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Abstract: With the help of various polar-orbiting environment observing platforms, the atmospheric
concentration of carbon dioxide (CO2) has been well established on a global scale. However, the
spatial and temporal pattern of the CO2 emission and its flux dependence on daily human activity
processes are not yet well understood. One of the limiting factors could be attributed to the low revisit
time frequency of the polar orbiting satellites. With high revisiting frequency and CO2-sensitive
spectrum, the Geostationary Interferometric Infrared Sounder (GIIRS) onboard the Chinese FY-4A and
FY-4B satellites have the potential to measure the CO2 concentration at a higher temporal frequency
than polar-orbiting satellites. To provide a prototypical demonstration on the CO2 monitoring
capability using GIIRS observations, a hybrid-3D variational data assimilation system is established
in this research and a one-month-long experiment is conducted. The evaluations against the Goddard
Earth Observing System version 5 (GEOS-5) analysis field and Orbiting Carbon Observatory -2/-3
(OCO-2/-3) CO2 retrieval products reveal that assimilating GIIRS observations can reduce the first
guess’s CO2 concentration mean bias and standard deviation, especially over the lower troposphere
(975–750 hPa) and improve the diurnal variation of near surface CO2 concentration.
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1. Introduction

The global-scale atmospheric carbon dioxide (CO2) concentration has been monitored
through ground observation networks, e.g., the World Data Centre for Greenhouse Gases
(WDCGG) [1] and Total Carbon Column Observing Network (TCCON) [2], for a long time,
which provides a fundamental contribution on revealing the fundamental climatological
impact from Green House Gases (GHG). However, the spatial and temporal uncertainties
from underlying processes, e.g., the diurnal flux variation caused by human activities and
international transportation, are not yet well quantified [3,4].

Observation from space holds immense potential to settle the pre-existing ground-
based network’s spatial coverage problem. The Greenhouse gas Observing Satellite
(GOSAT) and Greenhouse gas Observing Satellite-2 (GOSAT-2), launched in 2009 and 2018,
can monitor the atmospheric CO2 concentration from the Thermal and Near infrared Sensor
for carbon Observations-Fourier Transform Spectrometer (TANSO-FTS) with a 10.5 km hor-
izontal resolution [5]. The OCO-2 and OCO-3, launched in 2014 and 2019, monitors the CO2
concentration at high spatial resolution (1.29 km cross-track, 2.25 km along-track) with the
grating spectrometer [6,7]. The meteorological hyperspectral infrared sounders, designed
for high-vertical-resolution temperature and water vapor profiles, are also capable of mea-
suring variations in carbon trace gasses such as CO2, e.g., Atmospheric Infrared Sounder
(AIRS) [8–11], Infrared Atmospheric Sounding Interferometer (IASI) [12–14], Cross-track
Infrared Sounder (CrIS) [15–17], and Infrared Fourier Spectrometer-2 (IKFS-2) [18].
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Recently, the need for CO2 concentration observation with a much higher spatiotem-
poral resolution has led us to the Geostationary Carbon Cycle Observatory (GeoCarb),
which will deliver CO2 concentration observation on (at least) a daily basis at fine (10 km)
spatial scales over the Americas [19]. Meanwhile, such demand also gives rise to investiga-
tions on exploiting the meteorological geostationary hyperspectral infrared sounder’s CO2
concentration monitoring capability, e.g., GIIRS [20], Meteosat Third Generation–InfraRed
Sounder (MTG-IRS) [21], and Geostationary Extended Observations (GeoXO) Hyperspec-
tral InfraRed Sounder [22]. In addition to CO2 monitoring, observations from geostationary
hyperspectral infrared sounders have been used in estimating other trace gas emissions,
e.g., ammonia [23,24].

This paper demonstrates the geostationary hyperspectral infrared sounder’s capability
to provide CO2 monitoring products with reasonable spatial, but much higher temporal,
resolution by generating a one-month-long (from 1 August 2022 to 1 September 2022) CO2
profile dataset at 16 km horizontal and 3 h temporal resolution. Section 2 describes the
basics of the CO2 data assimilation system and the usage of GIIRS observation. Section 3
presents results and relevant error statistics. Section 4 is the summary.

2. Materials and Methods

The GIIRS onboard the Chinese FY-4A and FY-4B satellites (data available at
https://satellite.nsmc.org.cn/portalsite/ (accessed on 31 December 2022)) can measure
the CO2 concentration with scanning frequencies of ten times per day (at 0, 2, 4, 6, 8, 10,
12, 14, 20, and 22 h UTC) and a spectrum sampling rate of 0.625 cm−1. To avoid interfer-
ence from other trace gases and retain CO2 information content, we selected 22 spectral
channels with CO2 (other trace gases) absorbance higher (lower) than 0.6 (0.3) within the
long-wave IR band (700–1130 cm−1) (Figure 1a). The absorbance dataset in this study
comes from the HIRTRAN 2020 dataset (available at https://hitran.org (accessed on 31
December 2022)). For further validation of this channel selection scheme, we calculated
the CO2 Jacobian for each selected channel using the European Organization for the
Exploitation of Meteorological Satellites (EUMETSAT) 60-level sample profile dataset
from the Monitoring Atmospheric Composition and Climate (MACC) project (available
at https://nwp-saf.eumetsat.int/site/download/profile_datasets/60l_macc.dat.tar.bz2
(accessed on 31 December 2022)). The Jacobian peak pressure level (Figure 2) indicates
that the CO2 information content from the selected spectrum mostly stays below 100 hPa,
and the last six spectral channels (central wavenumber larger than 751.250 cm−1) can
modify the low-troposphere CO2 concentration. Even though there are extra absorption
channels located within the GIIRS mid-wave IR channel (1650–2250 cm−1) (Figure 1b), due
to their low sensitivity (compared to selected long-wave IR spectrum) to CO2, these spectral
observations are not used in this study. The channel selection differences among GIIRS,
AIRS, and IASI [8,12] can be found in Figure 3. As can be seen, GIIRS channel selection
scheme adds five channels whose wavenumber is higher than 750 cm−1 (751.250 cm−1,
758.750 cm−1, 791.250 cm−1, 791.875 cm−1, 792.500 cm−1) to increase its low troposphere
CO2 inversion capability, since the weighting function peak level of this spectrum stays
below 800 hPa (Figure 2).

Generating CO2 concentration profiles using a variational Data Assimilation (DA)
method can ensure that the CO2 added value and meteorological fields are consistent with
each other [25]. Particularly, the atmospheric temperature produces the most significant
uncertainty to CO2 inversion for two reasons: (1) CO2-sensitive spectral observations are
highly related to atmospheric temperature, and (2) the channel selection scheme renders
the water vapor and other trace-gas side effects to a low degree on CO2 profile retrieval.
In this study, the priori CO2 and meteorological background is derived from the NASA
(National Aeronautics and Space Administration) GEOS-5 48 h lead-time forecast (data
available at https://portal.nccs.nasa.gov/datashare/gmao/geos-fp/forecast (accessed on
31 December 2022)) [26]. Taking advantage of the hybrid 3-Dimensional Variational (hybrid
3DVar) assimilation scheme [27], the DA system adjusts the background using 22 GIIRS
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spectral radiance observations. The L-BFGS-B method [28] is chosen to minimize the
cost function:

J(x) = (x− xb)
T B−1

hyb(x− xb) +
(

y− H(x)

)T
R−1

(
y− H(x)

)
(1)

where x is the analysis result; xb is the background field; Bhyb is the hybrid background
error covariance; y is the GIIRS observation; R is the observational error covariance; and
H is the observation operator, which converts the x to the observation space. In this
study, we choose RTTOV (Radiative Transfer for TOVS) fast radiative transfer model [29]
version 13.1 as the observation operator to provide the DA system with simulated radiance
and Jacobian (K) in channel space. Compared to the former version, RTTOV 13.1 allows
the maximum surface skin temperature value over land to be 1250 K; this change can
potentially reduce the radiance simulation error over wildfire, biomass burning, and high-
fossil-fuel-consuming enterprises. Since the impact from other trace gases are removed in
the channel selection, we use the “rtcoef_fy4_1_giirs_o3co2.H5” coefficient (available at
https://nwp-saf.eumetsat.int/downloads/rtcoef_rttov13 (accessed on 31 December 2022)),
which only considers the trace gas absorption impact from O3 and CO2, to generate the
simulated GIIRS radiance and Jacobian. At each iteration (n), the first-order approximation
can simplify the calculation of H(x) to:

H(xn) = H(xn−1)
+ K(xn−1)

(xn − xn−1) (2)

Remote Sens. 2023, 15, 886 3 of 16 
 

 

 
Figure 1. Gaseous absorption coefficient for H2O (blue), CO2 (black), N2O (dark red), CH4 (green), 
NO (pink), SO2 (purple) and NO2 (yellow) over GIIRS long-wave (a) and mid-wave (b) IR channels. 
Absorption data come from HITRAN2020 Dataset (available at https://hitran.org/ (accessed on 03 
Feb. 2023)). 
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The grey line is the mean radiance from simulated IASI observation. 

Generating CO2 concentration profiles using a variational Data Assimilation (DA) 
method can ensure that the CO2 added value and meteorological fields are consistent with 
each other [25]. Particularly, the atmospheric temperature produces the most significant 
uncertainty to CO2 inversion for two reasons: (1) CO2-sensitive spectral observations are 
highly related to atmospheric temperature, and (2) the channel selection scheme renders 
the water vapor and other trace-gas side effects to a low degree on CO2 profile retrieval. 
In this study, the priori CO2 and meteorological background is derived from the NASA 
(National Aeronautics and Space Administration) GEOS-5 48 h lead-time forecast (data 
available at https://portal.nccs.nasa.gov/datashare/gmao/geos-fp/forecast (accessed on 03 
Feb. 2023)) [26]. Taking advantage of the hybrid 3-Dimensional Variational (hybrid 
3DVar) assimilation scheme [27], the DA system adjusts the background using 22 GIIRS 
spectral radiance observations. The L-BFGS-B method [28] is chosen to minimize the cost 
function: 𝐽ሺ௫ሻ ൌ ሺ𝑥 െ 𝑥௕ሻ்𝐵௛௬௕ିଵ ሺ𝑥 െ 𝑥௕ሻ ൅ ൫𝑦 െ 𝐻ሺ௫ሻ൯்𝑅ିଵ൫𝑦 െ 𝐻ሺ௫ሻ൯  (1)

where 𝑥  is the analysis result; 𝑥௕ is the background field; 𝐵௛௬௕ is the hybrid back-
ground error covariance; 𝑦  is the GIIRS observation; 𝑅  is the observational error covar-
iance; and 𝐻  is the observation operator, which converts the 𝑥  to the observation space. 
In this study, we choose RTTOV (Radiative Transfer for TOVS) fast radiative transfer 
model [29] version 13.1 as the observation operator to provide the DA system with simu-
lated radiance and Jacobian (𝐾) in channel space. Compared to the former version, RTTOV 
13.1 allows the maximum surface skin temperature value over land to be 1250 K; this 
change can potentially reduce the radiance simulation error over wildfire, biomass burn-
ing, and high-fossil-fuel-consuming enterprises. Since the impact from other trace gases 
are removed in the channel selection, we use the “rtcoef_fy4_1_giirs_o3co2.H5” coefficient 
(available at https://nwp-saf.eumetsat.int/downloads/rtcoef_rttov13 (accessed on 03 Feb. 
2023)), which only considers the trace gas absorption impact from O3 and CO2, to generate 
the simulated GIIRS radiance and Jacobian. At each iteration (𝑛), the first-order approxi-
mation can simplify the calculation of 𝐻ሺ௫ሻ to: 𝐻ሺ௫೙ሻ ൌ 𝐻ሺ௫೙షభሻ ൅ 𝐾ሺ௫೙షభሻ ∙ ሺ𝑥௡ െ 𝑥௡ିଵሻ  (2)

In this study, the static background error covariance matrix (𝐵௦௧௔௧௜௖) consists of three 
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calculated from a three-month-long GEOS-5 forecast dataset via the NMC (National Me-
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temperature and air temperature, is calculated from NOAA (National Oceanic and At-
mospheric) Global Ensemble Forecast System (GEFS, data available at https://noaa-gefs-
pds.s3.amazonaws.com/index.html (accessed on 03 Feb. 2023)) [31] 48 h lead-time forecast 

Figure 3. Channel selection scheme comparison between AIRS (green), IASI (blue) and GIIRS (red).
The grey line is the mean radiance from simulated IASI observation.

In this study, the static background error covariance matrix (Bstatic) consists of three
variables: surface skin temperature, air temperature, and CO2 concentration (Figure 4a)
is calculated from a three-month-long GEOS-5 forecast dataset via the NMC (National
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Meteorological Center, now National Centers for Environmental Prediction) method [30].
The ensemble background error covariance (Bensemble), which only consists of surface
skin temperature and air temperature, is calculated from NOAA (National Oceanic and
Atmospheric) Global Ensemble Forecast System (GEFS, data available at https://noaa-gefs-
pds.s3.amazonaws.com/index.html (accessed on 31 December 2022)) [31] 48 h lead-time
forecast via the ensemble-mean method [32,33]. The Bensemble can reduce the CO2 retrieval
accuracy uncertainty by better representing the meteorological field’s uncertainty caused
by localized weather systems. The meteorological part of Bhyb includes 80% Bstatic and 20%
Bensemble, but the CO2 part is identical to the Bstatic due to the shortage of atmospheric CO2
forecast ensembles. The observation error covariance matrix (R) (Figure 4b) takes advantage
of the Hollingworth–Lönnberg method [34,35], which is widely accepted and used in
meteorological and atmospheric composition of the DA system [36–40]. As the observations
located from 701.250 cm−1 to 704.375 cm−1, from 706.250 cm−1 to 708.750 cm−1, and from
791.250 cm−1 to 792.500 cm−1 are adjacent spectral channels, which causes a high cross-
channel correlation (Figure 4c), the DA system cannot merely use the diagonal values in
the R matrix to minimize the cost function; thus, the off-diagonal values must be included.
The cut-off iteration step amount is set to 200, accordingly, because of the inclusion of R
Matrix off-diagonal values.
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Before initiating the DA process, cloudy and high-noise-level pixel observations must
be discarded. We quantify the cloud-covering possibility with Cloudy Pixel Percentage
(CPP):

CPP =
cloudy pixlel amount(searching radius, time window)

total pixel amount(searching radius, time window)
(3)

In the calculation, the cloudiness information comes from the FY-4A Advanced Geosta-
tionary Radiation Imager (AGRI, data available at https://satellite.nsmc.org.cn/portalsite/
(accessed on 31 December 2022)) China regional cloud mask product (4 km horizontal reso-
lution, 7 min refresh rate) [41]. At each GIIRS observation location, the total pixel amount
is the AGRI pixel amount within a 10 km spatial (14 min temporal) searching radius, and
the cloudy pixel amount is the cloudy and possible cloudy AGRI pixel amount. Any ob-
servations with CPP higher than 0.1 cannot enter the Quality Control (QC) process. The
QC method primarily relies on the Observation-minus-Background (OmB) estimation,
which ensures that the observation-background departures are tolerant to the minimization
algorithm and computational cost, especially when assimilating observations gathered
from multiple instruments. Another approach to representing observation quality is using
the Noise Equivalent spectral Radiation (NE∆R), which defines the amount of change in ra-
diance required to produce a signal equivalent to the noise of the system. In this project, we
adopt a NE∆R -based QC method for two reasons: (1) smaller observation amount, where
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the observations are gathered from 22 spectral channels via a single instrument; (2) data
selection independence, where the OmB-based QC methods could bring about the over-
similarity problem between observation and background and thus render the observation’s
impact on background modification. The QC method calculates the mean (MeanNE∆R)
and the standard deviation (SDNE∆R) of each spectrum’s NE∆R from the clear-sky ob-
servations, then discards the entire pixel observation if it has more than 3 “bad” spectral
observations, where bad means the absolute NE∆R departure (|NE∆R − MeanNE∆R|) is
higher than 0.5 SDNE∆R. In this study, the NE∆R-based QC method accepts 44.3% of the
clear-sky observations, while the OmB-based method’s data acceptance rate is 37.1%.

Based on the Emissions Database for Global Atmospheric Research (EDGAR) Green-
House Gas (GHG) emission dataset [42], the experiment domain (Figure 5) in this study
covers the primary GHG source regions in East Asia: China, Japan, and South Korea. The
DA system assimilates GIIRS observation gathered within a 3 h time window (±1.5 h
relative to the analysis validation time) and generates analysis of CO2 fields seven times
per day (at 00, 03, 06, 09, 12, 15, 21 UTC). For performance comparison, the experimental
analysis CO2 concentration generated from the DA system and the background (GEOS-5
48-h lead-time forecast) are compared against GEOS-5 initial conditions (data available at
https://portal.nccs.nasa.gov/datashare/gmao/geos-fp/das/ (accessed on 31 December
2022)) and OCO-2/-3 retrieval products (data available at https://disc.gsfc.nasa.gov/
datasets/ (accessed on 31 December 2022)). Mean Bias (MB) and Standard Deviation (SD)
are chosen to indicate the performance difference in the evaluation.

MB =
∑n

i=0 Bias
n

(4)

SD =

√
∑n

i=0(Bias − MB)2

n
(5)

Bias = Estimation(Analysis ∨GEOS−5 f orecast) − Truth(GEOS−5 analysis ∨OCO−2/−3 observation) (6)
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3. Results
3.1. Validation against GEOS-5 Initial Condition

By comparing the mean bias profile from the experimental analysis and GEOS-5 48 h
lead-time forecast product (Figure 6a), it is shown that the GIIRS observation can increase
the first guess’s accuracy. Regarding the mean bias, the first-guess field from the GEOS-5
48 h lead-time forecast has a 0.27 ppm CO2 concentration over-estimation at 975 hPa. This
error is brought down by 0.04 ppm after assimilating the GIIRS observation. Furthermore,
the low troposphere (975–800 hPa) benefits from the assimilation of the GIIRS observa-
tion since the experimental analysis’s mean bias is smaller than the mean bias of the first
guess. The impact of the GIIRS observation tends to be neutral over the mid-troposphere
(700–500 hPa), as neither accuracy improvement nor downgrade can be detected in the
experimental analysis product. This phenomenon could result from the shortage of mid-
troposphere CO2-sensitive spectral channels in the GIIRS observation (Figure 2). Unlike
the observation shortage in the mid-troposphere, every selected spectral channel has one of
its Jacobian peaks above 450 hPa. However, due to the relatively low CO2 concentration in
the upper troposphere, the added value from the GIIRS observation assimilation is smaller
than that provided for the low troposphere. If the mean bias deduction is expressed as a
percentage (Figure 6c), it shows that the GIIRS observation contributes more information to
the upper-level CO2 mean bias deduction, where the highest deduction ratio is almost 30%,
whereas for the low troposphere, the highest deduction ratio is 27%. Rather than a positive
contribution, the GIIRS observation increases the mid-troposphere mean bias by 5% (maxi-
mum). Despite the mid-troposphere performance drawback, the GIIRS observation still
declares its potential in decreasing the first guess’s CO2 concentration bias on a broad scale.
Other information concluded from the standard deviation profiles (Figure 6b,d) indicates
that the GIIRS observation can diminish the random error in the background profiles.
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Since the low troposphere (975–800 hPa) CO2 concentration is highly related to human
activities, it is useful to show how the GIIRS observation can detect the diurnal cycle. The di-
urnal change in mean bias (Figure 7a) indicates a higher value during midnight and twilight,
but this anomaly drops below 0.16 ppm during the daytime. This situation happens not
only in the first guess but also the experimental analysis product, but the DA system brings
the analysis field’s mean bias down by 0.016 ppm (20:00 BJT/12:00 UTC) to 0.035 ppm
(08:00 BJT/00:00 UTC) by assimilating the GIIRS observation. At 23:00 BJT/15:00 UTC,
the GIIRS observation increases the mean bias, which can be attributed to the instru-
ment’s insatiability before the GIIRS scheduled a 2-hour-long offline time centered at
02:00 BJT/18:00 UTC. The standard deviation diurnal cycle (Figure 7b) shares the same pat-
tern with the mean bias (Figure 7a), in which the GIIRS observation contributes a 0.12 ppm
(20:00 BJT/12:00 UTC) to 0.34 ppm (08:00 BJT/00:00 UTC) standard deviation deduction
upon the first guess. Unlike the mean bias result at 23:00 BJT/15:00 UTC, the experimental
analysis’s standard deviation is smaller than the first guess, but with a marginal magnitude.
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Figure 7. Diurnal cycle of mean bias (a) and standard deviation (b) before (blue) and after (red) GIIRS
sounding assimilation, for the domain shown in Figure 4 and from 1 August 2022 to 1 September 2022.

The low-troposphere CO2 added value (experimental analysis minus first guess)
spatial distribution (Figure 8) depicts the experimental analysis product lowers (increases)
the CO2 concentration in the first guess during local daytime (nighttime). This spatial
distribution shows where the GIIRS observation modifies the first guess to minimize the
bias in the low-troposphere CO2 concentration field: in the daytime, the primary CO2
concentration reductions being located in west and southeast China (Figure 8a), while at
night, south China produces more CO2 emissions (Figure 8b).
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Figure 8. Spatial distribution of daytime and nighttime mean bias added value.

As can be seen from Figure 9a, assimilation of GIIRS observations lowers the daytime
low-troposphere standard deviation spatial distribution over most regions in China, except
the west and central areas, where complex terrain is located. Comparing the random error
reduction with the GHG emission (Figure 5), it can be concluded that the places with high
standard deviation reduction coincide with high GHG-emission regions. The phenomenon
indicates that assimilating the GIIRS observation can reduce the CO2 concentration random
error where the GHG emission level is high. The nighttime standard deviation reduction
spatial distribution (Figure 9b) differs from the daytime one: the random error increases
after GIIRS assimilation in north and northeast China; and the tropical northwest Pacific
Ocean (lower right corner) has the highest standard deviation increment above that for
other regions. The human activity uncertainties (primarily industrial and high-energy-
absorption activities) can be one of the causes of the nighttime random-error increase over
north and northeast China since these regions have the most extended heavy industry
history in China. For the random error increase over the tropical northwest Pacific, the
coefficient for the GIIRS instrument could be the cause: the default GIIRS coefficient in
RTTOV is calculated from a global training set, but according to the results from Di et al. [43],
a coefficient calculated from a localized training set can improve fast radiative transfer
models’ simulation accuracy since the geostationary hyperspectral infrared sounder is
supposed to be more localized than other polar-orbiting ones.
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3.2. Validation against OCO-2/3 Observation

The former section demonstrates the GIIRS observation capability of correcting the
CO2 concentration’s systematic error (mean bias) and random bias (standard deviation) in
the first guess. However, the analysis field still needs further validation against observa-
tions, e.g., retrieval products generated from polar-orbiting platforms or in situ observations.
However, the comparison against in situ observation is highly difficult to conduct due to
the observation shortage in targeted area. In this section, we compare the mean bias and
standard deviation from the experimental analysis and the GEOS-5 analysis, and the GEOS-
5 48-hour lead-time forecasts are used to demonstrate the GIIRS observation’s impact on
CO2 concentration correction and to calculate the mean bias and standard deviation of the
differences with the level-2 CO2 retrieval products from OCO-2 [44] and OCO-3 [45] being
treated as an unbiased observation (i.e., “Truth”). Before calculating the bias, the OCO-2/-3
products are mapped relative to the estimation (GIIRS DA analysis, GEOS-5 analysis, or
the first guess) location where only the spatiotemporally nearest retrieval is used. Figure 10
shows the geographical locations of OCO-2/-3 retrievals used in this evaluation. As can be
seen, the OCO-2 retrieval dataset provides observations over high-latitude regions (52◦N
and north), with more homogeneous spatial distribution than OCO-3, which covers the
experiment domain’s northwest. This phenomenon could induce disagreement between
evaluation results against OCO-2 and OCO-3 products.
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Figure 10. OCO-2 (green) and OCO-3 (blue) retrieval profile location used in the evaluation.

From the mean bias profile (Figure 11a,c), all three estimations (experimental analysis,
GEOS-5 analysis, and the first guess) underestimate the low-troposphere CO2 concentration
but produce overestimation over upper and mid-troposphere. Meanwhile, the magnitude of
the mean bias is more extensive than that in the former section, which could be related to spa-
tial difference: the OCO-2/-3 instruments have a 1.29 km × 2.25 km horizontal resolution,
but a pixel in the GEOS-5 product/GIIRS observation is (25 km × 25 km)/(16 km × 16 km).
Nevertheless, differences between the experimental analysis (red line), GEOS-5 analysis
(black line), and the first guess (blue line) still reveals that the GIIRS analysis result has
equivalent performance to the GEOS-5 analysis, while the first guess’s departure from the
GEOS-5 analysis result is not neglectable (Figure 11a,c). The performance difference in
random bias cancellation is more noticeable than the mean bias: in the OCO-2 comparison
(Figure 11b,d), the GIIRS observation can cut down the CO2 concentration’s random error
in the first guess over the low troposphere.
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4. Discussion

As mentioned in the beginning, geostationary instruments can diminish the revisiting
time latency and provide observations at the same footprint within every spatial scan time;
these attributes give geostationary hyperspectral infrared sounders multiple advantages
over polar-orbiting instruments [46–48]. Meanwhile, the horizontal resolution of the
GIIRS instrument impedes its contribution in increasing the horizontal resolution of CO2
monitoring: the instrument on FY-4A has a 16 km horizontal resolution at the nadir point,
and its successor, GIIRS, on FY-4B’s nadir point horizontal resolution is 12 km, which
is roughly equivalent to GOSAT but far behind the OCO-2/-3 instrument. However,
this situation will change after Meteosat Third-Generation InfraRed Sounder (MTG-IRS)
and Geostationary Extended Observation Sounder (GXS) become operational. In the
future, the likelihood of creating a global-scale high-spatial–temporal-resolution CO2
monitoring network is probable with a global constellation of meteorological geostationary
hyperspectral infrared sounder instruments. This satellite constellation can provide useful
insights into global greenhouse gas emission reduction. For retrospective CO2 analysis
datasets, meteorological geostationary hyperspectral infrared sounders can undoubtedly
improve their temporal resolution by combining the new observation with the existing
datasets from OCO-2 and GOSAT. Since the FY-4B GIIRS instrument’s NE∆R is much
smaller than that of FY-4A (Figure 12), the quality of this CO2 retrieval dataset can be
improved by adding its observation into the system.
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5. Conclusions

In this research, we conducted a prototypical study to demonstrate the geostation-
ary hyperspectral infrared sounder’s potential for monitoring CO2 concentration using a
one-month-long GIIRS observation. The results indicate that the meteorological geosta-
tionary infrared sounding observations can provide CO2 concentration information with
reasonable accuracy. With high revisiting time frequency, GIIRS is capable of revealing the
diurnal variation of CO2 emission. The additional spectrum, 751.250 cm−1, 758.750 cm−1,
791.250 cm−1, 791.875 cm−1 and 792.500 cm−1, can reduce the uncertainties embedded in
the GEOS-5 product over the low troposphere. Despite the findings listed above, more
research and investigations are needed to solve the issues such as the parallax correc-
tion for the geostationary hyperspectral infrared observations and how to combine the
advantages from geostationary and low-earth-orbiting hyperspectral infrared sounding
observation together.
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