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Abstract: Missing data is a common issue in remote sensing. Data reconstruction through multiple
satellite data sources has become one of the most powerful ways to solve this issue. Continuous
monitoring of suspended particulate matter (SPM) in arid lakes is vital for water quality solutions.
Therefore, this research aimed to develop and evaluate the performance of two image reconstruction
strategies, spatio-temporal fusion reflectance image inversion SPM and SPM spatio-temporal fusion,
based on the measured SPM concentration data with Sentinel-2 and Sentinel-3. The results show
that (1) ESTARFM (Enhanced Spatio-temporal Adaptive Reflection Fusion Model) performed better
than FSDAF (Flexible Spatio-temporal Data Fusion) in the fusion image generation, particularly the
red band, followed by the blue, green, and NIR (near-infrared) bands. (2) A single-band linear and
non-linear regression model was constructed based on Sentinel-2 and Sentinel-3. Analysis of the
accuracy and stability of the model led us to the conclusion that the red band model performs well, is
fast to model, and has a wide range of applications (Sentinel-2, Sentinel-3, and fused high-accuracy
images). (3) By comparing the two data reconstruction strategies of spatio-temporal fused image
inversion SPM and spatio-temporal fused SPM concentration map, we found that the fused SPM
concentration map is more effective and more stable when applied to multiple fused images. The
findings can provide an important scientific reference value for further expanding the inversion
research of other water quality parameters in the future and provide a theoretical basis as well as
technical support for the scientific management of Ebinur Lake’s ecology and environment.

Keywords: Ebinur Lake; spatio-temporal fusion model; Sentinel-2; images reconstruction; suspended
particulate matter (SPM)

1. Introduction

Ebinur Lake in Xinjiang Uygur Autonomous Region (hereinafter referred to as Xin-
jiang), Northwest China, presents a critical ecological problem. The continual increase in
socio-economic development, cultivated land, and industrial and agricultural wastewater
have exacerbated its water quality [1]. Furthermore, Ebinur Lake has become one of the
primary sources of sand and salt dust in Western China, with an extension to Middle-East
China, severely threatening the ecological quality of the arid lands [2]. Suspended particu-
late matter (SPM) is an essential indicator in lake water quality monitoring, with a direct
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influence on the transparency and turbidity of water bodies [3,4]. Therefore, the continuous
dynamic monitoring of SPM concentration is crucial for environmental management.

Recent advances in remote sensing technology have fostered increasingly accurate
water quality monitoring. Despite improved acquisition conditions of remote sensing data,
high temporal-cum-spatial resolution images still cannot be obtained jointly. To upgrade
image quality and make up for data deficiency, many remote sensing spatio-temporal
fusion models have been developed to permit image reconstruction [5]. They are divided
into three categories: the transformation model, the pixel reconstruction model, and the
dictionary learning model. The transformation model mainly uses principal component
analysis and wavelet transformation methods. Shevyrnogov et al. extracted the brightness
component of multi-spectral satellite (MSS) data based on principal component analysis
and fused it with NOAA (National Oceanic and Atmospheric Administration) NDVI
(Normalized Difference Vegetation Index) to generate data with high spatio-temporal
resolution [6]. Malenovsky et al. were the first to use wavelet transformation to fuse
MODIS (Moderate-resolution Imaging Spectroradiometer) and TM (Thematic Mapper) [7].

The pixel reconstruction model mainly includes filtering and unmixing methods. The
spatio-temporal fusion model based on filtering predicts high-resolution images by intro-
ducing neighbor information [8], including Spatio-temporal Adaptive Reflectance Fusion
Model (STARFM) [9], Enhanced Spatio-temporal Adaptive Reflection Fusion Model (ES-
TARFM) [10], and Spatio-temporal Non-local Filter-Based Fusion Model (STNLFFM) [11].
Spatio-temporal fusion models based on disaggregation include the Spatio-temporal Data
Fusion Approach (STDFA) [12], Unmixing-Based Spatio-temporal Adaptive Reflectance
Fusion Model (USTARFM) [13], and Flexible Spatio-temporal Data Fusion (FSDAF) [14].

The spatio-temporal fusion model based on dictionary learning constructs the cor-
responding relationship between high and low resolution to predict the high-resolution
images on the prediction date [15]. Huang et al. proposed a sparse representation based on
a Spatio-temporal Reflectance Fusion Model (SPSTFM) [16]. With the rise of deep learn-
ing, the method has been applied to spatio-temporal fusion [17]. Song et al. established
Spatio-temporal Fusion by a Deep Convolutional Neural Network (STFDCNN) [18].

Remote sensing has been combined with modeling technology to form an inversion
model of SPM, which include empirical or semi-empirical and analytical or semi-analytical
models [19]. In building empirical models, the statistical relationship between measured
SPM and image data is first established, and then the value of SPM is extrapolated. This
method is widely used in multi-spectral satellite image water quality monitoring. It selects
a single band or a band combination to build a regression model [20,21].

The semi-empirical model uses the spectral characteristics of SPM for statistical anal-
ysis and selects the best band to estimate the parameter contents. It relies heavily on
hyperspectral remote sensing techniques [22,23]. The semi-analytical model is based on the
radiative transfer equation to build the functional relationship between reflectance and the
inherent optical characteristics of water [24]. There are three main semi-analytical methods:
(1) the Nechad model [25], (2) the quasi-analytical algorithm (QAA) [26,27], and (3) the
semi-empirical radiative transfer (SERT) [28].

Theoretically, the analytical model has high inversion accuracy and versatility and does
not need a large amount of measured SPM. It is based on the known spectral characteristics
of pure water and its components [29,30]. As the spectral characteristics of each compo-
nent need to be measured, involving complex procedures and equipment, this method is
rarely applied [31].

Spatio-temporal fusion algorithms have been widely adopted [10,14]. The application
requirements differ notably concerning research objectives. Different from the global
large-scale SPM monitoring research [32,33], this research mainly used multi-source, high
spatio-temporal resolution, and time-continuous SPM monitoring on a regional scale. The
specific aims were (1) to determine a better spatio-temporal fusion algorithm, (2) to establish
a stable and widely applicable SPM inversion model, and (3) to develop a reliable SPM
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image reconstruction strategy to provide scientific reference for further water quality data
reconstruction research.

2. Overview of the Research Area

Ebinur Lake is located in Xinjiang, Northwest China (44◦54′~45◦08′N, 82◦35′~83◦10′E),
and is a broken subsidence basin formed by the Himalayan orogeny (Figure 1) [34]. The
lake basin is the lowest depression, with an elevation of about 190 m. Surrounded by
mountains on the west, south, and north, it is located in the heart of the Eurasian continent,
with little precipitation, intense evaporation, and abundant sunlight and heat. The climate
is typical temperate continental, with an annual average temperature of 6.6~7.8 ◦C and
annual precipitation of 116.0~169.2 mm. Northwest of Ebinur Lake is the famous gale
mouth of Alashankou, noted as having a maximum wind speed of over 55.0 m/s for
164 days/year [35]. The lake has an average depth of 1.4 m, with a lake surface water
density of about 1.079 g/cm3, pH 8.49, and a mineralization degree of 112.4 g/L [36].

Figure 1. The research area. (a) The Ebinur Lake Basin is located in Xinjiang, Northwest China; the
administrative division is derived from the National Geographic Information Resource Catalogue
Service System https://www.webmap.cn/ (accessed on 5 March 2022). (b) It is located at the center
of the basin. (c) Distribution of sampling points in Ebinur Lake performed on 19 and 24 May 2021.
(d) The inflatable kayak used for sampling from the lake. (e) Landscape of the central portion of
Ebinur Lake.

3. Data Source and Processing
3.1. Water Sample Collection and Laboratory Analysis

On-site acquisition was the principal way of obtaining the basic raw data in this
research, acquired on 19 and 24 May 2021, at 103 sampling points. Sampling was conducted
at 11:00~16:00, Beijing time. Sentinel-2 images were taken on 19 and 24 May 2021 at 12:26
and Sentinel-3 images were taken on 19 May 2021 from 12:00 to 12:03 and 24 May from
12:10 to 12:13, with the on-site data collected at the same time as the satellite transit (±4 h),
strictly following the principle of interstellar synchronization [37].

Figure 1c indicates the sampling point design at about 1.5~2 km apart. The points
cover different parts of the water body. Field sampling data included GPS location, water

https://www.webmap.cn/
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depth, salinity, temperature, DO, and pH. Inflatable kayaks were used to move around in
the lake, and 2 L water samples were collected at 0.1 to 0.3 m depth using a fine mouth
polyethylene bottle. The collected water samples were kept in cold storage (<4 ◦C) before
conducting laboratory experiments to reduce the changes in physicochemical attributes
in water [38].

3.2. Images and Preprocessing

Sentinel-2, consisting of two stars, A and B, is an environmental monitoring satellite
launched by the European Space Agency (ESA), capable of providing ground-based obser-
vations with high spatial and temporal resolution. It has an orbital height of 768 km and a
width of 290 km, with a single-star revisit period of 10 d and a binary revisit period of 5 d.
The satellite is equipped with a push-scan multispectral imager (MSI) to obtain 13 band
images with spatial resolutions of 10, 20, and 60 m. Detailed band information is shown
in Table 1. Obtained from the ESA platform https://scihub.copernicus.eu/dhus/#/home
(accessed on 10 December 2021), the images were an atmospheric apparent reflectivity
product with orthotropic and geometric precision corrections.

Table 1. Sentinel-2 image band information.

Band Description
S2A Center
Wavelength

(nm)

S2B Center
Wavelength

(nm)

Band Width
(nm)

Spatial Resolution
(m)

B1 Coastal aerosol 442.7 442.2 20 60
B2 Blue 492.4 492.1 65 10
B3 Green 559.8 559.0 35 10
B4 Red 664.6 664.9 30 10
B5 Red-edge1 704.1 703.8 15 20
B6 Red-edge2 740.5 739.1 15 20
B7 Red-edge3 782.8 779.7 20 20
B8 NIR 832.8 832.9 115 10

B8a Narrow NIR 864.7 864.0 20 20
B9 Water vapor 945.1 943.2 20 60

B10 Cirrus 1373.5 1376.9 30 60
B11 SWIR1 1613.7 1610.4 90 20
B12 SWIR2 2202.4 2185.7 180 20

In this research, the Sentinel-2 images were pretreated by the Dark Spectrum Fitting (DSF)
atmospheric correction algorithm, which is especially suitable for turbid water [39–41]. The
Acolite provided by the DSF method was used to conduct atmospheric correction preprocessing
https://github.com/acolite/acolite (accessed on 25 December 2021). Sentinel-2A/B data were
corrected for atmosphere, processed in a batch program, exported to TIFF standard format,
and then banded for synthesis. Since the Sentinel images lost three 60 m resolution bands
for water vapor and SWIR-Cirrus after processing as 10 m resolution images, 11 bands were
retained. They included B1-Coastal aerosol, B2-Blue, B3-Green, B4-Red, B8-NIR, B8a-Narrow
NIR, B11-SWIR1, B12-SWIR2, and B5, B6, and B7 for vegetation red-edge bands. The output
images were trimmed to cover the whole research area.

The Sentinel-3 satellite monitors the global ocean and land in real time. Among
them, sea temperature, sea color, and sea level height data can be used to monitor climate
change, ocean pollution, biological productivity [42–44], terrestrial forest fires, terrestrial
vegetation health, and water levels of lakes and rivers [45–47]. The satellite has an orbital
altitude of 800–830 km and a revisit period of less than 2 days. It carries a Sea-Land Surface
Temperature Radiometer (SLSTR) and a Sea-Land Chromaticity Instrument (OLCI). This
research mainly used the OLCI sensors, with 21 bands and a spatial resolution of 300 m,
with detailed band information listed in Table 2. The data were obtained from the ESA data
platform, which is an atmospheric apparent reflectivity product, using DSF atmospheric
correction for Sentinel-3 OLCI [48,49]. These data were reprojected and resampled to 10 m to

https://scihub.copernicus.eu/dhus/#/home
https://github.com/acolite/acolite
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coincide with the image numbers of the research area in Sentinel-2 to form spatio-temporal
fused data pairs to facilitate the research.

Table 2. Sentinel-3 OLCI image band information.

Band Center Wavelength (nm) Wave Width (nm) Noise-Signal Ratio

Oa1 400 15 2188
Oa2 412.5 10 2061
Oa3 442.5 10 1811

Oa4(Blue) 490 10 1541
Oa5 510 10 1488

Oa6(Green) 560 10 1280
Oa7 620 10 997

Oa8(Red) 665 10 883
Oa9 673.5 7.5 707

Oa10 681.25 7.5 745
Oa11 708.75 10 785
Oa12 753.75 7.5 605
Oa13 761.25 7.5 232
Oa14 764.38 3.75 305
Oa15 767.5 2.5 330
Oa16 778.75 15 812

Oa17(NIR) 865 20 666
Oa18 885 10 395
Oa19 900 10 308
Oa20 940 20 203
Oa21 1020 40 152

4. Methods
4.1. Spatio-Temporal Fusion Algorithm

ESTARFM, an enhanced spatio-temporal fusion algorithm proposed by Zhu et al., was
used to generate fusion images of Ebinur Lake’s surface [10]. This algorithm is suitable for
the lake’s constantly changing SPM, considering that the ground reflectivity may change
over time. The image processing mainly required the two-stage Sentinel-2 and -3 image
pairs before and after the reconstruction date and one Sentinel-3 image on the reconstruction
date. The Sentinel-2 images of the day were fused through the ESTARFM model.

ESTARFM thoroughly considered the spatial heterogeneity of the Sentinel-3 (coarse
spatial and high temporal resolution) image and introduced the conversion coefficient
to improve the fusion simulation results. The simulated image as the central image was
used to build a relatively large moving window. The average image element with similar
spectral features and the central image were calculated and selected to assign the value
weight. Finally, the central value was calculated. The central image value was computed
by Equation (1):

Lb(xw′/2, yw′/2, T) = Lb(xw′/2, yw′/2, T′) +
n

∑
i=1

Wi × vi × (Mb(xi, yi, T)−Mb(xi, yi, T′)) (1)

where Lb and Mb represent band b of Sentinel-2 (fine space, low time resolution image) and
Sentinel-3 images, respectively; w′ is the moving window size; (xw′/2, yw′/2) represents analog
image position; T and T′ represent time; Wi is the first image similar to analog image weight;
vi represents the first and analog spectral image conversion coefficient; n is an analog which is
similar to analog image number; and (xi, yi) represents the image position.

This study selected t1, t3 of Sentinel-2/3 images as model data input, and t2 of Sentinel-
3 simulated t2 of Sentinel-2: Lb,t(xw′/2, yw′/2, t2) (t = t1, t2). The t2 time images simulated
at t1, t3 were weighted to obtain more accurate t2 time simulation images, and the weight
εt calculation is shown in Equation (2). Equation (3) was used to calculate the simulated
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central image value and obtain the simulated remote sensing images with high spatio-
temporal resolution.

εt =

1/

∣∣∣∣∣ w′

∑
j=1

w′

∑
i=1

Mb(Xi, Yj, t)−
w′

∑
j=1

w′

∑
i=1

Mb(Xi, Yj, t2)

∣∣∣∣∣
∑
t
(1/

∣∣∣∣∣ w′

∑
j=1

w′

∑
i=1

Mb(xi, yj, t)−
w′

∑
j=1

w′

∑
i=1

Mb(xi, yj, t2)

∣∣∣∣∣ )
, t = t1, t3 (2)

Lb,t(xw′/2, yw′/2, t2) = ∑
t

εt × Lb,t(xw′/2, yw′/2, t), t = t1, t3 (3)

FSDAF can predict regions of the ground type well [14]. It first classifies high-score,
low-frequency images in known periods based on unsupervised classification methods. We
adopted the K-means unsupervised classification method and set the classification number
to four categories, a, b, c, and d, and then calculated the richness of each category in each
high-frequency, low-scoring pixel using Equation (4).

f (X, c) = N(X, c)/m (4)

where f (X, c) is the richness of category c in high-frequency and low-frequency pixels
X in known periods, N(X, c) is the number of high-score and low-frequency pixels in
pixel X and category c, and m is the number of high-score and low-frequency images in
high-frequency and low-frequency pixel X. After we selected the high-frequency, low-score
pixel with the highest richness in various categories, we found the difference between these
high-frequency, low-score pixels in the known period and the prediction period and then
fit the change value of the high-score, low-frequency pixel in each category by the least
squares method.

4.2. Spatio-Temporal Fusion Strategy

To reconstruct the Sentinel-2 reflectance image, we needed to perform a spatio-
temporal fusion operation based on the Sentinel-3 reflectance image. Among them, blue,
green, red, and NIR are important visible light bands to monitor lake SPM [49]. As shown in
Figure 2, they are also bands within the common spectral range of Sentinel-2 and Sentinel-
3, with similar central wavelengths, and are an important remote sensing data basis for
establishing spatio-temporal fusion models [14].

Figure 2. Sentinel-2/3 blue, green, red, and NIR band wavelengths and central wavelengths.
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In this research, the model was tested by using two image data pairs to further reduce
information loss in the fusion results with different input image pairs that were used. There
are a total of six fusion results for the (a) and (b) fusion strategies in Figure 3.

Figure 3. Flow chart of (a) SPM concentration map of fused reflectance image and (b) fused SPM
concentration map.

• Fusion Strategies: The images (pixel 10 m) of Ebinur Lake on 19 and 24 May 2021 were
used as reconstruction targets, and data pairs from different time points were used as
inputs for ESTARFM and FSDAF models to reconstruct the optimal reflectance images.
Firstly, Sentinel-2 and -3 images presented on 15 June and 24 April 2021 served as
input image pairs for the ESTARFM model. According to the Sentinel-3 image on 19
and 24 May 2021, the ESTARFM fusion remote sensing image with a spatial resolution
of 10 m was predicted. Secondly, the Sentinel-2 and -3 image pairs from 15 June and
24 April 2021 were used as input to the FSDAF model. The Sentinel-3 images on 19
and 24 May 2021 were used to predict FSDAF fusion images on the same date. Thirdly,
the fused ESTARFM, FSDAF0424, and FSDAF0516 images were analyzed, validated,
and compared with the original Sentinel-2 reference images on both sampling days
(Figure 4), The small color differences in the fused images are mainly caused by errors
in the fused bands. Finally, the SPM concentration inversion was performed on the
fused images.

Figure 4. The fusion images of the ESTARFM and FSDAF models on 19 and 24 May 2021.
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• Fusion Strategies: The Ebinur Lake SPM concentration map on 19 and 24 May 2021
was used as the reconstruction target. The Sentinel-2 and -3 SPM concentration
inversion maps on 15 June and 24 April 2021 were used as the input image pairs for
the ESTARFM model. ESTARFM fused SPM maps with a spatial resolution of 10 m
that were predicted based on the Sentinel-3 images of 19 and 24 May 2021.

4.3. Spatio-Temporal Fusion Images Evaluation Indicators

To quantitatively research the quality of spatial and reference image quality, the
Pearson correlation coefficient (R) was selected [50], along with normalized root mean
square error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) to
evaluate image quality [51]. The reference image I size was m× n and the spatio-temporal
fusion image was F; I(i,j) was the reference image value and F(i,j) was the spatio-temporal
fusion image value.

R evaluated the degree of consistency between spatio-temporal fusion images and
reference images using Equation (5):

R =

m
∑

i=1

n
∑

j=1
(I(i,j) − I)(F(i,j) − F)√

m
∑

i=1

n
∑

j=1
(I(i,j) − I)2

√
m
∑

i=1

n
∑

j=1
(F(i,j) − F2

)

(5)

RMSE refers to the square root of the deviation between the spatio-temporal fusion
image and the reference image, calculated by Equation (6):

RMSE =

√√√√√ m
∑

i=1

n
∑

j=1
(I(i,j) − F(i,j))

2

mn
(6)

PSNR was used to evaluate the amount of fusion image information. A large value
represents less image information loss. The mean square error MSE was computed by
Equation (7) and PSNR by Equation (8):

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[I(i, j)− F(i, j)]2 (7)

PSNR = 10 · log10

(
MAX2

(i,j)

MSE

)
(8)

where MAX(i,j) is the maximum image value of the image.
SSIM evaluated the structural similarity between spatio-temporal fusion images and

reference images, calculated by Equation (9):

SSIM =
(2uIuF + C1)(2σI·F + C2)

(uI2 + uF2 + C1)(σI2 + σF2 + C2)
) (9)

where uI and uF represent the mean, σI and σF represent the variance between the reference
image and the fused image, and σI·F represents the covariance between the two images. C1
and C2 are two constants close to 0 used to stabilize the results. An SSIM value close to 1
indicates high structural similarity between the two images.

4.4. SPM Evaluation Indicators

The coefficient of determination (R2), root mean square error (RMSE), mean absolute
percentage error (MAPE), and deviation (bias) test whether the predicted and measured
values are consistent. R2 describes the degree to which the independent variable (remote
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sensing reflectance) explains the dependent variable (SPM concentration) [52,53]. It is
usually used for auxiliary evaluation of model performance. A higher R2 value should
not be excessively pursued in building this high-precision model because it is prone to
overfitting the modeling data. Moreover, accuracy may drop if the independent validation
data are used to verify the overfitted model. Therefore, a larger R2 does not mean that the
model is invariably applicable. In balance, multiple indicators are needed to evaluate the
model’s reliability.

R2 evaluated the degree of consistency between predictions and true values using Equa-
tion (10):

R2 = 1−

n
∑

i=1
(yi − ŷ)2

n
∑

i=1
(yi − y)2

(10)

RMSE is the square root of the ratio of the forecast and the image matrix, computed by
Equation (11):

RMSE =

√√√√√ n
∑

i=1
(yi − ŷ)2

n
(11)

MAPE represents the percentage of the absolute value of the predicted value, calcu-
lated by Equation (12):

MAPE =
1
n

i−n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (12)

Bias represents the deviation from the predicted value and the true value, computed by
Equation (13):

Bias =
1
n

n

∑
i=1
|yi − ŷi| (13)

5. Results and Analysis
5.1. Spatio-Temporal Fusion Reflectance Image Reconstruction and Evaluation

Figure 4 compares the ESTARFM and FSDAF fusion images with the reference images.
By using blue, green, and red true color band channels to display the lake images, the
visual discrimination of the spatio-temporal fusion model can better realize the generation
of predicted date images.

Four evaluation indicators were applied to assess the fusion images to further quanti-
tatively evaluate the image quality and retention of spectral information (Figure 5). The
overall image quality of the ESTARFM fusion image on 19 May 2021 was better than that of
the FSDAF. The evaluation indicators R, RMSE, PSNR, and SSIM in the blue band verified
that the ESTARFM fusion image had the best quality; the FSDAF0615 ranked second, and
the FSDAF0424 was the last. Using the green band indicators, the ESTARFM fusion image
remained the best, and the FSDAF0615 accuracy was slightly higher than FSDAF0424.
For the red band indicators, the ESTARFM fusion image also had the best quality (R was
0.72, RMSE was 0.0140, PSNR was 37.09, and SSIM was 0.93). Finally, in the NIR band,
the accuracy of the FSDAF0424 fusion image was relatively poor, whereas the accuracy
difference between FSDAF0615 and ESTARFM was small.

The concentration of the plotted points in a small core area along the 1:1 line and
limited dispersion away from the core to the periphery signify a good match between the
fusion and reference images (Figure 5). In the blue band, the ESTARFM model with the
smallest point spread and the most prominent concentration indicated the best distribution
and effects of the three. The FSDAF0424 model showed relatively more point scattering
in the core and peripheral areas. The FSDAF0615 model demonstrated a concentration
in the core area, with large prediction errors in the low-value area. In the green band,
the FSDAF0424 model had quite bundled points, but the FSDAF0615 model displayed
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more errors in the low-value area. The red band had the best effects compared with other
bands, with more points clustering along and adjacent to the 1:1 line. The ESTARFM
model registered the best performance, and the FSDAF0424 had a relatively more scattered
distribution in the core and peripheral areas. Although the FSDAF0615 model demonstrated
a concentration in the core area, it had more fusion errors in the low-value area. For the
NIR band, the three graphs showed heavy crowding in the lowest-value part adjoining the
origin. However, some points were dispersed to the medium- and high-value areas. Such
patterns indicated relatively large discrepancies between the fusion and reference images.

Using the 24 May 2021 images, we further investigated the accuracy of fusion images
with the same evaluation indicators (Figure 6). The overall image quality of ESTARFM was
better than FSDAF. Among these indicators, the results of R evaluation conflict with those
jointly evaluated by RMSE, PSNR, and SSIM. In other words, the accuracy of RMSE, PSNR,
and SSIM of ESTARFM model is higher than that of FSDAF0615, while R is on the contrary,
reflecting that R cannot evaluate image quality to a certain extent. Therefore, we applied
three indicators to evaluate the blue band; the ESTARFM fusion image quality was the best,
followed by FSDAF0615 and then FSDAF0424. However, in the green band, the ESTARFM
fusion image had the best quality effect, whereas FSDAF0615 and FSDAF0424 were of poor
quality. In the red band, the ESTARFM fusion image had the best quality effect. In the
NIR band, FSDAF0424 and FSDAF0615 fusion images had relatively poor accuracy, and
ESTARFM had relatively good accuracy.

From the scatter distribution analysis in Figure 6, we found that in the blue band, the
ESTARFM model denoted pronounced point concentration and suitable accuracy and that
the FSDAF0424 model had scattered to the high-value area versus the FSDAF0615 model’s
scattering to the low-value area. In the green band, the prediction errors of FSDAF0424
also appeared in the high-value area, and the FSDAF0615 had prediction errors mainly
in the middle-value area. In the red band, the three fusion images demonstrated the
best distribution, with a concentration near the 1:1 line, compared with other bands. The
ESTARFM model showed the best effect. For the NIR band, the results were similar to
19 May 2021. Most points were bundled in the lowest-value area around the graph origin.
A notable number of points dispersed to the middle and high-value areas, signifying
considerable errors in image prediction.

5.2. Construction of the SPM Inversion Models for Sentinel-2 and Sentinel-3

The light absorption and scattering properties of various substances in the lake water
determine the spectral reflection characteristics of the water body [54]. Changes in the
composition and concentration of SPM in Ebinur Lake trigger corresponding changes in
spectral reflection characteristics. From Figure 7, the SPM reflectance information of Sentinel-2
and Sentinel-3 is higher in the red, green, and blue bands and lower in the NIR band, and
the reflectance information of SPM sampling points is best separated in the red band. These
results provided a basis to establish the Sentinel-2 and Sentinel-3 regression models.

Section 5.1 shows that the fusion red band had the highest accuracy. Therefore, the red
band was chosen for the inversion of SPM in this research. In the SPSS software, the red
band was used as the independent input variable in the modeling, and the measured SPM
concentration was regression-analyzed as the dependent variable. The 73 (70%) random
samples of the 103 matched sample pairs were used to build the regression model. The
remaining 30 (30%) sample pairs were used to test model accuracy. Mathematical models
were built for the red bands, with the regression coefficients solved and R2 determined
(Table 3).

The sample distribution in the scatter plot of the red band (Figure 8) showed that
the SPM concentration fit the reflectance well, but some samples were dispersed in the
high-value region. Table 3 indicates that the fitting effects of the models were suitable. The
R2 of the Sentinel-2 exponential model was the highest at 0.63, and the linear model had
the lowest R2 at 0.47. The R2 of the Sentinel-3 exponential model was the highest at 0.73,
and the linear model had the lowest R2 at 0.65.
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Figure 5. The scatter density plots of the fusion and reference images of the ESTARFM and FSDAF
models were on 19 May 2021.

To quantify the accuracy of these models, the common evaluation indicators RMSE,
MAPE, and bias were applied for comparison. Figure 9 indicates that the minimum RMSE
of the red band model based on Sentinel-2 was 35.47 mg/L, and the minimum MAPE was
15.30%. The minimum bias based on the polynomial model was −1.42 mg/L.

It can be seen from Figure 10 that the minimum RMSE and the minimum MAPE of the
red band polynomial model based on Sentinel-3 were 43.59 mg/L and 16.05%, respectively.
The minimum bias based on the red band linear model was −19.33 mg/L.

5.3. SPM Images Reconstruction Strategy
5.3.1. Estimation of SPM Using the Spatio-Temporal Fusion Reflectance Image

The results were compared with the red band SPM concentration estimates of the
reference image (Figure 11). The three fusion images recorded on both sampling days could
reflect the general trend of the SPM concentration distribution.
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Figure 6. The scatter density plots of the fusion and the reference images of the ESTARFM and FSDAF
models on 24 May 2021.

The accuracy estimation results of the SPM concentrations of different fusion models on
both sampling days were compared (Figure 12). The overall evaluation indicators showed
that the fusion image estimate on 24 May 2021 was better than that on 19 May 2021. Among
the fusion models, the SPM concentration accuracy of the ESTARFM image inversion was the
best on 19 May 2021. The evaluation indicators on 24 May 2021 showed that the ESTARFM
image inversion had lower accuracy than FSDAF0615, but the RMSE difference was small.
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Figure 7. Remote sensing reflectance of SPM sample sites for Sentinel-2 and Sentinel-3 (reflectance
conversion method based on Catherine et al. [37]).

Table 3. The Sentinel-2 and Sentinel-3 red band regression model and validation.

Model Regression Equation R2 p

Sentinel-2

Linear y = 2482.17x− 135.52 0.47 <0.001
Polynomial y = 8728.28x2 + 385x−13.26 0.47 <0.001

Power y = 7386.98x1.83 0.62 <0.001
Exponential y = 23.05× e15.56x 0.63 <0.001

Sentinel-3

Linear y = 1727.50x−73.45 0.65 <0.001
Polynomial y = 9493.85x2 − 629.63x+66.99 0.66 <0.001

Power y = 3095.03x1.50 0.72 <0.001
Exponential y = 28.40e12.39x 0.73 <0.001

Figure 8. The scatter plots of the regression fitting between the measured SPM and the reflectance in
the Sentinel-2 and Sentinel-2 Red band (The Power in Figure an overlap mostly with the Polynomial
and can be distinguished at the lowest part of the curve. The darker the colored dot represents a
larger SPM value).

The ESTARFM fusion image estimate yielded the best results among the three scatter
density graphs of the SPM concentration for 19 May 2021. The FSDAF0424 and FSDAF0615
models showed different distribution patterns. For the 24 May 2021 graph, the ESTARFM
fusion image estimates were the best, with a high concentration in the core area and less
dispersion compared with the FDSAF0615 and FSDAF0424 models.
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Figure 9. The scatter plots of the Sentinel-2 Red band regression model validation.

Figure 10. The scatter plots of the Sentinel-3 red band regression model validation.

Figure 11. The SPM concentration inversion maps of the red band linear models of the reference and
fusion images.

In sum, the fusion image quality of the ESTARFM model satisfied various evaluation
indicators and had adequate stability. The FSDAF model showed some uncertainty, with
accuracy sometimes depending on the input images. Therefore, a reliable ESTARFM model
was adopted in the subsequent analysis.

5.3.2. Spatio-Temporal Fusion SPM

The raw images from Sentinel-2 and -3 were used to invert SPM concentrations
(Sections 5.1 and 5.2). The SPM concentration inversion maps on 24 April and 15 June 2021
were used as the data pairs. The SPM concentration inversion maps on 19 May and 24 May
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2021 were used as data sources. The estimated results were compared with the reference
image results (Figure 13). The fusion images on both sampling days could better reflect
the general SPM concentration trend. Analysis of different fusion strategies indicated that
the SPM spatio-temporal fusion accuracy was higher (Figure 14). The image performance
based on the evaluation indicators alone was sufficient. Analysis of different data sources
signified that the fusion SPM estimate on 24 May 2021 was better than that on 19 May 2021.

Figure 12. The scatter density plots of SPM concentrations in the red band linear model of the
reference and fusion images.

Figure 13. The original and ESTARFM fusion SPM concentration inversion maps.
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Figure 14. The scatter density plots of the raw and ESTARFM fusion SPM concentrations.

Figure 14 further shows that the SPM inversion accuracy was higher before fusion. The
ESTARFM model and the after-fusion inversion strategy were adopted to generate spatio-
temporal fusion images to complement the missing high-resolution SPM distribution maps.

6. Discussion
6.1. Spatio-Temporal Fusion Algorithm

Spatio-temporal fusion models have been widely used to research land use cover,
vegetation, soils, water bodies, and other spectral reflectance imagery [8]. Han et al. briefly
compared the accuracy of four spatio-temporal fusion algorithms (STARFM, ESTARFM,
FSDAF, and FITFC) with R ranging from 0.621 to 0.907 and RMSE ranging from 0.019 to
0.08 using MODIS (500 m) Landsat-8 and Sentinel-2 as input data pairs, and concluded
that their fused reflectance image accuracies all met their research requirements [55]. In
this research, a comparison of two time points was used as a predictor to test the stability
of the model. The ESTARFM model had R ranging from 0.58 to 0.78 and RMSE from 0.019
to 0.0124, while the FSDAF model had R ranging from 0.46 to 0.83 and RMSE from 0.0211
to 0.0136. As a result, it can be seen that the ESTARFM model in this research had a smaller
and more stable margin of error. A comparative analysis of ESTARFM and FSDAF models
was carried out to apply the spatio-temporal fusion model to lake SPM research, further
demonstrating the feasibility of applying the spatio-temporal fusion model to the inversion
of SPM in water bodies.

6.2. Accuracy of SPM Models

In this research, a more convenient and fast regression model was used for SPM inversion
modeling, providing that sufficient sample points were collected from the lake [56–58]. Firstly,
the inverse model has suitable interpretability. Secondly, the focus of this research was to
conduct a spatio-temporal fusion strategy study, and the use of a convenient and fast modeling
approach helped to reduce the transmission of errors and the mitigation of uncertainty in
modeling. When modeling with the four regression models, it was found through Figure 6
that the SPM spectral information in the red band was better separated and therefore modeled
with red. However, after the four models were built, their validation revealed that when the
models were applied to Sentinel-2 (Figure 8), the power and exponential models, although
better modeled with R2 values of 0.62 and 0.63, respectively, had larger bias for validation,
while the accuracy of the polynomial model was slightly better than the linear model, and
both could be inverted for SPM concentration. When the model was applied to Sentinel-3
(Figure 9), it was found that the power and exponential models were better modeled, with R2

values of 0.72 and 0.73, respectively, again with larger bias and RMSE at validation, while the
linear model had better bias metrics than the polynomial model when the other metrics were
not too different from the polynomial model. In summary, to avoid systematic error transfer
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due to inconsistencies in the modeling model formulations, given the small differences in
model accuracy, Sentinel-2 and Sentinel-3 both use a linear model with a simpler model
structure and the highest accuracy requirements for the later spatio-temporal fusion strategy.

6.3. Spatio-Temporal Fusion Strategy

The spatio-temporal fusion algorithm is primarily based on the fusion of remote
sensing images and then the inversion of the target SPM. In this way, during the fusion
of the target SPM, the target SPM information is more or less lost due to differences in
the quality and timing of the input image pairs and the calculation methods of different
spatio-temporal fusion models.

The accuracy validation evaluation of Figures 12 and 14 reveals that both strategies
a and b from Figure 3 can have suitable fusion accuracy and that the closer the time is to
the fusion target, the better the accuracy of the fused image, with R ranging from 0.55 to
0.84, RMSE from 52.30 to 34.70 mg/L, PSNR from 25.97 to 29.20 dB, and SSIM from 0.65 to
0.77 for strategy a, while strategy b has R ranging from 0.72 to 0.83, RMSE ranging from
35.10 to 32.50 mg/L, PSNR from 29.09 to 29.76 dB, and SSIM from 0.75 to 0.79. It can be
seen that the fusion results for strategy a with high and low accuracy are generated by
the FSDAF model, indicating that there is high instability in the FSDAF model, which is
detrimental to our future extension applications. At the same time, the accuracy advantage
of the ESTARFM model fusion results for strategy b over a is also all-encompassing, which
better informs future similar studies and further clarifies the specific impact of the different
spatio-temporal fusion strategies on the results. Another important reason for the greater
stability of ESTARFM may also be that the input data pairs are two pairs, whereas FSDAF
has only one pair of input data pairs, which also provides an idea for future research. Thus,
we will explore the effect of models with two input pairs or one input pair on the results
in the next step. However, for this research, the use of different fusion strategies plays a
decisive role in the reconstruction of SPM images, and fusing target water quality images
has an all-around better accuracy performance than fusing reflection images.

7. Conclusions

Based on the measured SPM concentration data and Sentinel-2 and -3 images, the
optimal SPM inversion model and data reconstruction strategy with adequate capabilities
and suitability were identified. From the results, we drew the following conclusions:

1. The ESTARFM fusion of blue, green, red, and NIR bands was the best, among which
the red band had the highest accuracy.

2. The red band was determined to be the best choice for regression modeling based on
an accurate assessment of the measurements and model stability analysis.

3. The fused SPM concentration map proved to be better and more stable.

In future research, we could use more accurate physical models or semi-physical mod-
els to carry out the research. In the meantime, we are prepared to adopt the incorporation
or improvement of more spatio-temporal fusion algorithms for comparative studies to
further enhance the applicability and scalability of our research.
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