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Abstract: Deep neural networks (DNNs) can improve the image analysis and interpretation of remote
sensing technology by extracting valuable information from images, and has extensive applications
such as military affairs, agriculture, environment, transportation, and urban division. The DNNs for
object detection can identify and analyze objects in remote sensing images through fruitful features of
images, which improves the efficiency of image processing and enables the recognition of large-scale
remote sensing images. However, many studies have shown that deep neural networks are vulnerable
to adversarial attack. After adding small perturbations, the generated adversarial examples will cause
deep neural network to output undesired results, which will threaten the normal recognition and
detection of remote sensing systems. According to the application scenarios, attacks can be divided
into the digital domain and the physical domain, the digital domain attack is directly modified on the
original image, which is mainly used to simulate the attack effect, while the physical domain attack
adds perturbation to the actual objects and captures them with device, which is closer to the real
situation. Attacks in the physical domain are more threatening, however, existing attack methods
generally generate the patch with bright style and a large attack range, which is easy to be observed
by human vision. Our goal is to generate a natural patch with a small perturbation area, which can
help some remote sensing images used in the military to avoid detection by object detectors and
im-perceptible to human eyes. To address the above issues, we generate a rust-style adversarial patch
generation framework based on style transfer. The framework takes a heat map-based interpretability
method to obtain key areas of target recognition and generate irregular-shaped natural-looking
patches to reduce the disturbance area and alleviates suspicion from humans. To make the generated
adversarial examples have a higher attack success rate in the physical domain, we further improve
the robustness of the adversarial patch through data augmentation methods such as rotation, scaling,
and brightness, and finally, make it impossible for the object detector to detect the camouflage patch.
We have attacked the YOLOV3 detection network on multiple datasets. The experimental results
show that our model has achieved a success rate of 95.7% in the digital domain. We also conduct
physical attacks in indoor and outdoor environments and achieve an attack success rate of 70.6%
and 65.3%, respectively. The structural similarity index metric shows that the adversarial patches
generated are more natural than existing methods.

Keywords: adversarial attack; object detection; style transfer; deep learning

1. Introduction

With the rapid development of artificial intelligence (AI), deep learning is widely used
in the field of computer vision, such as image classification, object detection [1,2], semantic
segmentation [3], etc. DNN has achieved its outstanding advantages in remote sensing
technologies [4]. When acquiring a large number of remote sensing images from satellite
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platforms for providing large geographic information for various applications, we can take
DNN to extract valuable information, such as environmental monitoring, urban planning,
or in the military. Deep learning-based object detectors are equipped on drone surveillance
footage to detect military assets on the ground. However, many researchers [5–8] have
found that if some imperceptible perturbations are added to the input samples, it is likely
that the neural network will misidentify the adversarial examples as other classifications.
The neural network is vulnerable, it can easily be misled by adversarial examples. If an
attacker deliberately attacks the neural network in practical applications, it will pose serious
security risks. To improve the performance of models, remote sensing detection networks
can perform adversarial training and adversarial learning [9]. The adversarial learning
model [6] has better generalization capabilities, enabling the detection system to capture
information in complex remote sensing scenarios and better learn the data distribution
of adversarial examples, thereby improving the detection robustness and accuracy of
the network.

Adversarial attacks on neural networks [10,11] can be divided into attacks in the
digital domain and attacks in the physical domain. Digital domain attacks directly perturb
the input data and then use the modified image as adversarial examples, the generated
perturbations are added to the digital image without generating the physical medium so
that the computer can directly recognize the perturbations and generate wrong classification
results. The physical domain attack applies the attack method in the real world. The
attack in the physical domain is to print out the examples after they are generated in the
digital domain and place them in the physical world to be captured by systems such as
cameras, which will cause the model to make wrong judgments. Compared to the fixed
and confirmed background in the digital domain, various environmental conditions in
the physical domain are random and unpredictable. Although adversarial attacks in the
digital domain have achieved high success rates [8,10,12–16], it is difficult to achieve the
same attack performance in the physical domain with small perturbations that successfully
attack in the digital domain, due to factors such as viewing angle and camera disturbance,
these tiny disturbances are difficult to be captured by the camera successfully, which limits
the connection between adversarial examples and the real world. So, it is proposed in [11]
that we can use the adversarial patch to attack the physical domain. The adversarial patch
does not limit the size of the perturbation and can be effectively reproduced in the real
world. In subsequent work [17–20], researchers also confirmed the strong robustness of
adversarial patches.

Our main goal is to generate a natural and imperceptible patch with a strong attack
effect, then add the patch to the original images to generate adversarial example, so that the
object detector cannot detect the targets. Since remote sensing images are widely used in
high-security requirements fields such as national defense, it will cause greater harm if the
vehicles are attacked in this case. On the one hand, as for military assets such as vehicles
or aircraft, we not only want them not to be detected by the object detector algorithm but
also want the patch used for the attack to look unobtrusive to the human eye. On the other
hand, we can use the generated adversarial examples to conduct adversarial training on
our object detector. The trained network will have the generalization ability for this type of
adversarial example, thereby improving the recognition accuracy of the detector and the
ability to defend such adversarial examples.

At present, the work of attacking neural networks is mainly concentrated on image
classification, and the classification model only needs to detect the category of a single
object. However, such as remote sensing systems, object detection algorithms are often
adapted to detect aircraft and ships in remote sensing images instead of image classification
algorithms in practical applications. Compared to classifiers, it is more difficult to attack
object detection: (1) The classifier only needs to classify a single target in the picture so
attacking the classifier only needs to change the category label of an object, while the
object detection needs to locate and classify multiple target objects with different positions
and sizes in the image. In order to realize such a function, the neural network for object
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detection is also more complicated, so when attacking the object detector, the position and
category information in the label must be considered at the same time. (2) Since the object
detector detects all objects in a scene, the context’s semantic information will also impact
the final detection result, and imaging circumstances will also produce different contextual
semantic information, which brings difficulty to the attack.

The attack on the object detector can be divided into the creation attack, the misclassi-
fication attack, and the disappearance attack according to attack targets. The creation attack
enables the target detector to detect the target that does not exist in the image through the
adversarial patch, the misclassification attack will recognize the target as a wrong label,
and the disappearance attack is to make the detector unable to detect the attack target. We
can hide some targets that we do not want to be discovered by disappearing attack, such as
the military, traditional methods often use camouflage nets to hide military assets, but for
some large items such as airplanes, cars, etc., it is difficult to use traditional camouflage to
conceal, so disappearance attack is always an efficient way for us to find a patch perturba-
tion method so that we can hide our large assets in remote sensing images without being
detected. In [21], it is found that an adversarial patch block can be generated and pasted
on the target to achieve the purpose of not being detected by the object detector, which
proves that the adversarial attack can be applied to the remote sensing system. However,
in the real scene, the background of remote sensing images is diverse and complex, and
there are some challenging physical conditions such as distance and angle which make
attacks more difficult. Although some prior studies [22–24] demonstrate the fragility of
object detection in the real world, there are still some limitations. In terms of naturalness,
most of the adversarial patches generated are irregular and unreal perturbations. However,
the size of adversarial patches occupies most of the area of the attack target, which causes
the generated patches to not conform to the actual situation and is suspicious to humans.

To address the mentioned problems, this paper proposes the Rust-Style Patch (RSP)
attack to implement the disappearance attack on target objects for object detection in
the physical domain. The proposed method simulates the effect of rust based on style
transfer so that the adversarial example can preserve the content of the image itself while
incorporating the texture and color features of the style image. In addition, we use gradient-
based attention techniques (Grad-CAM [25], Grad-CAM++ [26], etc.) to obtain a patch
mask to narrow the scope of the attack and generate an irregular shape patch that is closer
to the real rust effect, to further enhance the imperceptibility and naturalness of the patch.
Such an attention algorithm can help us obtain a saliency map of the detection image. We
set a threshold on the saliency map to control the size of the patch and obtain the important
attacking region which has the highest impact on the final detection result, then we choose
this region as our attacking area so that we can get the patch that can both reduce the attack
range and stabilize the attack effect.

Our main contributions in this paper are summarized as follows:

1. We propose a method to generate natural, rust-like adversarial patches generation
method based on style transfer, which makes the adversarial patches as natural as
possible while making the object detector fail for target objects detection.

2. We utilize attention techniques to obtain the most aggressive regions, effectively reduc-
ing the size of the adversarial patch, and balancing the attack effect and naturalness
by a preset size threshold.

3. Experiments on the coco dataset in both digital and physical domains show the
effectiveness and attack performance of the method. Experiments on the NWPU
VHR-10 dataset also prove the effectiveness of our method on remote sensing images.

The rest of the paper is organized as follows: the existing related work about adversar-
ial examples will be introduced in Section 2, and an explanation of our method is provided
in Section 3. Section 4 will show the attack effect of the method in this paper in the digital
domains and physical domain and there are also some ablation experiments to discuss the
results. Conclusions and future study directions can be found in Section 5.
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2. Related Work and Background
2.1. Naturalistic Adversarial Patch

Adversarial patch attack was first introduced in [11]. The attack method in [11]
generates a universal patch by maximizing the probability expectation of the target category,
then this patch can be used to attack any scene and cause a classifier to output any target
class because it works under a wide variety of transformations. Subsequently, the RP2
method is proposed in [22] to use the mask to map the disturbance in a graffiti-like shape
and paste it onto the traffic sign in the form of black and white blocks, making the classifier
output the wrong result. The DARTS method [27] generates adversarial logos such that
the classifier recognizes out-of-distribution data as the targeted traffic sign category. Some
researchers use a laser [28] or optical projection [29] to project the patch onto the target
object to attack in the form of light.

Recently, adversarial patch attacks have also been studied for the more challenging
scenario of object detection. DPatch [18] proposed a patch-wise object detection attack that
obtains the adversarial patch by simultaneously computing the positional regression loss
and the classification loss. It attaches an adversarial patch on the upper-left corner of an
image and can make the object detector unable to recognize all the objects on the image.
This method simultaneously attacks the YOLO [30] network and the Faster-RCNN [31]
network, but the method is only implemented in the digital domain. A square card-style
adversarial patch generation method is proposed in adversarial-yolo [32]. When a person
puts an adversarial piece of paper in front of the body, it can make the person invisible
in front of the YOLOv2 [33] detector (hide a person from YOLOv2). Ref. [34] extended
this approach to attack YOLOv3 [35] and Faster-RCNN networks and demonstrated the
transferability of attacking different object detectors trained on different datasets. An
improvement of adversarial-yolo is proposed in [36], the method input the optimized latent
variables into the pre-trained GAN network in each iteration, and finally generated an
adversarial pattern similar to the real thing (such as Dog), and experiments on multiple
object detectors demonstrate the robustness of the attack. In [21], the author extended
the method in adversarial-yolo to military remote sensing object detection and realized
the attack of hidden targets by adding perturbation patches on different types of aircraft
fuselages. There are two kinds of adversarial patches proposed in [37] to fool the aerial
imagery object detector, patches were installed on or near target objects to significantly
reduce the efficacy of an object detector applied on overhead images. For static targets,
three rectangular strips of patches similar to the stop line are generated and installed
around the objects, and for dynamic targets, a patch block is installed on the car roof, so
that the target objects in the remote sensing image are not detected.

Regarding traffic signs, ShapeShifter method [24] proposed the first targeted attack on
Faster-RCNN by generating adversarial and perturbation posters to replace the background
images of traffic signs. The method extended the attack on YOLOv2 based on the RP2
attack method proposed in [22], and realized the disappearance attack and creation attack
in the physical domain, they used Faster-RCNN for detection to prove the transferability of
adversarial examples. NaturalAE method is proposed in [38], using an adaptive mask to
limit the perturbation attack range so that the adversarial examples are relatively natural,
and this method also introduced the real-world perturbation score (RPS) to make the
noise similar to the real noise of the physical world. However, as shown in Figure 1a,b, the
adversarial perturbations generated by these methods almost occupy the entire background
of traffic signs and are easy to perceive. In contrast, our method can effectively reduce the
attack area of the patch (as shown in Figure 1c).

2.2. Explainable Adversarial Attack

To better understand the behavior and decision-making of neural networks, re-
searchers have conducted a lot of research on visual attention techniques. The linear
graph interpretation method is a classic and commonly used technique to explain DNN.
For example, the saliency map obtained based on the class activation mapping [39], which
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can locate the specific position of the target in the input image under the supervision of
image-level labels, but the saliency map generated by this method needs to be modified
the structure of the network, so the Grad-CAM algorithm [25] was proposed to identify
the continuous spatial region of the input and obtain a visual activation map for a certain
category without modifying the original model.

(a) (b) (c)

Figure 1. (a,b) show the suspicious appearance of camouflages generated by previous work, (c) shows
the rust-style adversarial example generated by our method.

With the property of visual attention techniques, these algorithms are also commonly
used in adversarial attacks [40]. In PS-GAN [41], the author used Grad-CAM to find the
important area of image classification as the central point of the patch. In [42], the Grad-
CAM constraint is introduced in the loss function to improve the robustness against patches,
but these methods can only be applied to image classification. Grad-CAM is also used in
DAS [43] to provide saliency map information. The author uses activation map weights to
distract the attention of target detection, but this method needs to use most of the salient
regions to achieve the purpose of a black-box attack, so adversarial perturbations also
occupy most of the target.

2.3. Background

Among the currently existing object detectors, YOLO is the most commonly used one.
YOLO [30] is a one-shot state-of-the-art object detector. Compared to the two-stage target
detector (i.e., Faster-RCNN [31]), it will not use the RPN network to generate the region of
interest in advance, so its detection speed is almost three times that of the two-stage object
detection network. Since YOLO has achieved complete functions in the third version, in this
work, we choose the third version of YOLO [35] to attack. The structure of YOLO is shown
in Figure 2. YOLOV3 uses the darknet-53 network as the backbone network, it contains
three detection heads of different sizes to complete multi-scale prediction. The detection
network divides the input image into S × S grids, and each grid will output B predicted
anchor boxes bias information, class possibility, and target possibility. Then output the
most reasonable prediction results through the non-max-suppression algorithm, and each
prediction result includes the position coordinates and confidence of the bounding box.

Input image
Upsample and 
feature fusionpreprocess backbone

classfication and 
regression

non-max- 
suppression

output
(x,y,w,h,P(obj),class,P(cls))

x,y,w,h,P(obj) class,P(cls)

输入图片

特征提取

Darknet-50网络

回归分析 分类

Input 
image backbone Upsample and 

feature fusion
anchor 

box

x,y,w,h,P(obj
)

FPN and 
Yolo head

class,P(cls)

non-max- 
suppression

feature extractor

Figure 2. The detection process of YOLO.
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3. Methods

In this part, we first define the adversarial attack problem and an overview of the
method (Section 3.1), then we introduce the attack region generation method (Section 3.2),
the generation of natural adversarial patches (Section 3.3), physical domain adaptation
(Section 3.4) and overall optimization processing (Section 3.5).

3.1. Overview

The overview of the RSP attack is illustrated in Figure 3. We give an input image
x at the beginning of the attack and generate the mask of its main attack area through
the saliency map, then map the patch δ to the attack area. The generated examples will
output several targets Oi after passing through the detection network f . Our goal is to find
an adversarial patch δ that causes the object detector invalid and unable to recognize the
object. We use the following Equation (1) to indicate our optimization goal of finding an
adversarial patch.

argminδEt∼T [L( f (A(δ, x, t)))] (1)

where t represents the distribution of the patch transformation (which we will further
discuss in Section 3.4), A is a function that maps the patch δ after transformation t to the
input image x to generate an adversarial example xadv, L is the loss function designed for
adversarial example.

physical 
adapter

patch mapping

feature
extractor

YoloV3
Detector

Generating Attacked Area
 

patch

rotate brightness scale

input image

saliency mapfeature map mask adversarial example

Adversarial Detection Loss
 

classfication

regression

Naturalness Loss

update the patch 
until attack successs

Figure 3. The framework of our method.

3.2. Generating Attacked Area

Previous attacks were aimed at the entire background of traffic signs. Since the
attack performance largely depends on the visual sensitivity of the attacked network,
we consider using visual attention technology to obtain areas that have a greater impact
on the prediction results and use them as attack areas, ensuring the attack robustness
of the network while reducing the attack scope. Visual attention techniques are used to
improve the interpretation and understanding of model decisions. In this work, we use the
Grad-CAM algorithm. The algorithm is aimed at a specific category c, and it will extract
the score yc predicted by the model and perform backpropagation to obtain the gradient
information A′ of the feature map A of the last layer of the convolutional neural network.
We use Equation (2) to get the weight αc

k of each channel of the feature map; finally, we can
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obtain the saliency map Gc by Equation (3). The value of each point on the attention map
represents the contribution of the corresponding pixel in the original image to the category
detection results.

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(2)

Gc = RELU

(
∑
k

αc
k Ak

)
(3)

where c is the target class to attack, k is the kth channel in feature layer A, Z represents
the size of feature layer. Ak

ij represents the data at the position of (i, j) in the channel k of

feature layer A, αc
k is the weight of the kth channel of feature layer A for category c, Gc is

the attention map for category c and Gc ∈ [0, 255].
Finally, we binary process the heat map by setting a threshold η, when the value of

the attention map is greater than the threshold, it means that it has a great impact on the
detection results and it will be used as a mask to generate the patch area. The selection of
the threshold will affect the size of the disturbance area. Too much disturbance will make
the patch unnatural, which is easily observed. However, a patch that is too small is likely
to fail a successful attack which may affect the attack performance. Therefore, we need to
select an appropriate value η through multiple comparison experiments to get the final
mask we need which can balance the patch naturalness and attack performance.

The mask helps project the computed perturbation patch onto the physical area of
the object surface in our patch applier function A. In addition to providing spatial locality,
masks help produce perturbations that are visible but not obvious to human observers.
The mask is a matrix M with the same dimension as the input image to the detector. M
has a pixel value of 0 in the area where no perturbation is added, and 1 in the area where
the perturbation is added during optimization, which means M ∈ {0, 1}n. The adversarial
example obtained after mapping is expressed as follows:

xadv = (1−M)� x + M� δ (4)

where � represents element-wise multiplication.

3.3. Generating Naturalistic Adversarial Patches
3.3.1. Naturalness Loss

To generate imperceptible adversarial patches, we consider using style transfer [44] to
make adversarial patches approximate the effect of rust spots. As shown in Figure 4, input
a target image G, a style image S, and a content image C, style transfer will minimize the
content loss Lcontent between the target image G and the content image C and the style loss
Lstyle between the target image G and the style image S through iterations, it makes the
texture of the style image can be transferred to the target image G while the target image
can maintain the structural information of the content picture. Among them, the content
and style information in the image can be separated from the feature representation learned
by the convolutional neural network. We use cross-entropy as a loss function.

In this paper, the target image G is the patch δ we want to optimize, and the content
image is selected from the part mapped by the adversarial patch clipped from the original
image, to ensure that the original image can still retain a certain content outline after being
covered by the patch. In a neural network, the deep network extracts high-dimensional
semantic content information, so the content loss is compared with the features of deep
layers. The content loss definition equation is as follows:

Lcontent (C, δ) =
1
2 ∑

i,j

(
Cl

ij − δl
ij

)2
(5)
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where Cl
ij represents the feature value of the content image C at position j on the ith feature

map in the lth network layer.

content image:C

style image:S

generated image target image:G

CNN
content feature 

extractor

CNN
style feature 

extractor
Gram matrix

content 
feature of C

content 
feature of G

style Gram 
matrix of S

style Gram 
matrix of G

content loss

style loss

loss.backwarditerations

Figure 4. The overview of style transfer.

we choose a picture with rust texture as the style image. The low-level features in the
neural network pay more attention to the pixel information of the image input, and extract
low-dimensional features such as color, so the style loss is often compared to the shallow
layer (usually multiple feature layers) network features. In style transfer, the style features
of the image are obtained from the Gram matrix. The Gram matrix contains the correlation
of different features of the convolution kernel. The Gram matrix is obtained by the inner
product between different convolution kernel features in the feature map F. The equation
is as follows:

Gl
ij(x) = ∑

k
Fl

ik(x)× Fl
jk(x) (6)

where Gl
ij(x) represents the style feature of the image x in the lth network layer, Fl

ik is the

feature value of the kth channel of the ith feature map in the lth layer, i, j are sequences of
vectorized features, then we can get the equation of style loss:

Lstyle (S, δ) =
L

∑
l=0

[
Gl

ij(δ)− Gl
ij(S)

2Nl Ml

]2

(7)

where Nl is the number of feature map in the lth network layer, Ml is the size of feature
map in the lth layer. The final style loss is the weighted sum of the style losses of each
convolutional layer.

3.3.2. Adversarial Detection Loss

As for each object Oi in the input image, YOLO will output their class probability Pi
cls

and objectness probability Pi
obj. The objectness probability represents the possibility of the

ith object. When the objectness probability is reduced below the threshold, the detector
cannot recognize the object. The class probability represents the probability that the ith

object is of category c. By reducing the class possibility, the target object can be classified as
the wrong class, so when we want the detector to fail to recognize the object, we need to
drop its confidence below the threshold.
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For the disappearance attack, we achieve the attack goal by minimizing both the
class probability and objectness probability of the attack target at the same time. Since
the perturbation generated during the iteration process may allow the detector to identify
additional non-existent targets, we add the possibility of additional objects in the detection
loss. Our adversarial detection loss is defined as follows:

LOD =
1
N

N

∑
i=1

Pi
obj × Pi

cls (8)

L f ab =
1
M

M

∑
j=1

Pj
obj × Pj

cls (9)

Ldet = LOD + L f ab (10)

where LOD represents the detection loss of target attack objects, N represents the number of
target attack objects, L f ab represents the detection loss of additional generated objects in
the iterative process, M is the number of generated non-existing objects.

3.4. Adaptation for Physical-World Conditions

Our goal is that the generated adversarial examples can also achieve attack effects
in the real world. Since there are many factors in the physical world, such as the combi-
nation of viewing angle, camera distance, and other natural transformations, we adopt
the EOT (Expectation Over Transformation) framework [17] to simulate the situation in
the physical domain. During the patch generation process, we randomly simulate the
changes in illumination, position, and angle on the patch and the attack target through
affine transformation, and simulate different kinds of backgrounds, making the patch better
adapt to the real situation.

Since we need to print the generated adversarial examples through a device (such
as a printer), the color space of the pictures produced by these devices is a subset of the
RGB color space in the digital domain. So for attacks in the physical domain, we also
introduced the non-printability score Lnps [45] to reduce the discrepancy between digital
field-generated patches and actual printed ones. We can get NPS score from Equation (11).

Lnps = ∑
δpatch εδ

min
cpatch εc

∣∣∣δpatch − cpatch

∣∣∣ (11)

where δpatch represents the pixel value in the patch δ, cpatch is the corresponding color value
in a set of printable colors c.

3.5. Overall Optimization Process

Finally, we optimize adversarial perturbations by optimizing the losses Lcontent, Lstyle,
Ltv, Ldet and Lnps. The total loss equation is as Equation (12), we use the Adam opti-
mizer [46] to optimize the patch δ such that the total loss is minimized. Our overall process
is described in Algorithm 1.

Ltotal = Lnps + Lcontent + αLstyle + βLdet (12)

We use the hyper-parameters α and β to control the weight of style effect and detection
loss to keep the balance between attack performance and realism in the optimization
process, where α and β are determined by experience and experiment.
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Algorithm 1: Generate rust-style adversarial patch
Input: a clean image x; balance parameters α, β; mask threshold η; a style image S;

iteration parameters maxEpoch;
Output: naturalistic adversarial patch δ and adversarial example x_adv
epoch← 0;
obtain attention map Gc of x by Grad-CAM;
obtain mask M and location loc of patch;
clip x with loc as content image C and initial Patch δ;
while epoch < maxEpoch do

Clip xadv in 0–255;
rotate, scale, adjust brightness for δ;
xadv = x� (1−M) + I � δ;
caculate Ldet with Equation (10);
caculate Lcontent, Lstyle with Equations (5) and (7);
caculate Lnps with Equation (11);
Ltotal = Lnps + Lcontent + αLstyle + βLdet;
optimize Patch δ to min Ltotal ;
epoch+=1 ;

end

4. Experimentation and Results Discussion

In this part, we first introduce the experimental settings, then conduct digital and
physical experiments on object detectors to prove the effectiveness of our method, and com-
pare it with other methods. Finally, we demonstrate the effectiveness of the functionalities
of each part of our method.

4.1. Experiment Settings

Datasets and Target models: We attack the YOLOv3 model which is based on the
Darknet-53 network for feature extraction. In order to simplify the process and get our
adversarial examples more quickly, we choose the tiny version of YOLOv3 for experiments
and evaluations. The model is pre-trained on the coco dataset and NWPU VHR-10 dataset
(416 × 416 pixels). The coco dataset contains 80 general object types such as various
animals, people, and vehicles. Although our method can potentially be used to attack other
categories, we choose to focus on the ’stop sign’ category in the coco dataset to attack in
our experiment, since it is more relevant and important to the real scene of the application.
The NWPU VHR-10 dataset is a public dataset for research on geospatial object detection
which contains 10 categories such as airplane, ship, vehicle and so on. The dataset contains
a total of 800 high-resolution remote sensing images cropped from the Google Earth and
Vaihingen datasets.

Evaluation metrics: To evaluate the attack effect of our method, we mainly evaluate it
from two aspects: attack performance and imperceptibility. For the attack performance, we
use the attack success rate (ASR) for evaluation, and for the naturalness, we use the patch
size ratio and SSIM (Structure Similarity Index Measure) as our main evaluation metrics. In
some cases, we need a comprehensive evaluation metric that considers both attack ability
and naturalness, so we define a metric score to combine all the evaluation metrics of the
two aspects to calculate the final score. The equation of the score is calculated as follows:

score =
SSIM ∗ ASR

patch size
(13)

Attack success rate refers to the ratio of the number of examples that successfully
realize our attack effect to the total number of experiments, the patch ratio is the ratio of
the area occupied by the adversarial patch to the area of the entire traffic sign. SSIM is used
to measure the degree of distortion of adversarial examples relative to clean examples, it
consists of three parts: brightness comparison, contrast comparison, and structure compari-
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son. Unlike traditional evaluation metrics such as PSNR, SSIM is a perceptual model that is
more in line with the intuitive experience of human vision. The value of SSIM is between
[0, 1], which means if the value is closer to 1, the example is closer to the original one. We
use the two indicators of SSIM and patch size ratio to measure the size, imperceptibility,
and perturbation on the clean examples of our generated adversarial patches.

Implementation details: Through multiple rounds of experiments, we obtain vari-
ous parameters that adapt to our attack. In the experiment, we select 220 for the mask’s
threshold η of the attack area, and the learning rate of the Adam optimizer is set to 0.01. In
the adversarial patch generation process we set the weight α of the style loss to 1000, and
the weight β of the detection loss to 10,000. The maximum number of training epochs is
1000. All codes are implemented in PyTorch. Our training and testing are performed on the
NVIDIA GeForce GTX2080Ti GPU cluster.

4.2. Digital Attack

We selected a total of 1000 images containing stop signs from the coco dataset for
digital domain experiments. We generate the mask of the attack area and the corresponding
patch for the attack example. It is considered a success if an adversarial patch that can
have an attack effect is obtained within the maximum number of epochs. Our evaluation
results are shown in Table 1, it can be seen that our method has a strong attack capability in
the digital domain, and the success rate of the disappearance attack on the YOLOV3-tiny
network can be as high as 95.7%. The attack is more practical in the physical domain, so
the digital domain attack part is only used to demonstrate its attack performance, and we
will compare the effect of the method with prior work in Section 4.4.

Table 1. The performance of our method in the digital domain.

Dataset ASR (%) SSIM

Disappearance Attack 95.7 0.913
NWPU VHR-10 78.2 0.926

Figure 5 shows the adversarial examples generated by the disappearance attack in the
digital domain and the corresponding attack effect. We found that in the disappearance
attack, it may be misrecognized as the other categories when the loss iteration is difficult
to converge, resulting in the failure of the attack. The converged misclassifications, such
as Figure 5g,h, are often fire hydrants, traffic lights, and clocks. We conjecture that the
shape feature and the color feature can have a large impact on the detection results and are
vulnerable to attack mistakes, which we put into future work to investigate.

We also conduct the experiment on NWPU VHR-10 dataset in the digital domain. As
shown in Table 1, our attack method can achieve a success rate of 78.2% on the remote sens-
ing dataset. Figure 6 shows the detection results of clean examples and their corresponding
adversarial examples, it can be seen that most of the objects in the adversarial examples
after the adversarial attack will not be detected by the object detector, which proves that
our disappearance attack method is also effective on remote sensing images. However, due
to the low accuracy of the YOLOV3 object detector itself in the detection of few-shot objects
in remote sensing images, which causes the generated saliency map is not accurate enough,
the final attack success rate is lower than that of the coco dataset. In future work, we will
focus on improving its accuracy and success rate.

4.3. Physical Attack

For the attack in the physical domain, we first simulate changes in various physical
domains for a stop sign, put the stop sign into different background situations for training,
then generate an adversarial patch with the disappearing effects and print out the stop sign
with the patch. We use the mobile phone (iPhone 13) to collect 150 photos in both indoor
and outdoor environments and put the photos into the detector for detection to evaluate our
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attack effect in the physical domain. Figure 7 shows some adversarial examples taken from
different angles in indoor and outdoor environments and successfully attacked. According
to the experimental results, it can be seen in Table 2 that the success rate in the physical
domain is lower than that in the digital domain due to various environmental factors. In
an indoor environment, the success rate can reach 70.6%, but only 65.3% in an outdoor
environment. Attacks in the physical domain still have certain limitations at present, and it
is difficult to get a high success rate at a relatively long distance.

(a) undetected (b) undetected (c) undetected (d) undetected

(e) undetected (f) undetected (g) detected as traffic light (h) detected as clock

Figure 5. Some examples of adversarial camouflages in the coco dataset generated in the digital
domain. Figures with red outlines are examples of successful attacks (i.e., (a–f) are undetected by
object detector), figures with black outlines are examples of unsuccessful attacks but misclassification
(i.e., (g) is misclassified as a traffic light and (h) is detected as clock).

Figure 6. Some adversarial perturbation examples of remote sensing images.The first column in
the figure represents the detection results of the clean examples, the second column represents the
saliency map used to generate the mask, and the third column represents the detection results of the
adversarial examples after the attack.
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Table 2. The performance of our method in the physical domain and comparison with other methods.

Method
ASR (%)

Patch Size Ratio (%) SSIM Score
Indoor Outdoor

our 70.6 65.3 13.5 0.861 25.0
[47] 72.7 56.7 24.0 0.558 8.7

NaturalAE 62.0 72.0 100.0 0.642 2.5
Clean image 0.0 0.0 0.0 1.000 -

(a) 0◦ (b) −10◦ (c) −15◦ (d)

(e) 0◦ (f) −10◦ (g) 0◦ (h) 20◦

Figure 7. Some examples of successful adversarial attacks in the physical domain. The contents in
parentheses indicate the shooting angle. (a–d) are adversarial examples under indoor physical scenes,
(e–h) are adversarial examples under outdoor physical scenes.

We also compare our method with those proposed in NaturalAE [38,47]. It can be
seen in Table 2 that the NaturalAE method adds perturbation to the entire traffic sign
object, and the final patch needs to cover the entire target, so its patch size ratio is 100%
(as shown in Figure 8c), while the patch area in the method proposed in [47] is not so
large, but its patch style is a messy and brightly colored pattern, so it has a low SSIM (as
shown in Figure 8d). Compared with the two methods, the real naturalness metric SSIM of
the patch we generated is much higher than the other two methods, and the attack area
is also smaller (as shown in Figure 8b). From the perspective of attack success rate, our
attack performance can effectively improve its naturalness while maintaining a success
rate similar to the previous method, and in some cases even slightly higher than these two
methods. Above all, our method obtains the highest score combining the three indicators
and experiments can prove that our method is effective and can be balanced in naturalness
and attack performance.

4.4. Ablation Experimental
4.4.1. The Balance between Attack Performance and Naturalness

It can be seen from Table 3 that there is a contradiction between the naturalness and
the success rate of attack. When the proportion of our patch size is reduced (the attack area
becomes smaller), the generated adversarial camouflage has higher naturalness, but it will
definitely reduce the attack success rate, which means that the attack effect will become
worse. So naturalness is an incidental goal, but it should not be the only goal. We keep the
balance between naturalness and attack effect by controlling the patch to the right size in
the actual application.
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(a) (b) (c) (d)

Figure 8. (a) is the figure of a clean image without attacked, (b) is the figure of our method, (c) is the
figure of NaturalAE and (d) is the figure of [47].

Table 3. The values of corresponding SSIM and attack success rate with the change of patch size ratio.

Patch Size Ratio (%) 6.0 10.2 13.5 20.4 33.6 40.0
SSIM 0.985 0.917 0.913 0.897 0.854 0.812
ASR (%) 7.7 61.5 95.7 96.2 96.6 97.1

4.4.2. The Influence of the Location of Patch and the Threshold η

To prove that the area obtained by using the interpretability vision technique can
get the highest success rate and to get the attack size that can balance the attack effect
and naturalness, we select different thresholds η to obtain the different sizes of the attack
area (the larger η will get the smaller the size) and choose different attack positions for
different attack sizes in the experiment. We use score to compare their combined attack
capabilities here.

As shown in Figure 9, we take the value of η from 190 to 250, then choose eight
directions (up, down, left, right, upper left, lower left, upper right, and lower right) relative
to the position of the patch in our method for comparison. It can be seen that the score
obtained by our method is much higher than that of several other positions, which means
that we can guarantee a high attack success rate while obtaining small-sized and natural
adversarial patches, meanwhile, it is proved in DAS [43] that the generation of attention
maps is similar between different models, which shows that adopting this method as an
attack area is general and transferable. From the results of the experiment, we also found
that when the η is 220, relatively high scores can be obtained in all positions, but when the
η is 240, the attack cannot be realized because the generated patch area is too small, so that
the final score is low.

4.4.3. The Performance of Camouflage Losses

Figure 10 illustrates the effectiveness of camouflage losses (including content loss
Lcontent and style loss Lstyle) in this method under disappearance attack. We generate the
final adversarial example with the detection loss weight of 1 × 105 and a threshold of 220.
It can be found that when we generate without style loss, the color of the patch generated
in Figure 10b tends to be bright and bright, which is easily noticeable. When only style
loss is used without a content loss (Figure 10c), the patch will cover the original outline on
the stop sign. If the attack area is larger, it will affect the recognition of the sign by human
vision and affect realism.

4.4.4. The Effectiveness of Physical Adaption

We conduct experiments both in the digital domain attack and the physical domain
attack after adding the physical domain simulation to prove the effectiveness of the physical
adaptation. As shown in Figure 11 above, the left picture shows the adversarial patch
simulated in the digital domain, and the right one shows the adversarial example generated
after physical adaptation. We printed them out and carried out attack experiments in the
real world. The results are shown in Table 4. We found that the adversarial examples
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generated directly in the digital domain are not effective in the real world, the attack
success rate is only 22.0%. After physical adaptation, the success rate has increased by
48.6%, while maintaining its naturalness without being greatly affected, and the SSIM value
has only decreased by 0.031.

Figure 9. The scores of different locations with different thresholds η. where the y-axis represents
the score and the x-axis indicate different thresholds η, which can control the size of the patch. The
broken lines of different colors represent the scores when the patch is placed in different positions
of the target, and the blue one is the score broken lines obtained by our proposed method under
different thresholds.

(a) Original (b) Lcontent (c) Lstyle (d) Lcontent+Lstyle

Figure 10. Results of the different camouflage losses: (a) is the original image, (b) is the example
generated only with Lcontent, (c) is the example generated only with Lstyle and (d) is camouflaged
adversarial examples with both two kinds of loss functions.

(a) (b)

Figure 11. (a) is the adversarial example generated without physical adaption and (b) is the one with
physical adaption.
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Table 4. Performance with and without patches for physical adaption.

Physiccal Adaption Success Rate (%) SSIM

No 22.0 0.889
Yes 70.6 0.858

5. Conclusions

Deep neural networks are vulnerable and easily attacked by adversarial perturbations.
We need to find effective adversarial examples to improve the robustness and accuracy of
the remote sensing detection system. In this paper, we use visual attention techniques to
effectively reduce the attack area, and generate a rust-like adversarial patch through style
transfer, which can make the object detector unable to detect the target, compared with
the previous methods that directly iterate the entire target for adversarial attacks, we solve
the problems that most of the adversarial patches are unnatural, and the patch occupies a
large position on the target. We use different metrics to evaluate the attack performance
and naturalness of our method, and we demonstrate the effectiveness of each function in
the attack process through ablation experiments.

In future work, we hope to improve the accuracy of small target detection, thereby
improving the detection ability of remote sensing images and the success rate of adversarial
attacks. Then we plan to introduce a method for attacking three-dimensional objects on
this basis so that the attack could be more general. On the other hand, although attacks in
the physical domain have been achieved in our work, it is still difficult for us to obtain a
high attack success rate due to the diversity of external environment changes. Therefore,
how to generate the perturbation closer to the real world is still a key point in subsequent
research. At the same time, we found that the process is difficult to converge after a certain
number of iterations if we use style transfer to generate a natural patch in the experiment,
so we will find a more suitable and short-term method to get natural adversarial patches.
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