data is shown in
Figure 8. The verification area contains typical geological bodies in this area, as well as
Heishan Cu deposits, which can represent the geological characteristics of this area. From
the histogram distribution of the two sets of data, although there is a certain degree of
difference, the overall distribution is similar. The mean of the 1:50,000 geochemical data
is slightly higher than that of the 1:200,000 geochemical data (Table 1), indicating that the
Cu element in the verification area is more enriched than the entire study area. There is no
obvious difference in Std, maximum value and minimum value, indicating that this area
can reflect the overall characteristics of the study area.
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Table 1. Statistical results of geochemical data.

Data Type Mean Std Min Max

1:50,000 26.23 12.90 0.00 63.00
1:200,000 22.86 11.25 3.00 64.00

The fusion results quality of Cu and RS data are evaluated in Table 2. The 1:50,000 geo-
chemical data have higher spatial accuracy and more complete information than 1:200,000
geochemical data. The more similar the fusion result is to 1:50,000 geochemical data, the
better the fusion method can reflect the distribution of Cu in this area. Therefore, the mean,
Std and correlation coefficient between the fusion result and the 1:50,000 geochemical
data are compared with the parameters between 1:200,000 geochemical data and 1:50,000
geochemical data (Table 2, 20-5) to quantitatively evaluate the similarity between the fusion
result and the verification data. The fusion result is shown in Figure 9.

Table 2. Statistical results of fusion images.

Method Mean Std Correlation
(Geochemical)

Correlation
(RS)

Cu

Direct linear 59.07 68.91 0.33 0.13
Linear 4.29 6.70 0.70 0.39

Random forest 3.45 5.04 0.71 0.31
SVR 5.09 5.02 0.72 0.32

20-5 7.22 7.00 0.67 0.24
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The mean and Std of direct linear regression are much higher than 20-5, and the
correlation coefficient of geochemical and RS are significantly lower than 20-5; at the
same time, while the mean and Std of linear regression are lower than 20-5 (Table 2),
and the correlation coefficient (geochemical, RS) is higher than 20-5. Taken together, this
indicates that the fusion strategy proposed in this paper can improve the quality of 1:200,000
geochemical data, both in terms of space and information richness. The mean and Std
of RF and SVR are lower than that of linear regression, while the correlation coefficient
(geochemical, RS) is higher than that of linear regression (Table 2), indicating that the
nonlinear fusion method can better reflect the geochemical characteristics of the study area.

The direct linear regression (Figure 9b) shows a low similarity between the fusion
results and the real geochemical elements, and the distribution of Cu element is not reflected
clearly in the fusion result. The result fused by linear regression (Figure 9c) shows a higher
similarity with true geochemical data, and the distribution of Cu is consistent with the
true geochemical data. However, there are still differences between the extreme value
distribution and the true geochemical data. Comparing the direct linear regression with
the linear regression method, it can be seen that the method proposed in this paper can
improve the fusion effect. The result fused by RF (Figure 9d) and SVR (Figure 9e) shows
that the distribution of the fusion result is consistent with the true geochemical data.
Comparing the fusion result with linear regression, the extreme value is more similar to the
real geochemical data.

The direct linear regression method is used as a benchmark to evaluate the perfor-
mance of each machine learning method proposed in this paper. The value of the mean
and Std of the fusion result through direct linear regression is large, indicating that the
distribution of the fusion result is quite different from the distribution of true geochemical
data. It is difficult to characterize the distribution of geochemical data. The correlation
coefficient between the direct regression fusion result and the 1:50,000 data is low (0.33),
indicating that the correlation between the fusion result and the 1:50,000 data is not obvious,
and is much lower than the correlation coefficient between 1:200,000 geochemical data
and the 1:50,000 geochemical data. The correlation coefficient shows that this method
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cannot effectively obtain information related to geochemical elements from RS data. The
correlation coefficient between the fusion result of direct linear regression and RS data is
low (0.13), indicating that this method cannot effectively fuse the spatial detail information
in RS data.

The mean and Std of fusion results obtained by using the linear regression method
of the fusion strategy proposed in this paper is smaller than that of the direct linear
regression method, indicating that the fusion strategy proposed in this paper can better
reflect the regulation between geochemical data and RS data. The fusion result has a
high correlation with the 1:50,000 geochemical data (0.70), which is also higher than the
correlation coefficient between the 1:200,000 and 1:50,000 geochemical data (0.67), indicating
that the linear regression fusion method can effectively obtain the relevant information of
geochemical elements from RS images. The fusion results obtained by this method have the
highest correlation coefficient with RS images (0.39), indicating that the linear regression
method can reflect the spatial details better than RS images.

The mean and Std of the fusion result obtained by the RF method is slightly smaller
than that of the linear regression method. It shows that the RF method can better reflect
the regulation between geochemical data and RS data. The fusion results have a higher
correlation (0.71) with the 1:50,000 data, which is higher than the correlation coefficient
between the 1:200,000 geochemical data and the 1:50,000 geochemical data (0.67), indicating
that the RF fusion method can achieve better information about geochemical elements than
RS data. The correlation coefficient between the RF fusion result and RS data is lower than
that of the linear regression method (0.31), but the difference is small, indicating that the
RF method can efficiently add spatial detail information of RS data.

The mean value of the fusion result obtained by using the SVR method is slightly
higher than that of the linear regression method, and the Std is smaller than that of the
linear regression method, but it is an approximate result. However, it does show that the
SVR method can better reflect the regulation between geochemical data and RS data. The
fusion result has the highest correlation coefficient (0.72) with the 1:50,000 geochemical data,
indicating that the SVR fusion method can obtain the relevant information of geochemical
elements from RS data. The correlation coefficient between SVR fusion result and RS data
is lower than that of the linear regression method (0.32) and higher than that of the RF
method, indicating that the SVR method can efficiently add spatial detail information of
RS data on the premise of maintaining the low-frequency information of geochemical data
than other methods.

From the perspective of visual interpretation, although the fusion strategy proposed
in this paper improves the quality of the 1:200,000 geochemical data, the fusion results still
retain most of the distribution characteristics of the 1:200,000 geochemical data. However,
there are still differences in the fusion results between linear methods and nonlinear
methods. In the fusion results of direct linear regression and linear regression, there is a
high value of geochemical data in the upper right corner (Figure 9b,c), which does not exist
in the 1:50,000 geochemical data (Figure 9a). In the fusion results of RF and SVR, the high
values are basically distributed along the direction from upper left to lower right, which is
consistent with the 1:50,000 geochemical data. The fusion results of linear regression and
RF are quite different from the 1:50,000 geochemical data. In the fusion results of linear
regression, the distribution trend of geochemical elements is different from the 1:5 data, so
the mean and Std are higher than 20-5. In the fusion results of RF, the average value is low,
but the Std is high, indicating that there are outliers in the fusion results that are different
from the 1:50,000 geochemical data, but since there are not many such outliers, they do
not affect the distribution of geochemical elements in the fusion results. The mean and Std
of the SVR fusion results is low, indicating that the method can reflect the distribution of
geochemical data and avoid the interference of irrelevant information in RS data, which
has good robustness. In general, the nonlinear methods can better characterize the spatial
detail information of RS data and the geochemical element distribution in fusion results.
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3.2. Statistical Evaluation on the Fused Results

The fusion results of Cu and RS data using direct regression, linear regression, random
forest, and support vector regression methods in the entire study area are shown in the
figure below (Figure 10). The fusion results obtained by the direct regression method are
different from the distribution of real geochemical elements, and the detailed information
in the RS data cannot be well reflected (Figure 10b). The linear regression fusion results
(Figure 10c) retain the spatial details of geochemical information and RS data to a certain
extent, but the expression of geochemical information is inconsistent with that in Figure 10a,
indicating that the linear regression model cannot better characterize the distribution of
geochemical elements. The fusion results of the nonlinear methods (Figure 10d,e) are
basically consistent with the distribution of real geochemical elements, and the fusion
image is clearer.
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4. Discussion

This paper uses direct linear regression, linear regression, RF and SVR to fuse RS
data and geochemical data. The fusion results of direct linear regression cannot retain
the distribution characteristics of geochemical data. Linear regression can preserve the
distribution characteristics of geochemical data, which proves the effectiveness of the fusion
strategy. However, the fusion results of the linear regression method are still quite different
from the 1:50,000 geochemical data, indicating that the linear method cannot fit the RS
data and geochemical data well. Nonlinear methods have a better effect on improving
the spatial detail of geochemical data. Based on the fusion strategy, the fusion results
of various methods can be improved, which proves that the fusion strategy has good
robustness. Through visual analysis and judgment of multiple indicators, the SVR fusion
method can better achieve the goal of fusion of spatial detail information of RS data and
geochemical data.

There is such a phenomenon in the fusion results. When the correlation coefficient
between the fusion results and the RS images increases, the Std of the fusion results will
increase because when more spatial detail information is added to the fusion result, the
result becomes closer to the remote sensing data, and the spatial detail information of the
verification data is much smaller than that of the RS data. Compared with the RS data, the
1:50,000 geochemical data is still low-frequency information, so when more high-frequency
information is added to the fusion result, it will be less similar to the low-frequency
information of geochemical data.

Although the experiment has successfully realized the fusion of high-frequency infor-
mation of geochemical data and remote sensing data, there are some problems with the
implementation of the model, as follows. (1) The parameters of the fusion model are not
optimized, and the parameters currently used by the fusion model may not be optimal,
meaning that the fusion model can still improve the quality of the fusion results by parame-
ter tuning. (2) The fusion data uses raw data without additional feature engineering, which
can make the model run slower or introduce unnecessary noise [66]. In order to obtain
more refined fusion results, the following methods can be used in further work. (3) When
building a remote sensing-geochemical data fusion model, the best parameters can be ex-
amined through hyperparameter search, including the best window size, the best sampling
step, etc. Before data fusion, remote sensing data can filter features, such as extracting
alteration information; then, based on this information, remote sensing-geochemical data
fusion can be achieved to improve the quality of fused images.

5. Conclusions

In practice, low-precision geochemical data has become an important factor restricting
the accuracy of related research. The acquisition of high-precision geochemical data requires
enormous human, material and financial support, which is quite difficult for studies that
have low budgets. According to the characteristics of wide coverage, high precision and
cheap acquisition of remote sensing data, this paper proposes a fusion strategy based
on geochemical data and remote sensing data. The method can improve the quality of
geological work and reduce economic costs in areas with harsh natural conditions. The
experimental results show that there is indeed a correlation between the geochemical data
and the remote sensing data, and the fusion strategy proposed in this paper can effectively
integrate the high-frequency information of the remote sensing data and the geochemical
data according to the correlation, allowing the geochemical data to be refined. Under the
fusion strategy proposed in this paper, the fusion of remote sensing and geochemistry
based on machine learning has achieved good results, which proves the effectiveness of the
fusion strategy. The nonlinear methods can add the spatial details of the remote sensing
data to the fusion results and maintain the low-frequency information of geochemical
elements. The results show that the nonlinear methods can better reflect the distribution
characteristics of geochemical data. In the field of geology, the aggregation and distribution
of matter is a nonlinear process, and the fusion results better reflect this conclusion. Among
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the two nonlinear methods, the SVR can better characterize the spatial details in remote
sensing data while keeping the distribution of geochemical elements consistent. However,
deep learning has replaced traditional methods with superior results on problems such as
classification, detection, etc. Therefore, it is worth attempting to use deep learning methods
to integrate remote sensing data and geochemical data.
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