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Abstract: Climate change may cause severe hydrological droughts, leading to water shortages which
will require to be assessed using high-resolution data. Gravity Recovery and Climate Experiment
(GRACE) satellite Terrestrial Water Storage (TWSA) estimates offer a promising solution to monitor
hydrological drought, but its coarse resolution (1◦) limits its applications to small regions of the
Indus Basin Irrigation System (IBIS). Here we employed machine learning models such as Extreme
Gradient Boosting (XGBoost) and Artificial Neural Network (ANN) to downscale GRACE TWSA
from 1◦ to 0.25◦. The findings revealed that the XGBoost model outperformed the ANN model with
Nash Sutcliff Efficiency (NSE) (0.99), Pearson correlation (R) (0.99), Root Mean Square Error (RMSE)
(5.22 mm), and Mean Absolute Error (MAE) (2.75 mm) between the predicted and GRACE-derived
TWSA. Further, Water Storage Deficit Index (WSDI) and WSD (Water Storage Deficit) were used
to determine the severity and episodes of droughts, respectively. The results of WSDI exhibited a
strong agreement when compared with the Standardized Precipitation Evapotranspiration Index
(SPEI) at different time scales (1-, 3-, and 6-months) and self-calibrated Palmer Drought Severity
Index (sc-PDSI). Moreover, the IBIS had experienced increasing drought episodes, e.g., eight drought
episodes were detected within the years 2010 and 2016 with WSDI of −1.20 and −1.28 and total
WSD of −496.99 mm and −734.01 mm, respectively. The Partial Least Square Regression (PLSR)
model between WSDI and climatic variables indicated that potential evaporation had the largest
influence on drought after precipitation. The findings of this study will be helpful for drought-related
decision-making in IBIS.

Remote Sens. 2023, 15, 873. https://doi.org/10.3390/rs15040873 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15040873
https://doi.org/10.3390/rs15040873
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6377-6610
https://orcid.org/0000-0003-3265-372X
https://orcid.org/0000-0002-5556-3738
https://orcid.org/0000-0003-1196-1248
https://orcid.org/0000-0002-5772-7345
https://orcid.org/0000-0002-0726-1807
https://orcid.org/0000-0002-2152-6672
https://orcid.org/0000-0001-7295-0361
https://orcid.org/0000-0001-5974-0909
https://orcid.org/0000-0003-2185-7276
https://doi.org/10.3390/rs15040873
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15040873?type=check_update&version=2


Remote Sens. 2023, 15, 873 2 of 28

Keywords: Indus Basin Irrigation System; GRACE; TWS; machine learning models; downscaling;
drought monitoring

1. Introduction

Being recognized as a highly destructive natural disaster, drought has significantly
impacted society, the economy [1–4], and the agricultural sector [5]. The terrestrial water
balance is being constantly disrupted as a direct and indirect result of the increasing human
activities (e.g., water withdrawal, infrastructure development, deforestation, etc.) at global
to regional scales [6,7]. The historical measurements and simulations of different hydrolog-
ical fluxes, including soil moisture, precipitation, and discharge, demonstrate decreasing
trends in many regions of the globe during the last several years [8–13]. Numerous regions
of the globe are experiencing a rise in the frequency and severity of droughts [14,15] as a
result of global warming [16,17] and pacific variability [18]. Due to changes in precipitation
and increased evaporation, it is anticipated that the drying trends will persist and intensify
in the future climate [19]. Considering the wide-ranging impacts and complicated nature
of drought, several worldwide studies and rising efforts have so far been directed toward
drought detection, monitoring, planning, and mitigation [20].

Similar to other regions, most Pakistani regions are challenged with hydrometeoro-
logical extremes. Prolonged dry situations could be catastrophic and are unfavorable for
cultivation, water and forest management, livestock, human safety, and food security [21].
Pakistan is one of the arid climate regions with limited precipitation and high temper-
atures [22,23]. Drought mainly occurs in the country due to rain shortages during the
monsoon season [24]. The side effects of droughts are deeply sensed in Pakistan because
its economy highly depends on agriculture [24,25]. Climate change has had serious ram-
ifications for the socioeconomic and environmental conditions in Pakistan as well as its
surrounding countries in Southwest Asia [26]. The Pacific Economic Survey report [27]
expresses that drought incidents afflict the country’s economy harshly, necessitating the
careful and regular monitoring of drought in Pakistan.

Generally, drought is categorized into several classes, such as meteorological, agricul-
tural, hydrological, groundwater, and socioeconomic drought [5,28–30]. Meteorological
drought begins when there is a deficiency in precipitation across a region. Agricultural
drought occurs due to a lack of soil moisture at a crucial moment during the growing sea-
son, while hydrological drought arises due to a decrease in streamflow and groundwater.
During a groundwater drought incident, the groundwater level and discharge rates start to
diminish due to decreased groundwater recharge rates in a drought-beaten aquifer [31].
Socioeconomic drought is the adverse impact of the aforementioned drought categories
on different aspects of human life, such as increasing goods prices and population disloca-
tion [32,33]. The point-wise data of hydrological variables such as soil moisture, streamflow,
groundwater levels, and surface water are needed to compute water deficits to measure hy-
drological droughts. Still, these observations are typically much more restricted in time and
space than meteorological variables. Additionally, it is difficult to assess global variations of
hydrological droughts since direct observations of surface hydrological indicators are often
inconsistent and inconsecutive [34–36]. Evaluation of hydrological droughts is laborious
because of the lack of high-quality hydrological records with appropriate temporal and
geographic coverage [37].

Drought damages are significantly larger compared to other natural catastrophes,
such as the 2012 drought in the United States, which caused $12 billion in damage, most
of which came from agricultural losses [38]. Droughts are expected to become more
common in the coming decades, and human exposure to water scarcity is predicted to rise
because of population growth and the climate crisis [39]. Identifying the spatio-temporal
characteristics of droughts is essential for reducing the negative consequences of drought
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risks, particularly in vulnerable areas [40]. Therefore, monitoring and characterizing
drought events at the spatio-temporal scale of drought conditions is significant.

The Indus River is the primary water source for Pakistan. Pakistan has seen a rise
in severe weather extremes and is highly vulnerable to climate change, such as droughts
that afflicted 3.3 million people and resulted in a 2.6 percent decline in the Pakistani
agriculture industry in 2002 [41]. A severe drought in India between 2002 and 2014
affected more than 300 million people, and in 2017 severe drought in Southern India
affected more than 0.3 million people [42]. Zhou et al. [43] observed the response of
vegetation to rainfall anomalies for drought evaluation over the Indus Basin from 2001
to 2018. Elbeltagi et al. [44] used hydrometeorological factors, GRACE satellite data, an
improved Support Vector Machine (SVM), and a greedy regression technique to forecast the
Combined Terrestrial Evapotranspiration Index (CTEI) in the Ganga River Basin. Drought
occurrence and water deficit are related, especially in dry regions, such that a greater
water deficit might increase the intensity of a drought and the other way around [43,45].
Exploring the prevalent characteristics of drought for distinct climatic regimes and impact
domains aids in developing more precise identification systems capable of describing the
progression of drought conditions in space and time [46].

Drought is a complex phenomenon trickling down to multiple sectors globally. It
cannot be characterized easily due to the lack of a universally accepted definition and
variability across the sectors [47]. However, drought indicators that include drought-related
environmental factors can be used to characterize drought duration and severity [28].
The drought in Senegal was characterized using the GRACE-derived Terrestrial Water
Storage Deficit Index (TWSI) during the studied period (April 2002–December 2021). The
findings demonstrated good associations among the GRACE estimates, Standardized
Temperature Index (STI), and Standardized Precipitation Index (SPI) in some years and
seasons [48]. Alshehri et al. [49] observed the rising anthropogenic impact on GRACE-
derived terrestrial water storage and groundwater storage variations in Wadi As-Sirhan,
Northern Saudi Arabia, from 2002 to 2021. The groundwater was overexploited due to
agricultural expansion over recent decades in Wadi As-Sirhan. Thailand’s Chao Phraya
River Basin (CPRB) is very susceptible to extreme events. The past droughts and floodings
(e.g., 2004, 2007, 2011, 2015) in this basin have engendered tremendous costs for Thailand
as well as the global economy by disrupting the industrial production of global supply
chains of the neighboring countries [50]. Moreover, the basin was revealed to have a great
potential for severe droughts, based on the recently developed Drought Potential Index
(DPI) [50]. For the calculation of drought indicators, such as the SPI, Palmer Drought
Severity Index (PDSI), and Standardized Runoff Index, ground-based point measurements
are required (SRI) [47]. Traditional methods are not sufficient to detect the sophisticated
spatial pattern of drought conditions at a regional scale in locations with few observations
(e.g., Northeast China, Indus River Basin, and hilly regions) [51].

The general approach to investigating and categorizing droughts relies on the field-
based observations of hydrometeorological variables received from stations and spatially
mapped through interpolation techniques. However, the applicability of these traditional
techniques is shackled by some challenges. Since the processed data are point-wise and
sparsely distributed throughout the region, the spatial portrayal of the drought charac-
teristics through interpolation techniques is challenging [52]. Furthermore, the single-
variable-based construction of drought indices may not reflect the actual drought situation
properly [46]. The Standardized Precipitation Evapotranspiration Index (SPEI) is an ex-
tended version of SPI generated by incorporating Potential Evapotranspiration (PET) in
determining drought [53]. In addition, the Palmer Drought Severity Index (PDSI) [54], the
self-calibrated Palmer Drought Severity Index (sc-PDSI) [55], and Multivariate Standard-
ized Drought Index (MSDI) [56] are widely used drought indices. According to previous
studies, climate change triggers more frequent and severe natural disasters [57,58]. It is
projected that the severity, frequency, and length of several climate-induced events will rise
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by the end of the century [59]. Therefore, drought assessment and prediction studies are of
predominant importance.

Currently, remote sensing offers continuous and reliable measurements of surface
moisture status, and these satellite-derived data have resulted in significant advancements
in drought monitoring [5,60]. Previous works such as Qi et al. [61], Gu et al. [62], Long
et al. [63], and Yi and Wen [64] utilized remote sensing-based products, including Moderate
Resolution Imaging Spectroradiometer (MODIS) and GRACE for drought analysis. The
multidecadal characteristics of droughts in Peninsular India were evaluated based on the
surface water and groundwater water storage deficits [65]. According to Niemeyer [66],
remote sensing-based drought metrics have created a new pathway for detecting and
monitoring droughts by making it possible to gather precise spatial data on a regional to
global domain, with high dependability and a high repetition rate.

The spatial resolution of the GRACE level 2 datasets is ~3 × 3◦ which are processed by
three data processing centers, including the Center for Space Research (CSR), Jet Propulsion
Laboratory (JPL), and GeoForschungsZentrum Potsdam (GFZ), to generate the level 3
gridded data. The level 3 data are in the forms of spherical harmonic solutions (SH) and
mascon solutions (Mascons) with a spatial resolution of 1◦ for the SH and 0.5–0.25◦ for the
Mascons [67,68]. We applied the SH gridded data from the three data processors [69,70].
The SH datasets have less uncertainty than Mascon products when estimating water
storage [71], justifying their widespread applications in the Indus Basin [71–76]. Besides,
the spatially improved Level 3 products (with a resolution of 0.25◦ to 0.5◦) contain less
physical information than the original GRACE datasets [67,77]. The GRACE-SH data can
be more suitable for the local-scale assessment and analysis through downscaling processes
to create a higher spatial resolution (0.25◦) [78,79].

Although the current resolution (~100 km) of the GRACE estimates paved the way
for deriving helpful information regarding hydrological droughts, its coarse resolution
impedes its feasibility for local/regional scale monitoring [52]. Therefore, hydrological
measurements are necessary at a higher resolution to have a better and more precise
estimation of droughts. To this end, machine learning algorithms were developed to solve
this problem [80,81]. For instance, Chen et al. [82] used the Random Forest (RF) algorithm
to downscale TWS and GWS parameters by integrating six hydrological variables. They
achieved the highest NSE and R of 0.68 and 0.83, respectively. Yin et al. [83] suggested
that the evapotranspiration (ET) data can be applied to downscale GWS in areas, such as
the North China Plain, where a robust connection exists between GRACE-derived GWS
and ET data. Rahaman et al. [84] reported an enhanced NSE (from 0.58 to 0.84) for the
RF-based downscaled GWS in the Northern High Plains aquifer. Ali et al. [76] downscaled
the GRACE data in the Irrigated Indus Basin Irrigation System, and R reached 0.67~0.97.
However, the IBIS has not been used to investigate the characteristics of hydrological
drought based on downscaled GRACE data. To investigate the drought conditions in the
IBIS from 2003 to 2016, we employed the Water Storage Deficit Index (WSDI), primarily
focusing on using the downscaled products.

Previous work from Ning et al. [85] to downscale the TWS and GWS, Rahaman
et al. [84], Chen et al. [82], and Ali et al. [78] examined the downscaling of GRACE data
in different regions around the world to study variations in water storage for small-scale
regions. However, these studies do not consider the high-resolution data in a drought
characterization framework for quantifying drought severity. Despite the widespread
use of remote sensing-based products, various limitations, such as missing data owing to
clouds, vegetation reactions, and coarse resolution, have limited their practical applicability.
Improving the spatial resolution of remotely sensed products is of utmost importance for
reliable and detailed drought analysis. Therefore, this study presents a novel approach to
drought severity assessment which was lacking in previous studies. The main objective
of this research includes (1) the development of a machine learning-based approach to
enhance the coarse resolution of GRACE TWSA data from the current 1◦ to 0.25◦, (2) the
application of the downscaled TWSA database to estimate drought events and severity
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using Water Storage Deficit (WSD) and Water Storage Deficit Index (WSDI) in the Indus
Basin Irrigation System (IBIS), (3) spatio-temporal analysis of WSDI based on downscaled
TWSA, and (4) analysis of the contribution of climatic indicators to WSDI based on Partial
Least Square Regression (PLSR) model.

2. Materials and Methods
2.1. Study Area

The Indus Basin Irrigation System (IBIS) (Figure 1) stretches from the Northside of
the Himalayas to the dry alluvial Plains in the south of Pakistan and covers approximately
201,072 km2 of Pakistan territory. It was selected as a study area owing to harsh drought
events that have transpired in the basin over the past years [5,11]. This region is vul-
nerable to more frequent and intense drought events due to climate change impacts, a
phenomenon that significantly influences Pakistan’s food, water security, and economic
conditions [71,86,87]. Approximately 61% of the Indus Basin area exists in Pakistan and is
a predominant source of irrigation, water supply, and hydropower [88].
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Furthermore, the Indus Basin is one of the basins drastically affected by the water
sectors due to the progressive increase in population growth, industry, and agricultural
development, leading to the over-abstraction of groundwater [71,76]. The IBIS observed
semi-arid to arid climatic conditions along with increment in crop water requirements in
past years [13,78]. Unfortunately, rainfall and surface water withdrawals have not met the
requirement of water demand [90]. Only 30% of the water availability has been observed
during the Rabi season varies from November to April, while the rainy Kharif season
gives 70% of the available water from May to October [78]. Consequently, a lack of water
availability will drastically affect the irrigated agriculture system as agricultural land of
approximately 16 million hectares is irrigated through the basin. Therefore, to cope with
water scarcity, insight analysis and monitoring of drought are significant. It may assist
the water managers in properly managing and planning the water resources and early
mitigation system to minimize the intensity and frequency of future droughts.

2.2. GRACE TWSA

The GRACE satellite mission, a collaborated mission between NASA and DLR, mea-
sures the Earth’s gravitational field to track the variations of total water storage with global
coverage. Presently, the GRACE-based gravity records are mainly released from different
processing centers, including the German Research Center for Geosciences (GFZ), the Jet
Propulsion Laboratory (JPL), and the Center for Space Research at the University of Texas
(CSR) with a resolution of 1 × 1◦ [69,70,78,91]. The GRACE data (RL06, level-3) can be
downloaded from (https://grace.jpl.nasa.gov/data/get-data/, accessed on 21 June 2020)
in units of the equivalent water height, the monthly total water storage data [70,91]. We
averaged these three products to have more accurate estimates of TWSA [64,78,87]. Some
pre-processing tasks were applied to these data products, including a de-striping filter,
Gaussian smoothing, and glacier isostatic adjustment (GIA) [82]. A GRACE-provided
multiplicative scaling factor was applied to restore the original signal lost through data
processing [78,87]. For more details on scaling factors, refer to Launderer and Swenson [69].
The data were collected from January 2003 to December 2016, including 20 months of
missing data, and all the missing data were filled using linear interpolation [52,71,78,87]. If
the data gap occurs during the peak of the wet or dry season, this linear interpolation may
(a) underestimate the actual (positive or negative peak) TWSA or (b) it may overestimate or
underestimate it if the TWSA experiences significant short-term fluctuations. Furthermore,
in areas such as IBIS, which is extremely prone to floods and droughts, these occurrences
of overestimation or underestimate could result in inappropriate inferences.

2.3. Precipitation Data

The Tropical Rainfall Measuring Mission (TRMM), a major source of grid precipitation
data used in hydrological, ecological, meteorological, and other fields of research [92,93],
provides the most commonly used precipitation data at a geographic resolution of 0.25 × 0.25◦.
To match GRACE data resolution, the TRMM data were upscaled to 1× 1◦. The TRMM data
(Version 7, 3B43) is available from http://disc.sci.gsfc.nasa.gov/precipitation/, accessed
on 15 May 2020.

2.4. Auxiliary Variables

The Global Land Data Assimilation System (GLDAS) simulates different variables
through sophisticated data assimilation models by integrating in-situ observations and
satellite data. It makes use of different models such as Noah, Mosaic, Community Land
Model (CLM), and Variable Infiltration Capacity (VIC) [94] to simulate a myriad of land
surface fluxes, including temperature, precipitation, runoff, soil moisture, evapotranspi-
ration, etc. The Noah model, which has a resolution of 0.25◦, was used to derive climatic
data, including Potential Evaporation (PEVP), Precipitation (P), Air Temperature (AT),
and Specific Humidity (SH) extracted from the Noah model. The Noah model monthly
Version 2.1 products exhibited better goodness of fit to GRACE TWS than the other three

https://grace.jpl.nasa.gov/data/get-data/
http://disc.sci.gsfc.nasa.gov/precipitation/
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models (i.e., CLM, Mosaic, and VIC) [95–97]. Thus, in this study, the GLDAS-2.1 Noah
model outputs were applied from 2003 to 2016. GLDAS-2.1 data can be downloaded from
http://disc.sci.gsfc.nasa.gov/hydrology/dataholdings, accessed on 25 May 2020. Some
basic information about the datasets is summarized in Table 1.

Table 1. Concise information on the characteristics of the used data.

Data Type Variables Resolution Units

GRACE (CSR, JPL, GFZ) TWSA 1 × 1◦ mm/month

TRMM Precipitation (P) 0.25 × 0.25◦ mm/month

GLDAS

Soil Moisture Storage (SMS),

0.25 × 0.25◦

mm/month
Canopy Water Storage (CWS), mm/month

Surface Runoff (Qs), mm/month
Temperature (T), ◦C/month

Evapotranspiration (ET) mm/month

Digital Elevation Model (DEM) Slope, Aspect, and Elevation 90 m

SPEI Drought indicator 0.25 × 0.25◦ -

Sc-PDSI Drought indicator 0.5 × 0.5◦ -

2.5. Drought Indices

Sc-PDSI is computed using a two-layer soil water balance model driven by different
variables such as precipitation, surface runoff, moisture demand/supply, and evapotranspi-
ration [55]. The negative and positive values of the sc-PDSI can determine the wet and dry
conditions (http://www.cru.uea.ac.uk/data, accessed on 5 June 2020). This index uses the
climate-dependent variable input, which makes it able to evaluate the impacts of climate
change on drought and climate variations. To validate the WSDI, drought indicators of
sc-PDSI and SPEI (https://spei.csic.es/database.html, accessed on 10 June 2020) were used.
SPEI was chosen for this research based on Penman-Monteith FAO-56, which has potential
evapotranspiration data ta 0.5 × 0.5◦ for global regions [53].

3. Methodology

Figure 2 shows this investigation’s methodological flow and analytical data struc-
ture. Events of drought are identified using the WSD computed from downscaled TWSA.
Drought evaluation in the IBIS is attained using the WSDI, developed by standardizing
the WSD and then compared with standardized drought indices such as sc-PDSI and SPEI.
Additionally, we evaluated inter-annual patterns obtained using the Seasonal and Trend de-
composition Loess (STL) method. Total WSD and different levels of drought severity were
also examined. Finally, the impact of climate factors was examined using the PLSR model.

3.1. Water Storage Deficit Index Based on Downscaled Data

To detect and describe droughts, the WSDI, which is calculated based on the monthly
deviation of downscaled TWSA [46], is calculated as follows (Equations (1) and (2)):

WSDi,j = TWSAi,j − TWSAj (1)

WSDI =
WSDi,j − xWSD

sWSD
(2)

where TWSAi,j and WSDi, are the total WSD and downscaled TWSA time series for the jth
month in year i, respectively; TWSAj is the long-term mean of TWSA for the equal month
(the jth month in a year i), sWSD and xWSD are the standard deviation and mean of the WSD
time series, respectively.

A negative WSD indicates a shortage in total water storage, while a positive WSD
indicates a surplus. When a negative WSD persists for three or more consecutive months, a

http://disc.sci.gsfc.nasa.gov/hydrology/dataholdings
http://www.cru.uea.ac.uk/data
https://spei.csic.es/database.html
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drought event takes place [46]. Once WSD has been standardized, WSDI may be computed.
The WSDI time series represents the monthly departure from the average situation for each
month, and its value may be used as a proxy for the severity of the drought.
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The severity of the drought was assessed using a technique that can account for the
combined effects of the deficit in water storage and duration. The following Equation (3)
may be used to describe drought events [46]:

Se(t) = M(t) × D(t) (3)

where Se stands for “event severity”, “t” for “the number of drought events”, which may
range from one to many in a particular region, “M” for “average deficit since the start of
the deficit period”, and “D” for “drought event duration”. While the WSDI exposes the
relative monthly deficits of water storage over the research period, Se combines WSD with
event duration and therefore reflects the total WSD of a certain drought. Total WSD is only
a useful signal when a specific drought event has been determined by the WSDI, and the
result from the prior month indicates how severe the event was.

Negative values of the WSDI, SPEI, and sc-PDSI indices indicate drought conditions,
while the positive values indicate wet periods. The three drought indicators’ magnitudes
were used to evaluate the severity of droughts. Table 2 displays the drought severity levels
of sc-PDSI [55], SPEI [53], and WSDI [46]. The WSDI data were compared and evaluated
using the SPEI and sc-PDSI.

Table 2. The WSDI, SPEI, and sc-PDSI drought categorization.

Grade Drought Conditions WSDI SPEI Sc-PDSI

D0 No drought 0 < WSDI −0.5 < SPEI −1.0 < Sc-PDSI
D1 Mild drought −1.0 < WSDI ≤ 0 −1.0 < SPEI ≤ −0.5 −2.0 < Sc-PDSI ≤ −1.0
D2 Moderate drought −2.0 < WSDI ≤ −1.0 −1.5 < SPEI ≤ −1.0 −3.0 < Sc-PDSI ≤ −2.0
D3 Severe drought −3.0 < WSDI ≤ −2.0 −2.0 < SPEI ≤ −1.5 −4.0 < Sc-PDSI ≤ −3.0
D4 Extreme drought WSDI ≤ −3.0 −SPEI ≤−2.0 −Sc-PDSI ≤ −4.0
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3.2. Mann–Kendall Test

A nonparametric approach to determining the variation in trend within variables
is the Mann–Kendall (MK) test [71,78]. Provided that the values in the time series are
independent of one another, the approach has been utilized in research to analyze time
series patterns of climatic variables, such as long-term evapotranspiration, precipitation,
and runoff. The trend’s magnitude may be assessed using Thiel Sen’s slope. Positive values
indicate an upward trend, whereas negative values indicate a downward trend in this
method. Using this approach, it is possible to assess the changes in water storage and the
severity of droughts by examining TWSA and drought indices patterns.

3.3. Partial Least Square Regression Model

The Partial Least Squares Regression (PLSR) is a linear regression model to forecast
a set of variables from a set of predictors. The PLSR makes predictions by a reduced
set of predictor variables, a characteristic that makes it a more efficient tool compared
to the standard regression models because the latter fails to work with a large set of
variables [98]. The contribution of each hydrometeorological parameter over the IBIS was
investigated based on the PLSR model. A dependent variable (Y) can be predicted based on
its relationship with a set of independent variables (predictors) (X) through Equation (4):

Y = a0 + a1X1 + a2X2 + . . . + anXn, n = 1, 2, 3 . . . (4)

where a0, and an denote the intercept and regression coefficient values [99]. The PLSR
decides the importance of each predictor on the dependent variable by extracting the data
and screening the components [100]. The contribution of each predictor to the predicant
variable is quantitatively reported by the variable importance of the projection (VIP) [101]. A
VIP of more than 0.8 means that the corresponding predictor can explain the predictand [99].
This study used precipitation, soil moisture, air temperature, potential evaporation, and
specific humidity as predictor variables.

3.4. Decomposition of Time Series

The following components of the time series were determined using the nonparametric
STL technique through Equation (5) [86,102]:

Stotal = Strend + Sseasonal + Sresiduals (5)

where seasonal (Sseasonal), trend (Strend), and residual components (Sresiduals) are separated
from the original signal (Stotal). For identifying non-linear patterns in trend estimations,
the STL technique is based on a locally weighted regression, which is a reliable and
computationally effective method. The TWSA time series example is shown in Figure S1.
Preliminary studies have used the STL approach to decompose GRACE data and assess
inter-annual variability [102–105]. In this study, the inter-annual trends are retrieved from
the time series of three drought indicators.

3.5. Machine Learning Models
3.5.1. Extreme Gradient Boosting

As an ensemble learning approach, Extreme Gradient Boosting (XGBoost) is based
on the gradient boost tree algorithm. Through the gradient increase technique, residues or
mistakes of previous models are anticipated and are added to form the final forecast [106].
The XGBoost must likewise build several decision trees, but each tree must be dependent
upon the others, and each new tree must be built on the most recent residuals or errors
of the preceding tree. The sum of the values of the leaves in each tree represents the
expected value for each sample. Similar to the random forest, XGBoost can accurately
manage the multi-collinearity impact and cope with complicated nonlinearity interactions.
Multi-collinearity is irrelevant in XGBoost [107,108]. An R package, “XGBoost”, was used
in R programming [109].
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3.5.2. Artificial Neural Network

The ANN generates empirical and non-linear relations between the inputs and the
target variable. It develops a network of empirical equations fitted throughout the network
learning process to represent these relations quantitatively. A neural network of two-layer
feed-forward was employed. The ANN model has three layers: one input layer, two hidden
layers, and one output layer. Neurons comprise each layer, which is generated using a
back-propagation technique. The propagation method [110,111] is among the widely used
methods for supervising the training of multilayer neural networks. The optimal number
of hyperparameters in this research was determined via a process of trial and error. The
model’s performance was assessed using the root mean square error, and the numbers were
progressively increased until the anticipated and observed values aligned using the Root
Mean Square Error (RMSE). The back-propagation technique iterates through the whole
training dataset a specified number of times, or “epochs”, in this case. The range of hidden
neurons from 100 to 150 and 100 epochs was used in this study to minimize the error value.
More details about the neural network and training algorithm are found [112,113]. The
precision of the developed models was quantified based on the evaluation metrics applied
for the predicted and observed values using the training data.

3.6. Model Design

At first, the XGBoost and ANN models were used to predict the GRACE-derived
TWSA at coarse resolution (1◦). To create a statistical association between the dependent
variable and independent variables at coarse resolution (1◦), the XGBoost and ANN models
were developed. Resampled to 1◦ of the independent variables from 0.25◦ were generated
through pixel averaging from 2003 to 2016. Then, these coarse-resolution independent and
dependent variables were used to predict TWSA based on the XGBoost, and ANN models.
After that, the model with a higher accuracy was selected (XGBoost) and applied to the
independent variables at a resolution of 0.25◦ to attain the predicted TWSA. Subtracting
the anticipated TWSA of the XGBoost model from the GRACE-derived TWSA resulted
in the computation of the residuals at a resolution of 1◦. To obtain the estimated TWSA,
the developed XGBoost model was applied to the independent variables at a resolution of
0.25◦. The residual correction procedure ultimately resulted in the generation of the final
downscaled TWSA values by re-adding interpolated (cubic convolution) residuals (0.25◦)
to the XGBoost estimated TWSA (0.25◦). Figure 2 depicts the downscaling procedure.

3.7. Evaluation Metrics

Model performance was investigated based on four evaluation metrics, including the
Pearson correlation coefficient (R), Root Mean Square Error (RMSE), Absolute Error, and
Nash–Sutcliffe Efficiency (NSE) through Equations (6)–(9):

R =
∑n

i=1(yi − y)(oi − o )√
∑n

i=1 (yi − y)2
√

∑n
i=1 (oi − o)2

(6)

RMSE =

√
∑n

i=1 (oi − yi)
2

n
(7)

MAE =
1
n

(
n

∑
i=1
|yi − oi|

)
(8)

NSE = 1− ∑n
i=1 (yi − y)2

∑n
i=1 (oi − o)2 (9)

where y and o show predicted and GRACE-derived TWSA values, respectively, n is the
length of the time series, o and y are the mean values of o and y, respectively.
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4. Results
4.1. Accuracy Analysis of Machine Learning Models

The input variables were used for training and testing the two machine learning
models, and then the TWSA values were simulated. The predicted TWSA was compared
to the GRACE-derived TWSA (Figure 3). The results suggest that the XGBoost model
outperforms the ANN model with the highest NSE (0.99), R (0.99), RMSE (5.22 mm), and
lowest MAE (2.75 mm). Therefore, the XGBoost, satisfying the prediction criteria, can be
used as the best model.
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4.2. Sensitivity Analysis of the XGBoost Model

The significance of the independent variables was further examined in light of the
regression model, which evaluated the independent variables’ capacity for prediction.
The XGBoost-based model’s ranking of the relevance of independent variables is shown
in Figure 4. Three factors can be identified that significantly affect the fluctuations of
TWSA, given the significance of independent variables provided by the XGBoost-based
model: DEM, SMS, and precipitation. Precipitation has the greatest impact on changes
in TWS [114]. The DEM defines the recharge areas of TWSA as one of the significant
influencing elements [115–117]. Another element that affects the TWSA is SMS, which is
often used to simulate TWSA [76,78,118–120].

4.3. Analysis of XGBoost Model Performance
4.3.1. Characteristics Analysis of Downscaled TWSA Variation at Spatio-Temporal Scale

The temporal variations of the GRACE-derived and downscaled TWSA (Figure 5)
demonstrate a sharp descending trend in the IBIS. Both the downscaled and GRACE TWSA
values manifest the same decreasing rate of −3.25 ± 0.45 mm/year at a regional scale.
The high association (R = 0.99) between the variations of the TWSA trend before and
after downscaling indicates that the higher resolution of TWSA can be achieved by the
XGBoost model with the highest accuracy. The time series variations of the downscaled
and GRACE-derived TWSA verified that the accuracy of the original observations was
maintained by downscaling the TWSA.
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The climatology for 168 months was calculated using the downscaled TWSA time
series from January 2003 to December 2016 by averaging the data of each month (from
January to December) (Figure 5). The climatology serves as a basis for determining the
severity of water storage deficits and frequency and illustrates the typical fluctuation of
water storage. By doing so, we may describe unique events that diverge from the regular
annual cycle and take into consideration geographical areas with weak or high seasonality.
We understand that a climatology of at least 30 years is ideal [46], but for the time being,
the GRACE mission’s consistent water storage with worldwide coverage is the best option.

It can be observed from Figure 5 that the maximum TWSA depletion happened in
June 2010 (−107.22 mm/month) and December 2016 (−106.98 mm/month). Therefore,
for instance, downscaled TWS variations were analyzed at the spatial scale for June 2010
(Figure 6). More details of the TWSA variations on the spatial domain were observed
for the downscaled TWSA than for the GRACE-derived TWSA. Spatially, the overall
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trends of the original and downscaled TWSA are similar. The TWSA declined over the
region of the study area (IBIS) but decreased more in the middle of the IBIS. The TWSA
manifests more effective spatial variability after downscaling. The spatial variations of
the downscaled TWSA efficiently represent the sub-grid heterogeneity of the TWSA that
occurred mainly due to the impacts of hydroclimatic and geospatial variables at the local
scale. The downscaled TWSA’s geographical distribution maps throughout the research
region displayed the same trends as the GRACE-based TWSA.
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4.3.2. Estimation of Terrestrial Water Storage Deficits

The properties of TWSA are influenced by variations in precipitation. The monthly
precipitation anomaly (PA) was generated using the long-term mean (2004–2009) similar to
the GRACE TWSA data, and it is used to compare with downscaled TWSA as anomaly
values. Figure 7a displays the downscaled TWSA and PA time series. It was clear that
from 2003 to 2016, the monsoon season was when precipitation was at its highest. The data
showed that the most notable summer rainfall occurred in 2010 and 2011 and that these
times coincided with the maxima in downscaled TWSA time series. The rainfall increased
somewhat less dramatically, at a rate of 0.46 mm/year, compared to downscaled TWSA,
which declined at a rate of −3.25 mm/year between 2003 and 2016.

The deficit in TWSA is a significant indicator of drought manifestation. Figure 7b
displays the cumulative WSD and temporal variations in WSD from 2003 to 2016. In 2010
and 2016, there were significant water storage deficits (Figure 7b). More precisely, in June
2010 and September 2016, respectively, deficits of −61.97 mm and −92.06 mm were found.
The water storage was mostly in deficit in subsequent years, except in 2011 and 2015, clearly
showing a surplus, with peaks of 32.82 mm in November 2011 and 29.16 mm in July 2015.
Figure 7b clearly illustrates the transition from a WSD surplus to a deficit, which occurred
roughly in 2009/2010. In 2009, the WSD trend started to decline after a prolonged increase.
A consistent surplus in water storage was present from January 2003 to May 2009, while
a consistent deficit was observed from June 2009 to December 2016. A persistent water
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storage deficit is shown by a declining trend, while a persistent water storage surplus is
indicated by an increasing trend.
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Eight droughts were identified in the IBIS between 2003 and 2016 following the
criteria of a drought event [46] (Table 2). The two longest drought periods in the area
were from June 2009 to July 2010 and September 2015 to December 2016, lasting 14 and
16 months, respectively. Peak deficits were measured in June 2010 and September 2016 with
magnitudes of −61.97 mm and −92.06 mm, respectively. In addition, the high relative peak
deficit (−92.06 mm) recorded in September 2016 and the high total WSD (−734.01 mm)
made the drought event (September 2015 to December 2016) the most severe one.

Figure 8 shows the averaged monthly variations of GRACE and downscaled TWSA
and precipitation from 2003 to 2016. Generally, the TWSA follows the trend of increasing
and decreasing, similar to precipitation. The TWSA has an increasing and decreasing trend
from January to May, gradually increasing during the monsoon season (June–September),
and decreasing from October to December in IBIS (Figure 8a). The variations in precipitation
also show an almost similar increasing and decreasing pattern to TWSA (Figure 8b). It
indicates that precipitation is an important factor in impacting the variations of downscaled
TWSA. Precipitation is an essential source of water that influences the variation in water
storage. Accordingly, these findings suggest that climatic variability may impact the water
storage deficit [105].
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4.3.3. WSDI Comparison with Other Drought Indices

Generally, with identical peaks and troughs, the WSDI’s behavior and response to the
climatic irregularities were in good agreement with those of the other indices (Figure 9a).
Consistent features could also be seen in the corresponding inter-annual patterns revealed
using the STL decomposition (Figure 9b). However, given that these indices are devel-
oped using various factors and approaches, certain variations in their behavior were also
noted [30]. For instance, WSDI usually fluctuated between higher and lower levels than
the other indices, except for the years 2009 and 2010 (Figure 9b), supporting the findings in
Figure 7b that this time frame represents the turning point for WSD. When compared to
other drought indicators, the sc-PDSI had the biggest peaks and falls (Figure 9b). When the
overall WSD was second-most significant in 2009 and 2010, all drought indicators showed
the same largest declines. The drought indices are more consistent between 2009 and 2010.
Therefore, in the next section, we discussed the spatial distribution of drought based on
downscaled TWSA only during 2009–2010.

4.3.4. Distribution of Drought at the Spatial Scale

The initiation and termination of the drought episodes from June 2009 to August 2010
are also reflected in the geographical distribution of drought as determined by the WSDI
(Figure 10). The findings show that severe and extreme droughts completely cover the IBIS
during the drought episodes. The area-mean monthly values of the WSDI over the study
area from 2009.06 to 2010.08 were −0.23, −0.87, −0.89, −0.92, −0.95, −0.96, −0.78, −0.40,
−0.92, −1.34, −1.64, −1.29, −1.71, −0.95, and 0.17, respectively. The largest drought, with
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a WSDI value of −1.71, occurred in June 2010, affecting nearly entirely IBIS. In August
2010, the drought relief was significant, with a WSDI score maximum value of 0.07. Thus,
taking suitable drought-resilient measures over the IBIS is mandatory to alleviate the harsh
side effects of drought events and to boost the capacity for drought resistance. In addition,
spatial patterns of downscaled TWSA are given in Figure S2 from June 2009 to August 2010
for the IBIS.
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4.3.5. The Associations between Climate Factors and WSDI

To better understand the causes and formation of drought due to climate change, it is
vital to investigate the association between drought and climatic parameters. The PLSR
model was used in this work to mimic the relationships between climatic variables and
drought. Based on the VIP produced from the PLSR model, the influence of numerous cli-
matic variables on the emergence of the drought was assessed. The results of decomposing
both climatic components and WSDI using the STL to extract the inter-annual trend before
using the PLSR model are shown in (Figure S3).

With a determination coefficient (R2) of 0.80 and high goodness of fit, the PLSR model-
based simulation result shows that climatic conditions are the main cause of drought in the
IBIS. As shown in Figure 11, P (1.45), PEVP (1.42), and SMS (0.93) have VIP values larger
than 0.8, whereas AT and SH have lower VIPs with values of 0.11 and 0.03, respectively.
The PLSR model can successfully pinpoint the relationships between drought and climatic
conditions in conclusion. Inadequate precipitation is the primary cause of drought, followed
by significant potential evaporation in the IBIS from 2003 to 2016.
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4.3.6. Drought Events Detected by WSD

Figure 12 depicts the general severity of drought on a specific time scale throughout
the IBIS from 2003 to 2016. The severity values are represented along with each of the
drought events to more accurately examine and compute the drought intensity across the
study duration (Figure 12).
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Figure 12. Water storage deficit and instantaneous severity values for the downscaled TWSA data
and corresponding overall drought severity values.

In this graph, droughts of greater severity are represented by higher WSD and longer
durations. The drought events that occurred in 2010 and 2016 were the most prolonged
deficit periods, lasting 14 and 16 months, respectively, out of the eight drought events that
were detected throughout the IBIS during the research period. The overall hydrological
severity of these two droughts, −496.99 mm and −734.01 mm, respectively, was likewise
the greatest. The seventh drought episode, which had a severity of −324.69 mm and lasted
for 12 months, occurred between June 2014 and May 2015. This event was ranked third in
terms of its length and intensity. Several more minor droughts or temporary droughts also
occurred throughout the research period (Table 3).

Table 3. A summary of the detected drought events based on the downscaled TWSA.

Period Duration
(Month)

Total Severity
(mm)

Average Deficit
(mm)

Peak Deficit
(mm)

March–May 2003 3 −19.47 −6.49 −11.35
June 2009–July 2010 14 −496.99 −35.50 −61.97

March–May 2011 3 −42.86 −14.29 −17.10
April–August 2012 5 −176.92 −35.38 −57.31

October 2012–September 2013 12 −240.98 −20.08 −44.10
January–April 2014 4 −57.14 −14.29 −18.57
June 2014–May 2015 12 −324.69 −27.06 −44.13

September 2015–December 2016 16 −734.01 −45.88 −92.06

When describing the severity of the drought, drought indices are often categorized
into several levels. There are noticeable differences in the severity of drought according to
different drought indices for the same drought episodes (Tables 2 and 4). For instance, the
WSDI classifies drought events No. 2 and 8 as moderate droughts (D2), but SPEI-01, -02, -03,
and sc-PDSI classify event No. 2 as no drought (D0) and mild drought (D1), respectively.
Event No. 8 is also categorized as a no drought (D0) based on SPEI-01, -02, -03, and sc-PDSI.
Overall, however, it is evident that there were noticeable differences in the levels of drought
severity of the eight drought episodes recognized by these drought metrics.
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Table 4. Drought severity categories are based on several drought indicators.

Period WSDI/
Category

SPEI-01/
Category

SPEI-02/
Category

SPEI-03/
Category

SPEI-06/
Category

Sc-PDSI/
Category

March–May 2003 −0.17/D1 0.22/D0 0.19/D0 −0.02/D0 −0.02/D0 0.76/D0
June 2009–July 2010 −1.00/D2 −0.34/D0 −0.56/D1 −0.70/D1 −0.84/D1 −1.27/D1

March–May 2011 −0.40/D1 −0.33/D0 −0.11/D0 −0.17/D0 −0.31/D0 0.38/D0
April–August 2012 −0.95/D1 −0.11/D1 −0.28/D1 −0.30/D1 −0.48/D1 −1.14/D1

October 2012–September 2013 −0.56/D1 0.18/D0 0.56/D0 0.65/D0 0.78/D0 0.84/D0
January–April 2014 −0.35/D1 0.27/D0 0.07/D0 −0.03/D0 −0.01/D0 0.19/D0
June 2014–May 2015 −0.71/D1 −0.10/D0 −0.07/D0 −0.04/D0 −0.09/D0 −0.27/D0

September 2015–December 2016 −1.28/D2 −0.38/D0 −0.36/D0 −0.24/D0 0.16/D0 0.94/D0

An alternate method may be used to evaluate the severity of drought in the regions
impacted by different drought levels. The geographic dispersion of the drought-affected
regions illustrates how the drought develops and the regions that experience drought of
various intensities. Figure 13 displays a sample geographical distribution of WSDI. The
percentage area subjected to the monthly droughts of various severity levels is shown in
Figure 13. Drought events occurred in June 2009–July 2010 and September 2015–December
2016, affecting 52% of the IBIS with a mild drought (D1), 46% with a moderate drought
(D2), 9% with severe drought (D3), 1% with extreme drought (D4), and 40% with a mild
drought (D1), 48% with a moderate drought (D2), 37% with severe drought (D3), and 4%
with extreme drought (D4), respectively, were the two drought events that affected. Most
IBIS generally endures moderate drought, with rare severe drought.
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5. Discussions
5.1. Factors Influencing Drought

Accurate research of the components that influence drought is crucial to fully compre-
hending drought management because of accelerated global climate change [121]. The most
important elements contributing to drought in the IBIS are the irregularity in precipitation
and the rise in potential evaporation [101] based on the PLSR model. Insufficient water
supply will result from a lack of precipitation, which will directly hamper human and
plant development. Furthermore, high potential evaporation will also disturb the balance
of the water cycle and speed up the loss of available water resources [122]. Additionally,
the WSDI and climatic indicators yearly trends are extracted using the STL approach, and
their comparison reveals the link between them. Figure S4 shows the unusual decline
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in precipitation and rise in potential evaporation during drought duration between June
2009–July 2010 and September 2015–December 2016, further demonstrating the reliability
of the simulation findings from the PLSR model.

5.2. The Sources of Uncertainties

Several uncertainty sources were involved in this study. Firstly, to diminish the
uncertainties ascribed to the GRACE data, we applied an ensemble mean of three GRACE
spherical harmonic solutions [71,78,87,123]. In addition, various hydrological models were
taken into account by the spherical harmonic coefficient solutions to alter the scale factor,
which ultimately adds to the existence of uncertainty. Second, the ensemble means of
the GLDAS models (VIC, Noah, Mosaic, and CLM) were proposed to reduce the GLDAS
uncertainty [124]. However, only the Noah model has a similar spatial resolution (0.25◦) as
the XGBoost-based downscaled TWSA. Therefore, to decrease the uncertainty associated
with spatial resolution while analyzing water storage estimations, we utilized the GLDAS-
2.1 Noah model results in the current research. Thirdly, the ensemble-based approach
of machine learning models may appropriately decrease the uncertainty associated with
the machine learning models used to predict the higher resolution of the TWSA [125].
Finally, using linear interpolation to fill in missing gaps in GRACE data would also trigger
uncertainties in the assessment. Although this approach to handling missing data is reliable,
prevalent, and frequently used [51,78,105,126,127], the missing data may also be filled in
using other TWSA time series construction methods, for example, an artificial neural
network (ANN) model [128,129].

5.3. Evaluation of Water Storage Deficit

A huge water deficit often shows a drought episode with greater severity. The IBIS
became drier from 2003 to 2016, as shown by the declining trend of TWSA (Figure 5). The
impacts of climate change are most likely to be responsible for this decline. Positive WSD
before 2009/2010 and negative WSD after 2009/2010 (Figure 7b) may indicate an increase in
droughts’ frequency or severity. Given that the cumulative WSD was drastically declining
in 2009, it was more evidence that this was the year when the water storage went from
being in excess to the deficit (Figure 7b). Despite an overall decline in the total WSD from
2009 to 2016, this period also includes drought events Nos. 2 through to No. 8. The WSD
based on downscaled TWSA generally recognized drought events that agreed with other
drought indices from 2009 to 2010 for the IBIS.

5.4. Analysis of SPEI, sc-PDSI, and WSDI

Standardized WSD is used to better indicate the severity of droughts as well as to
compare WSDI with other standardized drought indicators. The magnitude of a water
deficit may be determined using WSD, but it is unable to reveal how severe the drought
was in various geographic locations. In general, the WSDI’s behavior and response to
climatic deviations were in reasonable agreement with other indicators studied in this
research (Figure 9). Because the other drought indicators are generated based on diversified
algorithms and techniques, discrepancies in behavior across different drought metrics
are unavoidable. While the sc-PDSI is based on the potential values of the variables,
i.e., the highest possible values of each variable, the SPEI makes use of precipitation
and evapotranspiration, which is more likely to overstate the hydrologic situations [105].
Moreover, these conventional drought indicators rely on climatic variables and hydrologic
fluxes that only contribute a small amount to the top surface. In contrast, variations in the
subsurface may also be crucial in the development of drought, particularly for long-lasting
and extremely severe drought events. By combining the impacts of numerous surface
and subsurface hydrologic processes, WSDI, on the other hand, can determine the precise
quantity of water that is lost from storage. Consequently, it is anticipated that this index will
be more effective in illuminating the actual hydrological conditions in a given area and the
underlying internal dynamics of drought development. Furthermore, the spatial properties
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of the involved regions in an area of interest may not be correctly described by the point
data acquired from meteorological and hydrological stations. For large-scale regions, this
is particularly true. WSDI offers a more logical approach than previous drought indices
since its mathematical and statistical calculations are less complex [105]. WSDI offers a
massive range of potential applications, particularly in regions of large scale and areas with
insufficient stations for hydrometeorological data. WSDI, however, is also linked to several
limitations. The area-mean monthly water storage is not accurate enough for short TWS
time series, according to the assumption of Thomas et al. [46] that a minimum of 30-year
time series is optimal, making the calculation and evaluation of droughts using WSDI
difficult. The additional records may be added to the time series to calculate improved
WSDI, enabling ongoing updates to this approach as the GRACE record grows over time.

5.5. Drought Severity Evaluation

Terrestrial hydrological conditions and climatic anomalies are key factors in determin-
ing the severity of a drought. Various drought indicators are used to determine different
drought levels (Table 4). The current results showed that there were differences between
the categories of drought indices. The observed variations and discrepancies in the findings
might be attributable to the fundamentally diverse data types, calculation techniques, and
time scales utilized to calculate the various indices [105].

Previously, Thomas et al. [46] used total WSD during the occurrence of drought to
estimate the drought severity. WSD is based on the monthly peaks in estimating the drought
severity and thus is different from this approach. Hypothetically, using total WSD to assess
the severity of drought is more practically significant than using the monthly peak deficit.
Subsequently, the overall deficit amount may represent general water deficiencies linked
with drought and can, hence, more clearly identify the severity of drought. However, it may
be difficult to determine precisely when a drought starts and ends. As a result, a drought
event is sometimes not recognized until its destructive impacts start to affect a specific
area [130,131]. According to the methodology described by Thomas et al. [46], a drought
episode is one in which the WSD persists for three or more months in a row. It should
be highlighted that there is generally good agreement between the drought severities
determined by these two methodologies, as shown by the severity of eight drought events
that were the focus of the current investigation (Figure S5). A more severe drought is
indicated by large WSD and low WSDI readings, and vice versa. The 2010 and 2016
drought occurrences were the two most severe droughts evaluated in this investigation
between 2003 and 2016, followed by the 2013 and 2015 droughts (Figure 12).

Categories for drought severity often correspond to WSD levels. It is essential to
measure the severity of the drought in terms of its extent due to the area percentages
impacted by the different degrees of drought (Figure 13). It was also found that drought
episodes impacted the biggest area in 2010 and 2016 (i.e., the combined area affected by
droughts of different severities). The extent of the 2010 drought showed that mild and
moderate drought hit a wider region than usual. In the IBIS, severe and moderate drought
conditions impacted a maximum area percentage of 54% as of June 2010 (Figure 13). More
specific information about this drought may also be determined by finding the region that
is affected each month by droughts of different levels of severity.

5.6. Comparison to Previously Related Studies

The lost data of the GRACE mission was filled in through interpolation. This process
induces uncertainties in the estimated TWSA. To evade these errors, as a more accurate
approach, an Artificial Neural Network (ANN) could be utilized in future research to fill in
data of missing months. In recent times, Gemitzi and Lakshmi [77] and Miro et al. [132]
downscaled the GRACE data using the ANN model. Although the calibration of the first
model showed overestimated in-situ data, the overall performance of both models was
good. The other model [132] suggested an error of almost 1 m in some regions in comparison
to the observed data. Meanwhile, Seyoum and Milewski [123] performed an ANN model
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to simulate variables by considering the data lags. The data of this model exhibit weak Pear-
son’s correlation coefficients by depicting more variations than observed. Reference [90]
developed an ANN model to downscale GRACE data. The model-based GWS yielded a
Pearson’s correlation coefficient of 0.64, along with an RMSE of 22.50 mm [78,82,84] used
RF and ANN models for downscaling the GRACE TWSA and reported the correlation
ranging from 0.83 to 0.97 and RMSE ranging from 11.83 to 53.75 mm. This study suggests
the XGBoost for downscaling GRACE data, and its outputs show a strong correlation
coefficient when compared to the ANN model and an RMSE of 5.22 mm (Figure 3). It
effectively enables the examination of TWSA in more detail at a small regional scale after
improving the resolution of GRACE data.

5.7. Advantages and Limitations

The GRACE data contribute substantially to drought assessment in places with limited
water storage data [133]. Different filtering methods can be applied to diminish the impacts
of errors in the gridded GRACE-SH data, yet results indicate the possibility of weak signals
in the derived product. Therefore, scale factors are applied to restore signal leakage induced
by the filtering process [69]. The GRACE data are critical to drought analysis in regions
with limited hydrometeorological data. The current study assessed drought characteristics
based on the WSDI metric. It is a standardized index that offers strong evidence for
investigating surplus and deficit terrestrial water availability [46]. The drought incidents
between June 2009 and August 2010 were positively established in this study. The results of
the study suggest that by using the GRACE estimates, one can efficiently describe drought
characteristics. However, it seems that there is a specific limitation in this study. For a
more accurate characterization and detection of droughts, a longer record of GRACE data
is required [46]. With the accuracy of tens of millimeters of equal thickness and global
coverage, the GRACE is a unique technology for the accurate monitoring of terrestrial
hydrology. It provides realistic spatiotemporal variations in water storage components.
With an opportunity of having access to the extended data from the GRACE Follow-On
(GRACE-FO) satellite datasets, the long-running evaluation of TWSA variations and their
associated droughts will be possible. Using cubic convolution interpolation, the TWSA’s
coarse residuals were resampled, and additional consideration of the inter-pixel variations
is needed. The IBIS is short of accurate data on surface water storage, such as lakes, rivers,
and reservoirs; thus, we ignored the contributions of these sources. Moreover, the lack
of observations on the anthropogenic forces and difficulties in collecting and measuring
relevant information forces the researchers to ignore their influence on the Earth’s mass
changes [134]. As a result, these factors should also be considered while analyzing droughts,
which could offer new scientific insights in the future. However, the downscaled TWSA
data we have generated can offer some guidance for in-depth studies of the regional
TWSA and can help advance future hydrological research, improving the capabilities for
sustainable water resources management.

6. Conclusions

Concerning large-scale water storage depletion and droughts, GRACE satellite data
has been very insightful for the study of hydrology. We assessed the drought events
that occurred in the IBIS from 2003 to 2016 based on the downscaled TWSA data and
standardized the WSD to produce WSDI. It is then utilized to assess and define all detected
drought events. Additionally, discrepancies were analyzed and explained in the drought
categories based on total WSD and WSDI, as well as presented a thorough comparison
of WSDI with other recognized drought indices, including the sc-PDSI and SPEI. The
results demonstrated that the IBIS became drier over the research period. Based on the
WSD, the eight drought episodes were determined dominantly. The two most severe
drought episodes, with WSDI of −1.20 and −1.28 and total WSD of −496.99 mm and
−734.01 mm, respectively, occurred in 2010 and 2016. Based on different drought indicators,
drought events were categorized into various drought severity levels. These results may be
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explained by variations in the calculation of data and methods, time scales, and category
criteria of the used indices. In general, the WSDI values of −1.00 and −1.28 for the drought
events of 2010 and 2016 indicated that the severity of drought assessments was reasonably
accurate compared with the literature. Generally, the current approach is beneficial for
describing short-term and/or mild drought episodes. It also accurately evaluated the
severe drought events that occurred across a small geographic region. As a result, for small
basins and basins with few hydrometeorological stations, it could be the perfect substitute.
Future research must concentrate on enhancing the WSDI technique and the classification
of severity levels of drought to boost the precision and applicability of this method.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15040873/s1. Figure S1: An example of TWS time series de-
composition into seasonal, trend, and remainder components performed using the STL methods;
Figure S2: Spatial distribution of Downscaled TWS patterns from 2009.06 to 2010.08 in the IBIS;
Figure S3: (a) Comparison between WSDI and inter-annual trend, and (b–f) comparison between STL
decomposed inter-annual trends and original data of climatic variables; Figure S4: Comparison of
trends between WSDI and climate variables (a) WSDI and precipitation and (b) WSDI and potential
evaporation; Figure S5: Comparison of eight drought events identified by total WSD and WSDI
during the study. The most severe droughts in 2010 and 2016 are shown with red shading indicate.
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