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Abstract: Remote sensing images are usually contaminated by opaque cloud and shadow regions
when acquired, and therefore cloud and shadow detection arises as one of the essential prerequisites
for restoration and prediction of the objects of interest underneath, which are required by further
processing and analysis. Cutting-edge, learning-based segmentation techniques, given a well-labeled,
sufficient sample set, are significantly developed for such a detection issue and can already achieve
region-accurate or even pixel-precise performance. However, it may possibly be problematic to
attempt to apply the sophisticated segmentation techniques to label-free datasets in a straightforward
way, more specifically, to the remote sensing data generated by the Chinese domestic satellite GaoFen-
1. We wish to partially address such a segmentation problem from a practical perspective rather than
in a conceptual way. This can be performed by considering a hypothesis that a segmentor, which
is sufficiently trained on the well-labeled samples of common bands drawn from a source dataset,
can be directly applicable to the custom, band-consistent test cases from a target set. Such a band-
consistent hypothesis allows us to present a straightforward solution to the GaoFen-1 segmentation
problem by treating the well-labeled Landsat 8 Operational Land Imager dataset as the source and
by selecting the fourth, the third, and the second bands, also known as the false-color bands, to
construct the band-consistent samples and cases. Furthermore, we attempt to achieve edge-refined
segmentation performance on the GaoFen-1 dataset by adopting our prior Refined UNet and v4. We
finally verify the effectiveness of the band-consistent hypothesis and the edge-refined approaches
by performing a relatively comprehensive investigation, including visual comparisons, ablation
experiments regarding bilateral manipulations, explorations of critical hyperparameters within our
implementation of the conditional random field, and time consumption in practice. The experiments
and corresponding results show that the hypothesis of selecting the false-color bands is effective
for cloud and shadow segmentation on the GaoFen-1 data, and that edge-refined segmentation
performance of our Refined UNet and v4 can be also achieved.

Keywords: cloud and shadow detection; object edge refinement; end-to-end inference of UNet and
CRF; GaoFen-1 dataset customization

1. Introduction

Spectral remote sensing images are widely used in terrestrial remote sensing appli-
cations but are usually contaminated by clouds and shadows when acquired [1,2]. In
particular, opaque cloud and shadow regions fatally override the presence of the objects
of interest, giving rise to low-usable remote sensing products for further processing and
analysis. Restoration and prediction of such objects underneath cloud and shadow regions,
therefore, arise from the requirement of the usage of cloud- and shadow-free remote sensing
images, such that perceiving and locating cloud and shadow regions becomes an essen-
tial prerequisite for such further manipulations of remote sensing images [1,3,4]. Given
sufficient, typical, well-labeled samples together with cloud and shadow labels, current
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learning-based segmentation techniques are significantly developed for such a detection
issue and can already achieve region-accurate or even pixel-precise performance, in which
the segmentors based on convolutional neural networks (CNNs) are representatives and
are thus exploited, such as UNet, SegNet, and CNN variants [1,5–7]. In addition, the
exploration of cloud and shadow detection using cutting-edge, learning-based techniques
is still proceeding.

A demanding requirement of training samples together with at least region-accurate
cloud and shadow labels, however, arises from the popular usage of such learning-based
segmentation methods. In practice, the segmentors for the Landsat 8 Operational Land
Imager (L8) dataset [3] can be obtained due to the relatively region-accurate labels derived
from the quality-assessment (QA) bands, whereas the currently available approaches to
generating the approximate labels for the label-free Chinese domestic satellite GaoFen-1
(GF1) dataset are threshold segmentation [8] and manual labeling [9], making it practi-
cally hard to apply the learning-based segmentation techniques to the GF1 datasets in a
straightforward way. This requires the solutions to the label-free learning problems or the
label-transferring techniques between the source and the target sets.

Naturally, it is our study goal in this work to find a way of reusing the L8 labels
in order to address the GF1 edge-precise segmentation problem of cloud and shadow
detection from a practical perspective rather than in a conceptual way. This can be partially
performed by considering a hypothesis that a segmentor, which is sufficiently trained on
the well-labeled samples of common bands drawn from a source dataset, can be directly
applicable to the custom, band-consistent test cases from a target set. More specifically,
given the source and the target datasets, we first create two band-consistent input datasets
by selecting the common bands and then train the segmentor on the set derived from the
source. The inference for the test cases drawn from the target can be directly performed
because of the band-consistent inputs. Such a band-consistent hypothesis allows us to
present a straightforward solution to the GF1 segmentation problem by treating the well-
labeled L8 dataset as the source and by selecting the fourth, the third, and the second
bands, also known as the false-color bands, to construct the band-consistent samples
and cases. In particular, common bands 4, 3, and 2 of both the L8 and GF1 data are
adopted, not only because of the band consistency of inputs but also the sufficiently
visible cloud and shadow regions and edges. Then the initial cloud and shadow labels
for the GF1 data can be given using such a solution. In addition, we attempt to satisfy
the requirement of edge-precise segmentation by applying our prior Refined UNet and
v4 to the GF1 segmentation, giving rise to edge-refined segmentation proposals for GF1
inputs. We finally verify the effectiveness of the band-consistent hypothesis and the edge-
refined approaches by performing a relatively comprehensive investigation, including
visual comparisons, ablation experiments regarding bilateral manipulations, explorations
of critical hyperparameters within our implementation of the conditional random field
(CRF), and time consumption in practice. Some typical segmentation results, as illustrated
in Figure 1, show that edge-refined labels of cloud and shadow regions are generated both
by Refined UNet and by v4, in comparison with UNet giving region-accurate labels. In
general, the main contributions of our investigation are as follows.

• Label-transferring solution to the GF1 segmentation problem: we present a label-
transferring solution to the GF1 segmentation problem by considering that the seg-
mentor can be directly applicable to the custom, band-consistent test cases from the
GF1 data if it is sufficiently trained on the well-labeled samples of common bands
drawn from the L8 dataset.

• Deployment of the Refined UNets on the custom GF1 datasets: we achieve edge-
refined segmentation performance on the custom GF1 data by adopting our Refined
UNet and v4.

• Comprehensive investigation into the edge-precise GF1 segmentation solution: we
confirm our edge-refined achievements on the GF1 data by performing a relatively
visual, comprehensive investigation, including visual comparisons, ablation exper-
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iments regarding bilateral manipulations, explorations of critical hyperparameters
within our CRF, and time consumption in practice.

False-color UNet×α

RFN. UNet RFN. UNet v4

Figure 1. Illustration of a typical segmentation patch. The typical patch is drawn from
GF1WFV1.16m.2014267223114.21LTD.FAGUO1.SR.tiff, the false-color image (bands 4, 3, and 2)
and the segmentation proposals of which, yielded, respectively, by UNet×α, by our Refined UNet,
and by v4, are presented. It can be seen that the edge-refined labels of cloud and shadow regions are
generated both by Refined UNet and by v4, in comparison with UNet×α giving region-accurate labels.

The rest of the paper is organized as follows. Section 2 investigates some relevant
research. Section 3 revisits the implementation of our Refined UNets and the customization
of the band-consistent datasets. Section 4 presents the experiments, the results, and the
corresponding findings. Section 5 concludes this paper.

2. Related Work

It is reported that fundamental and advanced learning-based segmentation methods
are gradually introduced to the remote sensing applications of pixel-wise classification. The
fully convolutional network (FCN) [10] is known as a convolutional neural network-based
segmentor initiating the neural image segmentation, while U-Net [5] is widely used in
multiple visual-related applications because of its lightweight yet effective architecture.
Various advances are proposed for the purpose of improving the segmentation efficacy,
including SegNet [6], Bayesian SegNet [11], RefineNet [12], PSPNet [13], FastFCN [14],
and the DeepLab series [7,15–17]. Typical solutions focus (1) on considering the scales of
receptive fields [5,18–21], (2) on reusing features captured by previous layers [5,6,11–13],
and (3) on introducing gradient discrepancies [22]. Such solutions definitely improve the
segmentation performance in terms of global scores, such as accuracy and mIoU, even
though they focus more on reaching the accurate performance of semantic regions instead
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of pixel-precise segmentation. Alternatively, boundary-aware techniques particularly con-
sider the segmentation performance surrounding edges (1) by introducing the dedicated
block perceiving edges [23–26], (2) by introducing a particular term added to the objective
function [27], and (3) by improving segmentation performance in an iterative way [28–30].
Such boundary-aware solutions focus more on the iterative improvement of the resolu-
tions of the segmentation proposals and on the class assignments of the newborn pixels
classified by the dedicated block, and attempt to improve the performance by introducing
the images of the original resolutions. Naturally, they achieve a substantially edge-precise
improvement but thereby introduce the critical dependencies of the pretrained modules,
ignore insignificant objects, or have extra computational cost, and they also suffer from the
absence of the edge features of the original inputs and from building explicit edge-sensitive
formulations. Standalone or plug-in edge-sensitive blocks, for example, CRFs [7,31–35],
are also thoroughly investigated to globally optimize refinement by building probabilistic
graphical models with contrast-sensitive bilateral terms. Edge-preserving filters, such as
the guided filter [36], are investigated to yield edge refinement. CRFasRNN [37] and the
learnable guided filter [38] initiate producing segmentation proposals together with online
edge refinement by presenting innovative network architectures, yet the computational cost
or the property of multiple pixel classification can be further improved. Such advances sig-
nificantly contribute to natural image segmentation and provide a prototypical framework
for object segmentation of remote sensing images.

In addition to the aforementioned pipelines or end-to-end models, we wish to achieve
end-to-end, edge-precise cloud and shadow segmentation by presenting multiple variants
of Refined UNet [2,39–41], which adopt a pipeline or end-to-end models comprising a
trainable UNet backbone and a plug-in CRF module. Such methods are reported to achieve
edge-refined segmentation for cloud and shadow detection, in terms of our comprehensive
experiments on our L8 dataset. We further initiate an attempt at the deployment of our
Refined UNet on the target GF1 dataset, given the well-labeled L8 dataset as the source.

3. Instantiating Refined UNets on the Custom GF1 Dataset

We begin our efficacy investigation of the GF1 segmentation by introducing the model
deployment of our Refined UNets. We first revisit the forward procedure of Refined UNets
and then introduce the band selection of the given GF1 dataset.

3.1. Inference of Refined UNets Revisited

We first briefly revisit the formulations of the inference procedure of our Refined UNets,
including Refined UNet and v4. Given a multi-spectral image I comprising HW pixels
{Ii}, where H and W represent the height and the width of the image, Ii = [Ii1, Ii2, . . . , Iic]

T,
and i = 1, . . . , HW, the target of the pixel-wise classification is to find a potential label
assignment for each pixel, each label proposal of which is from the candidate target set T
comprising N label targets {tn}. As presented in our previous work, we first give a coarse-
grained segmentation proposal of the regions of interest using the UNet backbone, and
then the spatial performance of the regions within the proposal is refined by the subsequent
CRF in either a global or a local way. Specifically, the logits O of the inference of UNet f is
denoted by

O = f (I ; θ) (1)

where θ is the set of trainable parameters, either pretrained or updated by the gradient
descent optimization. The logits O can be regarded as the unnormalized probabilities of the
label assignment, in terms of the objective function, and therefore the actual probabilities of
the most likely label assignment are given using the softmax function, in the form

P0(xi = tn) =
1
Zi

exp(oin) (2)
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where the normalization term Zi is given by

Zi = ∑
n

exp(oin). (3)

We then have the coarse-grained prediction of the label assignment of pixel i, given by

x∗i = arg max
tn

P0(xi = tn). (4)

Spatial edge-refinement is formulated by a CRF (X,I) characterized by a Gibbs
distribution in the form

P(X|I) = 1
Z(I) exp(−E(x|I)) (5)

and the corresponding Gibbs energy within is given by

E(x) = ∑
i

ψu(xi) + ∑
i

∑
j>i

ψp(xi, xj) (6)

where the unary potential ψu(xi) of the probable label tn is given by

ψu,n(xi) = − log(PGT · P0(xi = tn)). (7)

and the pairwise potentials ψp of the probable label tn have the form

ψp,n(xi, xj) = µ(xi, xj)
K

∑
m=1

w(m)k(m)( f i, f j). (8)

Considering the gain of saving computational cost, together with the concatenation of
the coarse-grained segmentation and edge refinement to form an end-to-end segmentation
solution, we choose to evaluate the approximate probabilities Q(X) instead of the exact
probabilities P(X) by using the mean-field approxmiation method to minimize the KL-
divergence D(Q||P) such that we will have the maximum a posteriori (MAP) estimation of
the label assignment, in the form

x∗∗i = arg max
tn

Q(xi = tn). (9)

Specifically, Q(X) is initialized by

Q(xi) =
1
Zi

exp{−φu(xi)} (10)

where the normalization term Zi is given by

Zi = ∑
n

exp{−φun(xi)}. (11)

Then, Q(X) is given using an iterative update equation, in the form

Q(xi)←
1
Zi

exp

(
−ψu(xi)− µ

K

∑
m=1

w(m) ∑
j 6=i

k(m)( f i, f j)Q(xj)

)
. (12)

Finally, the refinement of the label assignment is given by (9) as discussed earlier.
Noting that we have discussed such formulations in detail earlier and wish to fo-

cus on the discussion of the GF1 data, it is then recommended to refer to our prior re-
ports [2,39] for more formulation details and to refer to our open-access implementation of
Refined UNet v4, available at https://github.com/92xianshen/refined-unet-v4 (accessed
on 24 January 2023). In addition, the end-to-end Refined UNet v4 performs edge-refined

https://github.com/92xianshen/refined-unet-v4
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segmentation on each proposal tile of the input images, while the pipeline of Refined UNet
applies global edge refinement to the segmentation proposal of full resolution.

3.2. Details Regarding Model Deployment

The L8 data has general, region-accurate QA bands indicating the numerical possibility
of the predefined classes, whereas the GF1 data only has four spectral bands of B, G, R, and
NIR. The custom training and inference on the GF1 dataset are thus currently problematic
due to the lack of such labels. More generally, we wish to partially address the GF1
segmentation problem by considering a hypothesis that a segmentor which is sufficiently
trained on the well-labeled samples of common bands drawn from a source dataset can
be directly applicable to the custom, band-consistent test cases from a target set. This can
be specifically performed by restricting our attention to the common bands shared both
by the well-labeled L8 dataset and by the label-free GF1 set: training samples comprising
common bands, together with well-defined labels, can be drawn from the L8 set and the
corresponding QA references, and then a well-trained segmentor can be directly applied
to the band-consistent test cases from the GF1 set. In particular, the fourth, third, and
second bands (4, 3, and 2), also known as the false-color bands, of both the L8 and the GF1
data are selected to form the band-consistent inputs, the region-accurate labels are derived
from the QA references, the training can be run on the custom L8 set together with the
QA references, and the inference can subsequently be performed on such a dataset of the
common bands due to inputs of band consistency and well-training. Our implementations
are built in part using the TensorFlow framework [42] and in part using PyDenseCRF (https:
//github.com/lucasb-eyer/pydensecrf (accessed on 7 December 2022)) and in part using
our prior v4 implementation available at https://github.com/92xianshen/refined-unet-v4
(accessed on 24 January 2023).

4. Experiments and Discussions

We finally investigate the inference performance of the Refined UNet instances by
conducting comprehensive experiments, including visual comparisons, ablation exper-
iments regarding bilateral manipulations, and explorations of critical hyperparameters
within CRF.

4.1. Experiment Setup

We briefly introduce the experiment setup regarding our GF1 edge-refined segmenta-
tion. The source L8 dataset is inherited from our prior research [2,39] while the test cases
from the target GF1 dataset are:

• GF1WFV4.16m.2020271224917.20LQQ.FAGUO1.SR.tiff,
• GF1WFV1.16m.2014127221306.21KVB.FAGUO1.SR.tiff,
• GF1WFV1.16m.2014164221646.21KVB.FAGUO1.SR.tiff,
• GF1WFV1.16m.2014267223114.21LTD.FAGUO1.SR.tiff,
• GF1WFV2.16m.2017241224210.21KVB.FAGUO1.SR.tiff,
• GF1WFV2.16m.2020262223057.20LQQ.FAGUO1.SR.tiff,
• GF1WFV4.16m.2014128223630.21KVB.FAGUO1.SR.tiff,
• GF1WFV4.16m.2017352224828.21KXB.FAGUO1.SR.tiff,
• GF1WFV4.16m.2019241223346.21KXB.FAGUO1.SR.tiff,
• GF1WFV4.16m.2020261220853.21KZB.FAGUO1.SR.tiff.

Data information is given by splitting up the file name by the dots. In particular, the
third fraction, formatted as YYYYDDDHHMMSS, indicates Julian date, hours, minutes, and
seconds of acquisition, and the fourth fraction represents the geocoordinate of the Military
Grid Reference System (MGRS). We would like to use an identifier date.grid to represent
a particular test case. Please kindly refer to the relevant research [8] for more details
regarding the GF1 satellite as we wish to restrict our attention to the segmentation problem.
In addition, the experiment implementations are derived from our prior Refined UNet and

https://github.com/lucasb-eyer/pydensecrf
https://github.com/lucasb-eyer/pydensecrf
https://github.com/92xianshen/refined-unet-v4
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v4, in which the secondary hyperparameters are also inherited from our prior research [2,39]
while the principal and the critical hyperparameters are given in the later discussions.

4.2. Visual Efficacy of Edge-Refining Techniques

We first report the inference performance of our Refined UNet instances deployed
on the custom GF1 datasets in terms of the visual results. Please note that our Refined
UNets are customized to facilitate edge-refined segmentation, in which the edges of the
region labels are spatially aligned to those of the regions of interest, and consequently the
region shapes of the labels are sufficiently analogous to those of the regions of interest as
well. We therefore first evaluate the edge-refined performance from both the global and
the local perspectives. Please note that in the context of our evaluations, the visual results
of the full images are regarded as global evaluations whereas the zoom-in patches are
local evaluations. Global results from the backbone, Refined UNet, and v4 are presented
in Figures 2 and 3, in which False-color represents the false-color illustrations, UNet×α

represents the UNet backbone, RFN. UNet represents our Refined UNet, and RFN. UNet v4
represents our Refined UNet v4. As illustrated, it can be seen that considerable cloud and
shadow regions are generally detected and correctly labeled, and the boundaries between
the valid (cloud, shadow, and background pixels) and invalid (fill values) regions are
sufficiently precise. In addition, the tile gaps between patches are effectively neutralized by
Refined UNet, attributed to its global processing. In particular, the UNet backbone is trained
using dynamically adaptive weights and it can capture more shadow regions compared
with the original UNet, in terms of our previous report. These results demonstrate that our
Refined UNets can achieve cloud and shadow detection compared with the UNet variant,
attributed to the significant segmentation effectiveness of the involved models given only
region-accurate training samples.

We further zoom in on typical patches to observe the performance of edge refinement,
illustrated in Figures 4 and 5. Fortunately, significant edge-refined achievements can be
seen in such illustrations: the backbone can give generally coarse-grained labels for the
regions of interest and thus can still achieve region-accurate segmentation, whereas it can
be also seen that the edges of the label regions are not spatially aligned to those of the
regions of interest and therefore the label edges are not sufficiently precise. Instead, the
edges of the cloud labels, given by our Refined UNet instances, are spatially aligned to
those of the potential cloud regions, and accordingly, these segmentation proposals are
regarded as edge-precise results. Such achievements of cloud detection suggest that our
Refined UNet instances can achieve edge-refined segmentation for cloud regions and can be
attributed to the CRF module embedded in our Refined UNet instances: the segmentation
proposals are significantly refined by the CRF modules attached to the UNet backbone
after the UNet backbone yields the coarse-grained location of cloud and shadow regions.
This explanation is also supported by the visual differences between the proposals given
by the UNet backbone and our Refined UNet instances as the segmentation proposals of
Refined UNets are degenerated to those of the UNet backbone when the CRF module is
disabled, as discussed later. Unfortunately, it is observed that edge-refined segmentation is
partially achieved in shadow detection: some typical shadow regions are labeled and are
refined, but some are missing; some labels grow arbitrarily toward the edges of irrelevant
objects. However, shadow detection is reported as a challenging, tricky task, and such
growth attempts to perform edge alignment and thus is consistent with our edge-precise
purpose. We would like to further explore a solution to edge-precise shadow detection.
Consequently, we conclude that our Refined UNet instances can successfully perform the
inference of edge-refined segmentation for cloud and shadow regions of the custom GF1
data, in terms of the aforementioned, comprehensive comparisons.
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False-color UNet×α RFN. UNet RFN. UNet v4

Figure 2. Illustrations of segmentation proposals from a global perspective (1). Presented are the re-
sults of 2014127221306.21KVB, 2014164221646.21KVB, 2014267223114.21LTD, 2017241224210.21KVB,
and 2020262223057.20LQQ, respectively, including the false-color images (bands 4, 3, and 2) and the
segmentation proposals of full resolution, yielded, respectively, by UNet×α, by our Refined UNet, and
by v4. It can be seen that considerable cloud and shadow regions are generally detected and correctly
labeled, confirming the effectiveness of the involved methods for cloud and shadow detection.
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False-color UNet×α RFN. UNet RFN. UNet v4

Figure 3. Illustrations of segmentation proposals from a global perspective (2). Presented are the re-
sults of 2014128223630.21KVB, 2017352224828.21KXB, 2019241223346.21KXB, 2020261220853.21KZB,
and 2020271224917.20LQQ, respectively.
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False-color UNet×α RFN. UNet RFN. UNet v4

Figure 4. Illustrations of segmentation proposals from a local perspective (1). The typical patches are
drawn from GF1WFV1.16m.2014267223114.21LTD.FAGUO1.SR.tiff, the false-color images (bands 4, 3,
and 2) and the segmentation proposals of which, yielded respectively by UNet×α, our Refined UNet,
and v4, are presented. It can be seen that the edge-refined labels of cloud and shadow regions are
generated by both Refined UNet and v4, in comparison with UNet×α giving region-accurate labels.
Such illustrations further support the edge-refined efficacy of our sophisticated methods.
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False-color UNet×α RFN. UNet RFN. UNet v4

Figure 5. Illustrations of segmentation proposals from a local perspective (2).

4.3. Ablation Study Regarding Edge Refinement

We further explore the specific effects of each critical module, including the CRF
module and the bilateral message-passing manipulation within. In general, the UNet
backbone can provide coarse-grained locations of cloud and shadow regions, while the CRF
module can perform edge refinement, given the unary potentials supplied by the coarse-
grained locations. We currently verify such a hypothesis using the ablation experiment,
in which the CRF module and the bilateral message-passing manipulation are disabled in
turn. Corresponding results are illustrated in Figures 6 and 7, in which Backbone represents
that the CRF module is disabled and W/o bi-step represents that the bilateral manipulation is
disabled. It also can be seen that in the proposals of v4 without the bilateral manipulation,
the region edges are not sufficiently tight and sharp, compared with those of v4; we suggest
that the Refined UNet v4 without the bilateral manipulation degenerates to the UNet
backbone in terms of the visual comparisons. We therefore conclude that the bilateral
message-passing manipulation plays a critical role in the context of edge refinement.
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False-color Backbone W/o bi-step RFN. UNet v4

Figure 6. Illustrations of the effects of the critical modules (1). The typical patches are drawn from
GF1WFV1.16m.2014267223114.21LTD.FAGUO1.SR.tiff. It is observed that the proposals given by
the backbone and the full model without the bilateral manipulation are visually close but those
given by the full model are significantly refined on the edges. Such results confirm that the bilateral
manipulation within the CRF module is critical to edge refinement.
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False-color Backbone W/o bi-step RFN. UNet v4

Figure 7. Illustrations of the effects of the critical modules (2).

4.4. Visual Effect of Critical Hyperparameters

We then investigate the hyperparameter effect on the edge-precise segmentation per-
formance by observing the segmentation proposals yielded by the models with different
hyperparameters. Naturally, θα and θβ are sufficiently critical to the edge-refined segmenta-
tion performance in terms of our previous report: the CRF module with sufficiently small θβ

gives proposals with tight and sharp edges, while θα has not as significant effect as θβ does.
Such a hypothesis is confirmed in terms of our experiments, illustrated in Figure 8 and 9:
the edges of label regions are tighter, sharper, and sufficiently close to those of the regions
of interest, given the CRF module with a small θβ of 0.03125. By contrast, the effect of θα

is not so significant as θβ is, but the visual difference is still observed when θα drops to
10. We attribute such results to the nature of θα and θβ introduced by the edge-preserving
filters and the fully-connected CRF: θβ controls the sensitivity of the filter with respect to
the color intensities while θα affects the range of passing messages, therefore the value of θβ

has visually significant effects in our case while the results are not sensitive with θβ because
of its relatively large value.



Remote Sens. 2023, 15, 906 14 of 18

θβ = 0.03125 θβ = 0.0625 θβ = 0.125 θβ = 0.25

θα = 120 θα = 80 θα = 40 θα = 10

θβ = 0.03125 θβ = 0.0625 θβ = 0.125 θβ = 0.25

θα = 120 θα = 80 θα = 40 θα = 10

Figure 8. Illustrations of the effects of the critical hyperparameters (1). The typical patches are drawn
from GF1WFV1.16m.2014267223114.21LTD.FAGUO1.SR.tiff. θα and θβ are consistently reported as
critical hyperparameters with respect to the extent of edge refinement, and θβ is relatively significant
in comparison with θα. The illustrations presented above show the differences governed by such
multiple hyperparameters, in which θβ can significantly govern the sensitivity of refining the edges
of regions of interest whereas θα plays a secondary role. Such findings are consistent with our
previous reports.
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θβ = 0.03125 θβ = 0.0625 θβ = 0.125 θβ = 0.25

θα = 120 θα = 80 θα = 40 θα = 10

θβ = 0.03125 θβ = 0.0625 θβ = 0.125 θβ = 0.25

θα = 120 θα = 80 θα = 40 θα = 10

Figure 9. Illustrations of the effects of the critical hyperparameters (2).

4.5. Time Consumption in Practice

We finally report the practical efficiency of our Refined UNets in terms of time
consumption. The actual time costs of Refined UNet and v4 are 254.11 ± 6.84s and
276.12± 11.31s, respectively, which suggests that such methods are computationally ex-
pensive in comparison with their lightweight UNet backbone. In addition, we also see
that the efficiency is dramatically related to the critical hyperparameters within the CRF
module. The actual time costs of the inference of a particular case with respect to θα s of
120, 80, 40, and 10 are 274.77 s, 281.11 s, 312.64 s, and 1410.53 s, respectively. The differences
in such time costs are possibly attributed to the sparsity of bilateral sampling. However,
the actual time costs of the inference of a particular case with respect to θβ s of 0.03125,
0.0625, 0.125, and 0.25 are 281.11 s, 265.26 s, 256.29 s, and 254.84 s, respectively. Such
differences are not sufficiently significant in comparison with those of θα even if θβ plays a
critical role in affecting visual performance. We conclude that activating edge refinement
should be determined in terms of usage, considering the trade-off between performance
and time consumption.
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5. Conclusions

In this paper, we wish to partially address the cloud and shadow segmentation prob-
lem of the label-free GF1 dataset by considering the hypothesis that the segmentor can
be applicable to the target dataset after being trained on well-labeled, band-consistent
source samples. We accordingly present a straightforward solution by treating the L8 set as
the source and by selecting the fourth, the third, and the second bands to construct band-
consistent samples. We then apply our prior Refined UNet and v4 to such a solution for
the purpose of satisfying the requirement of edge-precise cloud and shadow segmentation,
making it possible to give rise to edge-refined segmentation proposals. We finally verify the
effectiveness of such a band-consistent hypothesis and edge-refined solution by performing
a relatively comprehensive investigation, including visual comparisons, ablation experi-
ments regarding bilateral manipulations, explorations of critical hyperparameters within
CRF, and time consumption in practice. Our main findings are as follows. Specifically, the
visual comparisons show that our Refined UNet and v4, sufficiently trained on the well-
labeled, band-consistent L8 samples, are able to perform edge-refined cloud and shadow
segmentation on the custom GF1 data. The bilateral message-passing step is confirmed
to be critical to the edge-refined performance in terms of the ablation experiments. θβ

plays a more important role in governing the edge-refined performance whereas the model
with sufficiently large θβ is not sensitive to edges, in terms of the hyperparameter tests.
The instances of Refined UNets are computationally expensive even if they can provide a
significantly edge-refined segmentation; we therefore have to make a trade-off between the
quantitative performance and time consumption of the inference. We would like to proceed
with improving the segmentation performance for the shadow regions in the future as they
are a tricky part in the context of cloud and shadow detection.
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