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Abstract: The Qinghai–Tibet Plateau is an area known to be sensitive to global climate change, and
the problems caused by permafrost degradation in the context of climate warming potentially have
far-reaching effects on regional hydrogeological processes, ecosystem functions, and engineering
safety. Soil thermal conductivity (STC) is a key input parameter for temperature and surface energy
simulations of the permafrost active layer. Therefore, understanding the spatial distribution patterns
and variation characteristics of STC is important for accurate simulation and future predictions of
permafrost on the Qinghai–Tibet Plateau. However, no systematic research has been conducted
on this topic. In this study, based on a dataset of 2972 STC measurements, we simulated the
spatial distribution patterns and spatiotemporal variation of STC in the shallow layer (5 cm) of the
Qinghai–Tibet Plateau and the permafrost area using a machine learning model. The monthly analysis
results showed that the STC was high from May to August and low from January to April and from
September to December. In addition, the mean STC in the permafrost region of the Qinghai–Tibet
Plateau was higher during the thawing period than during the freezing period, while the STC in
the eastern and southeastern regions is generally higher than that in the western and northwestern
regions. From 2005 to 2018, the difference between the STC in the permafrost region during the
thawing and freezing periods gradually decreased, with a slight difference in the western hinterland
region and a large difference in the eastern region. In areas with specific landforms such as basins and
mountainous areas, the changes in the STC during the thawing and freezing periods were different
or even opposite. The STC of alpine meadow was found to be most sensitive to the changes during
the thawing and freezing periods within the permafrost zone, while the STC for bare land, alpine
desert, and alpine swamp meadow decreased overall between 2005 and 2018. The results of this
study provide important baseline data for the subsequent analysis and simulation of the permafrost
on the Qinghai–Tibet Plateau.

Keywords: soil thermal conductivity; permafrost; climate change; freeze–thaw period; Qinghai–Tibet
Plateau; machine learning

1. Introduction

The Qinghai–Tibet Plateau, which has been variously referred to as the “Third Pole”,
the “Roof of the World”, and the “Water Tower of Asia”, is known as an early-warning
area that is sensitive to global climate change, making it an important component in the
analysis of the climate at global and regional scales, including permafrost research in the
northern hemisphere [1–3]. The Qinghai–Tibet Plateau reaches the open atmosphere and
is a source of dynamic and thermally forced disturbances that have important implica-
tions for circulation patterns and climate change over the plateau itself, in East Asia, and
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globally [4,5]. The Qinghai–Tibet Plateau is exceptionally sensitive to global warming [4,5],
as the warming process melts the permafrost on the plateau, releasing large amounts of
organic carbon and affecting regional hydrogeological processes; ecosystem functions; and
the water, soil, and air biota. This also has far-reaching implications for engineering safety,
infrastructure, and carbon cycling [6–9].

The active layer of permafrost acts as an important buffer zone for the interaction
between the atmosphere and the permafrost as a whole, with energy and water being
exchanged between the two in this layer. The active layer freezes during the cold season
and thaws during the warm season, and the phase state and ice–water ratio in the active
layer change dramatically at different stages of the freeze–thaw cycle, leading to changes
and anomalies in the characteristics of the water–heat exchange between the ground and
the air, which indirectly affects atmospheric circulation and thus has an important influence
on the climate system [10,11]. Therefore, an accurate understanding of the hydrothermal
properties of the permafrost active layer and its physical transport mechanisms on the
Qinghai–Tibet Plateau is crucial for monitoring of current changes, making future predic-
tions, and conducting related field analysis of permafrost in the context of global warming.

Soil thermal conductivity (STC) is a key input parameter for simulations of the temper-
ature and surface energy of the permafrost active layer because it controls the transport and
storage of heat within the active layer and influences processes such as hydrothermal salt
coupling [12–14]. Land surface process model simulations are currently an important tool
for research on hydrothermal processes in the active layer of the permafrost [15,16], and
the accurate calculation of the STC is necessary to improve the accuracy of these models for
hydrothermal simulations within the permafrost active layer and ensure the reliability of
Earth system simulations [17–21].

In the permafrost region of the Qinghai–Tibet Plateau, due to the complexity of thermo-
dynamic and hydrodynamic processes, a lack of understanding of their related mechanisms,
and the lack of basic STC data, current hydrothermal transport schemes cannot accurately
capture the dynamic hydrothermal changes that occur during the freeze–thaw cycle of the
active layer, and current calculations of the STC do not allow for the accurate simulation of
land surface models, resulting in large errors in the simulation of land surface processes
for permafrost, thereby exaggerating the surface temperature variability [11,22–26]. The
cold bias observed in the results of different models simulating the surface temperature
during the freezing period directly affects the accuracy of future permafrost predictions
and the analysis of its interaction with the climate system [24,27–29]. In addition, pa-
rameterization schemes based on single sites and small-scale regional development take
different forms, have high data-collection requirements for the input parameters, cannot be
easily extended to the large-scale simulation of complex environments, and still produce
significant uncertainty in the simulation results [11,30]. Another complicating factor is that,
due to natural conditions, basic observational data on soil hydrothermal properties on the
Qinghai–Tibet Plateau are lacking, and many areas have not been monitored yet, which
severely limits the depth of research on the mechanisms underlying the hydrothermal
processes in the permafrost active layer based on model simulations; accordingly, the
spatial characteristics of the thermal conductivity of the permafrost on the Qinghai–Tibet
Plateau require more attention [11]. Therefore, basic data for the STC in the permafrost
active layer on the Qinghai–Tibet Plateau, where in situ monitoring data are scarce, can
be used to determine the characteristics of its spatial distribution, which is important for
analyzing the ground–air interaction of the permafrost, including an analysis of the current
situation and future simulation-based predictions.

Although many methods are available to measure the actual STC, they are limited
by a combination of many internal and external factors, such as the mineral composi-
tion of the soil (especially the quartz content), salinity, freeze–thaw cycles, and the soil
temperature [14,31,32]. In addition, it is difficult for experimental measurements to fully
control all variables, making it time-consuming and costly to conduct large-scale STC mea-
surements in practice. Therefore, the rapid and accurate estimation of STC has attracted a
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lot of attention from international scholars, with the introduction of parametric, semipara-
metric, and other schemes [20,33–40]. However, no single scheme has been developed that
can be applied to all soil types, and no single parameterization scheme can be employed
to ensure the accurate simulation of land surface processes in all regions [11,20,21,39]. Of
particular concern for the Qinghai–Tibet Plateau is that its complex natural environment
and diverse range of substratum types and soil characteristics may cause many current
schemes to produce inaccurate simulation results for the permafrost zone [11,24,41,42].
Another problem is that previous research has mainly focused on single sites and small
regional scales, and the simulation results obtained using a single parameterization scheme
differ significantly from the real situation in most areas and produce the opposite trends at
different stages of the freeze–thaw cycle in the permafrost region [11]. In addition, there
are few publicly available data products for the Tibetan Plateau as a whole, which has
limited the number of large-scale studies there and hindered the prediction and simulation
of regional differences and future scenarios for permafrost in high-altitude/high-latitude
regions such as the Tibetan Plateau and the Arctic. Therefore, there is an urgent need to
develop STC data products for surface-scale studies of the entire Tibetan Plateau.

In recent years, machine learning methods have been widely used to develop large-
scale data products for a variety of applications, including regional soil moisture and carbon
pool analysis [43–45]. A number of these methods have also been successfully applied to
STC simulations, including artificial neural networks (ANNs), linear regression (MLR),
multiple LR (MLR), deep neural networks (DNNs), support vector machines (SVMs), and
group method of data handling (GMDH) [46–52], highlighting their stability and high
generalization ability compared to traditional parameterization schemes [48,49,52–55].
However, these studies often suffer from a lack of data and little in-depth investigation
of the key stress factors associated with thermal conductivity. In addition, none of these
studies have applied their simulation results to the development and implementation of
data products for special study areas such as the Tibetan Plateau, which greatly restricts
their initial goal of promoting the use of machine learning methods.

Given these requirements, the present study aims to establish a measured STC dataset
of sufficient size, determine the optimal approach to STC simulation for the active layer in
the permafrost zone of the Tibetan Plateau, analyze the spatial distribution and spatiotem-
poral variation of the STC, and explore its variation for different sub-bedding surfaces. The
results of these research objectives will provide important basic data for research on and
the simulation of the STC on the Qinghai–Tibet Plateau.

2. Data and Methods
2.1. Data
2.1.1. STC Dataset

Based on a systematic review of previous studies [38,56], a dataset of 2972 STC mea-
surements (λ) was constructed in the present study (Table 1). These data represented
empirical measurements taken from 270 soils worldwide, mostly using single-probe or
dual-probe heat-pulse methods. Most of the measurements were derived from the pub-
lished data for the original studies. The STC is determined by many factors, and these
must be fully considered when conducting STC analysis [31,32]. Based on the consistency
and accessibility of the data, 10 parameters closely related to STC that were present in this
dataset were evaluated: the content of clay (Clay %), chalk (Silt %), sand (Sand %), and
quartz (Qtz %); the solid thermal conductivity (λs); soil grain density (ρs); bulk weight (ρb);
porosity (n); volumetric water content (θw); and saturation (Sr). To ensure the completeness
of the dataset, some of the missing data were imputed using Equations (1)–(4).

Qtz% =
1
2

Sand% (1)
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Quartz content has an important effect on thermal conductivity. To reflect the typical
features of the Tibetan Plateau, this paper uses a previously recommended imputation
method, as shown in Equation (1) [40,57–59].

λs = λQtz
q λ1−Qtz

o (2)

where λq is the thermal conductivity of quartz (7.7 W m−1 K−1), λo is the thermal con-
ductivity of other minerals, and λo = 2.0 W m−1 K−1 when Qtz % > 20% (otherwise,
λo = 3.0 W m−1 K−1) [14,34].

n = 1 − ρb
ρs

(3)

Table 1. The STC dataset used in this study.

Soil Species Quantity Data Volume λMean (W m−1 K−1) Data Sources

16 80 1.42 [60]
1 8 1.17 [61]
3 25 0.87 [62]

19 132 0.92 [37]
2 12 0.68 [63]
5 76 0.57 [64]
6 48 1.91 [65]

40 240 0.94 [66]
8 48 1.29 [67]
6 86 0.87 [68]

32 262 0.56 [57]
1 6 0.89 [69]
2 18 0.55 [70]
7 33 0.74 [71,72]
1 56 1.58 [73]
2 23 1.19 [74]
9 131 0.59 [75]
9 105 0.46 [76]
6 100 1.34 [77]
2 21 0.71 [78]
8 73 0.68 [79]
1 8 1.42 [61]

10 10 2.12 [40]
22 214 0.26 [80]
1 21 1.66 [81]
3 30 1.02 [82]
2 40 0.95 [49]

12 73 0.56 [83]
1 27 1.99 [84]
5 623 0.82 [85]
1 9 1.36 [86]
4 72 1.57 [87]
5 6 0.73 [88]

18 256 1.09 [89]
270 2972 - [35]

If ρs was also missing, then 2.65 g·cm−3 was used.

θw = n · Sr (4)

The characteristics of specific soils were also calculated, resulting in a comprehensive
STC dataset consisting of 2972 × 11 entries. This multisource and multidimensional dataset
was used to develop a reliable simulation model with greater generalization ability. The
eigenvalues of the dataset are shown in Table 2.
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Table 2. Eigenvalues of the STC dataset.

Parameter Mean Standard Deviation Min Max

Clay% 0.122 0.202 0.000 1.000
Silt% 0.285 0.256 0.000 0.900

Sand% 0.545 0.330 0.000 1.000
λs 3.716 1.540 1.117 8.030

Qtz 0.400 0.269 0.000 1.000
ρs 2.666 0.060 2.140 2.890
ρb 1.381 0.302 0.207 2.266
n 0.483 0.115 0.151 0.923
θw 0.172 0.159 0.000 0.846
Sr 0.330 0.298 0.000 1.000
λ 0.875 0.664 0.045 3.370

This study analyzed the Spearman correlation between the 10 individual parameters;
the STC measurements in the dataset were then analyzed (Figure 1). Soil saturation (0.67)
had the highest correlation with STC. The correlation between the soil moisture content and
STC was also very high (0.47); however, given the high correlation between soil moisture
and saturation (0.92), only one factor needed to be considered in the STC simulations when
data measurement was difficult. The other factors, ranked in order of importance, were
ρb > λs > Qtz % > Sand % > Silt % > Clay % > ρs. The above factors have obvious positive
and negative correlations with thermal conductivity, which have important relationships
with the physical mechanism of soil thermal conductivity.
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Figure 1. Correlation characteristics of 10 parameters and thermal conductivity (λ) in the dataset.

2.1.2. Soil Characteristics

Details of the simulation analysis using soil moisture, soil texture, permafrost extent,
and vegetation subsurface data are presented in Table 3. All of these data were obtained
from the National Tibetan Plateau/Third Pole Environment Data Center (TPDC, China;
https://data.tpdc.ac.cn/ (accessed on 20 November 2022)). Given that the STC in the
shallow soil layer (5 cm) was the target of the present study, daily surface water data with
higher accuracy (0.01◦ × 0.01◦) were employed for the model. For the soil texture data,
digital soil mapping products for the Qinghai–Tibet Plateau (2015–2024) with a resolution
of 1 km were used. The data were integrated with an advanced ensemble machine learning
method to generate a three-dimensional raster distribution map of the soil attributes (sand,

https://data.tpdc.ac.cn/
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silt, clay, etc.) within the Tibetan Plateau region, which better characterizes their spatial
variability. The permafrost data were adopted from Zou et al. (2017) [90], while the
vegetation map for the perennial permafrost on the Tibetan Plateau was adopted from
Wang et al. (2016) [91]. All data were resampled to 1 km before use.

Table 3. Data products used in this study.

Data Type Product Name Precision Years Sources

Soil moisture Daily 0.01◦ × 0.01◦ Land Surface Soil Moisture Dataset of the
Qinghai–Tibet Plateau (2005, 2010, 2015, 2017 and 2018) 0.01◦ × 0.01◦ 2005, 2010,

2015, 2018 [92]

Soil texture Dataset of digital soil mapping products for the Qinghai–Tibet
Plateau (2015–2024)

250 m
1 km 2015–2024 [93]

Permafrost extent A new map of permafrost distribution on the Tibetan Plateau (2017) 1 km 2017 [90]

Vegetation map A new vegetation map for Qinghai–Tibet Plateau by integrated
classification from multi-source data products (2020) 250 m 2020 [91]

2.2. Methodology
2.2.1. Classical Parameterization Schemes

A large volume of research investigating simulation methods for thermal conductivity
has been conducted in recent years, leading to a large number of parametric calculation
schemes being proposed based on a range of physical mechanisms [33–39]. In this study, the
two widely used computational schemes presented by Johansen (1975) [34] and Côté and
Konrad (2005) [36] were employed (abbreviated as JO (1975) and CK (2005), respectively).

Johansen (1975) Scheme

Johansen’s (1975) [34] scheme was a pioneering calculation approach for STC analysis.
Although it has some shortcomings, it has become the basis for many subsequent STC
schemes [20,35–37,57]. In particular, subsequent research has modified it by incorporating
multiple types of soil components (e.g., minerals [35,37,38,57], organic matter [12,57,94,95],
and gravel) in different study areas, and different derivation schemes have been proposed.

Johansen (1975) [34] proposed a model for normalized thermal conductivity by in-
troducing the dimensionless Kersten coefficient (Ke). The models can be expressed as
Equations (5)–(8):

λ = Ke × (λsat − λdry ) + λdry (5)

Ke =

{
0.7lgSr + 1.0, Sr > 0.05

lgSr + 1.0, Sr > 0.1
(6)

λsat = λn
wλ1−n

s (7)

where the thermal conductivity of water (λw) is taken to be 0.598 W m−1 K−1. λs is obtained
from Equation (2).

λdry = (0.135ρb + 64.7)/(ρs − 0.947ρb)± 20% (8)

Côté and Konrad (2005) Scheme

Côté and Konrad (2005) [36] improved the scheme proposed by Johansen (1975) [34]
by introducing k to account for the effect of different soil types on Ke and proposed a new
formula for calculating Ke − Sr

Ke =
kSr

1 + (k − 1)Sr
(9)

The scheme considers the influence of several typical soil types (gravel, sand, loam,
clay, and organic matter) on thermal conductivity and can therefore be applied to multiple
soil types, providing more accurate estimates of thermal conductivity with a simpler
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calculation. The values of k for normal-temperature soils are 4.6 for gravel and coarse sand,
3.55 for medium and fine sand, 1.9 for chalk and clay, and 0.60 for organic matter.

λdry = χ × 10−ηn (10)

where χ and η are parameters related to particle shape. Gravel and crushed sand have
values of 1.7 and 1.8, respectively; fine-grain soil and natural sand have values of 0.75
and 1.2, respectively; and organic peat has values of 0.30 and 0.87. λsat is calculated using
Equation (7).

2.2.2. Machine Learning Methods

In this study, four machine learning methods were selected for the simulation of the
STC: K-nearest neighbors (KNN), an extreme learning machine (ELM), Random forest (RF),
and extreme gradient boosting (XGBoost).

KNN Method

The KNN algorithm is a simple machine learning algorithm that can be used for both
classification and regression. It performs classification by measuring the distance between
different feature values and is particularly useful because it does not have a learning process
in the general sense. It works by dividing the feature vector space by the training data
and using the division result as the final algorithmic model. The KNN algorithm has high
accuracy, is not sensitive to outliers, and does not require data input assumptions; however,
it is disadvantaged by its high computational and spatial complexity. Zhao et al. (2022) [96]
recently incorporated a KNN algorithm into an STC simulation study.

ELM Method

ELMs represent a machine learning method built on a feedforward neural network
(FNN) for supervised and unsupervised learning problems. Unlike the traditional SLFN
training algorithm, an ELM randomly selects the input layer weights and the hidden layer
bias, and the output layer weights are calculated by minimizing the loss function consisting
of the training error term and the regular term for the output layer weight parametrization
based on Moore–Penrose (MP) generalized inverse matrix theory. In recent years, the
theory and application of ELMs have been widely studied, demonstrating the advantages
of requiring few training parameters, offering a fast learning speed, and exhibiting a high
generalization ability [97–99].

RF Method

RF is a bagging algorithm that uses decision trees as estimators. The random forest
algorithm combines multiple decision trees, and each time the dataset is selected ran-
domly with put-back, while some features are selected randomly as input. RF has many
advantages; for example, for many kinds of information, it can produce highly accurate
classifiers. It can handle a large number of input variables. The importance of variables
can be evaluated when deciding on categories. When constructing a forest, it is possible
to produce unbiased estimates internally for the error after generalization. RF has been
widely used in research in several fields of earth sciences [100,101].

XGBoost Method

XGBoost is an algorithm or engineering implementation based on GBDT that was
formally proposed by Chen and Guestrin (2016) [102]. The basic idea of XGBoost is the
same as that of GBDT but with some modifications, such as second-order derivatives to
make the loss function more accurate, regular terms to avoid tree overfitting, and block
storage to allow parallel computation. XGBoost is efficient, flexible, and lightweight and
has been widely used in data mining, recommendation systems, and other fields [103,104].
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2.3. Model Performance Evaluation Parameters

In this study, a total of seven metrics were used to evaluate the performance of the
machine learning and traditional parameterized models: coefficient of determination (R2),
adjusted R2 (Adj. R2), correlation coefficient (R), root mean squared error (RMSE), mean ab-
solute error (MAE), mean squared error (MSE), and standard deviation (σ). When calculat-
ing these metrics, λi represents the measured value, and λ̂i represents the predicted value.

R2 =
∑n

i=1(λi − λi mean)
2 − ∑n

i=1
(
λi − λ̂i

)2

∑n
i=1(λi − λi mean)

2

Adj. R2 = 1 − (n − 1)
(n − p − 1)

(1 − R2)

R =
∑n

i=1(λi − λi mean)
(
λ̂i − λ̂i mean

)√
∑n

i=1(λi − λi mean)
(
λ̂i − λ̂i mean

)
RMSE =

√
1
n

n

∑
i=1

(
λi − λ̂i

)2

MAE =
1
n

n

∑
i=1

∣∣λ̂i − λi
∣∣

MSE =
1
n

n

∑
i=1

(
λi − λ̂i

)2

σ =

√
∑n

i=1
(
λ̂i − λi mean

)2

n − 1

3. Results and Discussion
3.1. Optimal Model for Thermal Conductivity Simulations

To evaluate the generalization ability of the models, 70% of the thermal conductivity
dataset was randomly selected for model simulation, and the remaining 30% was used for
training. The hyperparameters for all models were determined using trial and error. The
simulation and training results are presented in Figures 2 and 3, respectively.

During training, all four machine learning models produced a good simulation per-
formance, and the correlation coefficient (R) for the simulation and measured results were
all above 0.91, with those for RF and XGBoost reaching 0.99. ELM had the weakest perfor-
mance of the four models. The scatter plot of the training results shows that the measured
and predicted results for RF and XGBoost were closely clustered around the 1:1 line. The
fitted line for RF was below the 1:1 line with a lower slope, indicating that it underesti-
mated the actual values, while the fitted line for XGBoost mostly overlapped the 1:1 line. In
contrast, the scatter plots for the KNN and ELM methods were more scattered, with lower
slopes and greater underestimation.

The simulation results for the four models using the test data were also generally
reliable (Figure 3), with R > 0.9 and a ranking of XGBoost > RF > KNN > ELM. The accuracy
of XGBoost therefore remained the highest, with the simulated scatter distribution closer
to the 1:1 reference line. Overall, XGBoost and RF were the most reliable models for
STC simulations.
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Table 4 presents the performance evaluation data for the two traditional parametric
models and the four machine learning model simulations. The simulation accuracy of the
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machine learning algorithms was generally higher than that of the traditional algorithms.
XGBoost had a high R2 of 0.94 and an RMSE of 0.17, followed by the RF model (R2 = 0.93
and RSME = 0.18). The ELM had the lowest R2 of the four machine learning models (0.8),
but it still outperformed the Côté and Konrad (2005) [36] and Johansen (1975) [34] models.
The Adj. R2, R, MAE, and MSE metrics also suggested that XGBoost was the optimal
simulation model. Figure 4 shows that XGBoost and RF were closer to the ideal reference
point (RMSE = 0, R = 1, σ = 0.6), with lower σ values. In addition, for the prevalent
underestimation problem (Figure 3), we made appropriate adjustments to some of the
simulation parameters in practice, making the simulation results more reliable and close to
the real situation.

Table 4. Test performance of six models.

R2 Adj. R2 R RMSE MAE MSE

ELM 0.80 0.65 0.90 0.30 0.21 0.09
KNN 0.83 0.70 0.91 0.26 0.17 0.07

RF 0.93 0.86 0.96 0.18 0.12 0.03
XGBoost 0.94 0.88 0.97 0.17 0.11 0.03

CK (2005) [36] 0.71 0.51 0.85 0.36 0.24 0.13
JO (1975) [34] 0.53 0.39 0.77 0.46 0.31 0.21
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In summary, among the six simulation methods considered in this study, the XGBoost
model was identified as the ideal method for STC simulations on the Tibetan Plateau. The
RF model was also found to be a reliable approach for this purpose. Compared with the
machine learning models, the traditional parametric models were relatively weak in terms
of their simulation accuracy and reliability. Therefore, the XGBoost model was employed
for all subsequent STC simulations in the present study.

3.2. Verification of Product Reliability

Given the scarcity and limited spatial extent of the empirical thermal conductivity
data for the plateau, this paper uses the in situ empirical measurements published by
Zhao et al. (2018) [85] for the Maqu, Naqu, and Ngari regions in 2016. We used these data
to validate the reliability of the 2015 products employed in our analysis. The locations of
the field sites are shown in Figure 5. The Maqu sites include E02, E01, E_SW, CST05, NST30,
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NST31, NST32, and NST33; the Naqu sites include MS3608, BJ, Naqu_north, Naqu_west,
NQ02, NQ03, NQ04, and NQ01; and the Ngari sites include Ali02, SQ17, SQ18, SQ21, SQ03,
SQ10, SQ20, and SQ7. More details about each site can be found in the original paper [85].
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Because soil moisture has a strong influence on the STC [11], the present study first
analyzed the soil surface moisture data from the 2015 product and the in situ measurements
from Zhao et al. (2018) [85] (Figure 6). The 2015 moisture data were in good agreement
with the 2016 empirical measurements, with an absolute error of 0.015 cm3/cm3, a relative
error of 11.4%, and a standard deviation of 0.03.
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Based on these results and the assumption that the soil texture does not change
dramatically in the short term, validation of the STC was subsequently conducted based on
these two sets of data under different moisture conditions (Figures 7 and 8).
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Figure 7. Relationship between measured (STC_M) and simulated (STC_P) values of STC under
different soil moisture conditions.
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Figure 8. Relation between measured (STC_M) and simulated (STC_P) results.

The product data from August 2015 were in good agreement with the empirical
STC measurements from August 2016, but the characteristics differed depending on the
moisture content. At moisture levels lower than 0.1 cm3/cm3, the simulation results had
very high accuracy. In particular, the absolute error for the predicted and measured results
was 0.07 W m−1 K−1, the relative error was 11.5%, and the standard deviation was 0.07.
However, for moisture levels of around 0.15 cm3/cm3, the difference between predicted
and actual data was higher, with an absolute error of 0.23 W m−1 K−1, a relative error
of 19.8%, and a standard deviation of 0.29. For moisture levels of around 0.25 cm3/cm3,
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the standard deviation for the simulation results was even larger (0.36), but the absolute
and relative errors were lower, at 0.14 W m−1 K−1 and 12.5%, respectively. Given that the
machine learning method used in the present study had a standard deviation of between
0.15 and 0.2 W m−1 K−1 (RSME = 0.17), the products employed in this study at different
moisture contents can be considered relatively reliable.

It can also be observed from Figure 8 that the higher the soil moisture (i.e., the larger
the circle), the higher the STC, highlighting the importance of soil moisture in predicting
the STC. However, although the STC increased continuously with increasing total water
content, the rate of this increase varied. In particular, for the thawing period in August, the
STC initially increased linearly with higher moisture levels before gradually slowing down
when the water content reached a certain level. The physical mechanism that explains this
is that when the water content is lower than the maximum molecular water content, gases
with lower thermal conductivity are present in the soil pores; as the water content increases,
the gas content decreases, and the connection between the particle skeletons increases,
reducing the contact thermal resistance between the particles. In addition, because the
thermal conductivity of water is higher than that of gas, the STC increases rapidly [105,106].
When the water content in the soil is between the maximum molecular water content and
the liquid limit water content, the thermal conductivity of the solid particles gradually
becomes dominated by the water, and the water-induced bonding between the particle
skeletons of the soil becomes secondary, thereby slowing the increase in the STC. When the
water content is higher than the liquid limit, the water gradually begins to play a dominant
role in the STC, which gradually approaches a fixed value. As such, the STC is related to
both the water content and the nature and proportion of the solid soil particles [37,107].

Overall, STC is controlled by a combination of many internal and external factors,
such as the mineral composition (especially the quartz content), salinity, soil freeze–thaw
cycles, and the soil temperature; however, the soil moisture is its most critical factor. Given
the shortcomings of machine learning, the lack of actual measurement data for STC, and
the results of the validation process described above, it can be concluded that the proposed
simulation methods, data products, and simulation results accurately reflect the general
characteristics of the STC on the Tibetan Plateau. Although the present study sought
to obtain highly accurate thermal conductivity products, there are still very few in situ
observations available for the Tibetan Plateau, especially its vast western region, due to
the harsh natural environment. Therefore, it was not possible to obtain a large amount
of actual measured data to systematically evaluate of the model results for all of the data
products used in this study. This remains an important consideration for future research.

3.3. Spatiotemporal Variation in the Thermal Conductivity by Month

In the present study, monthly data products from 2018 were used to analyze the
monthly spatial distribution of the STC on the Tibetan Plateau to understand the trends in
the STC at both monthly and macro scales.

3.3.1. Temporal Variation in the STC

As shown in Figure 9, the monthly variation in the STC in 2018 on the Tibetan Plateau
ranged from 0.13 to 1.93 W m−1 K−1 (±0.17). The highest STC values were 1.93 W m−1 K−1

and 1.91 W m−1 K−1 in June and July, respectively, followed by 1.87 W m−1 K−1 in Septem-
ber. The lowest STC values were observed in January and December (1.79 W m−1 K−1)
and in February–April and October/November (1.85 W m−1 K−1). The highest val-
ues were found in July (1.1 W m−1 K−1), followed by June (1.05 W m−1 K−1), October
(1.02 W m−1 K−1), and May (1.01 W m−1 K−1). The STC values for the remaining months
were lower than 1 W m−1 K−1, with the lowest values in March, September, November,
and December. Therefore, the maximum and average STC indicate that the conductivity
was lower in months with colder temperatures.
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Figure 9. Monthly values of STC on the Qinghai–Tibet Plateau in 2018.

3.3.2. Spatial Variation in the STC in Different Months

Figure 10 shows that the spatial distribution of the STC in different months had
significant seasonal differences. Throughout the whole plateau, the STC was high in the
eastern and southeastern regions and low in the western and northwestern regions, with
the lowest values observed in the Qaidam Basin and its northern area. In addition, the
southern mountainous region had a high STC for a long time. In terms of monthly changes,
from January to April, the STC gradually increased from the central to the eastern region
and from the eastern fringe to the south. However, January to April is the freezing period,
and the overall moisture levels in the active layer are low, so the overall STC was relatively
low during this period. During the thawing period from May to August, the STC rapidly
increased across the plateau, most obviously in the central and eastern regions, exceeding
1.36 W m−1 K−1 in July in several areas and reaching 1.93 W m−1 K−1 in some typical
regions. In addition, in the northeastern part of the plateau north of Qinghai Lake, the STC
in the Qilian Mountains increased dramatically during this period, with higher values than
in other areas. However, a rapid decrease in the STC occurred in September in several areas,
with a lower STC than in October in some areas. This was directly related to the soil surface
moisture in September of that year. As the temperature decreases in October, soil freezing
occurs in many parts of the plateau, and this ice–water phase change may occur in the
shallow soil layer, leading to an increase in the STC. From October to December, the entire
plateau enters the freezing period, and it was found that the STC as a whole decreased
from east to west and from south to north (especially in the northwestern region), falling to
below 1.2 W m−1 K−1 within a range of 0.64–1.20 W m−1 K−1 in most areas.

Overall, as shown by the monthly spatial distribution characteristics of the STC on
the Tibetan Plateau in 2018, the STC was highest from May to August and lowest from
January to April and from September to December, while the STC was generally higher in
the central, central–eastern, and northeastern regions and lower in the Qaidam Basin and
on the northern Tibetan Plateau.
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3.4. Spatiotemporal Variation in the Thermal Conductivity during the Freezing and Thawing Periods

In order to study the spatial distribution of STC during the thawing (May–September)
and freezing (January–April and October–December) periods on the Tibetan Plateau and
in the permafrost area, the mean soil moisture for the corresponding months during the
two periods was calculated, based on which the STC for the two periods was calculated
(Figure 11).

Across the entire Tibetan Plateau region, the STC during the thawing period (Figure 11a)
was generally higher than that during the freezing period (Figure 11b), and the size of
the area with an STC higher than 1.15 W m−1 K−1 during the thawing period was sig-
nificantly larger than that during the freezing period.In terms of spatial distribution, the
central–eastern region had a high STC during both periods, but the STC in the central
part of the plateau, the northern Tibetan Plateau region, and the Qilian Mountains in the
northern part of Qinghai Lake was higher during the thawing period, with some areas with
a thermal conductivity above 2.0 W m−1 K−1, while the STC in the northwestern Kunlun
Mountains region was also higher during the thawing period than during the freezing
period as a whole.
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For the permafrost zone of the Qinghai–Tibet Plateau, the STC pattern of high values in
the east and low values in the west was similar to that of the plateau as a whole. In particular,
during the thawing period (Figure 11c), the STC was higher in the central part of the
permafrost, the central–eastern boundary area, and the eastern part of the Qilian Mountains
permafrost zone in the northeast, with areas exceeding 1.32 W m−1 K−1, accounting for
more than half of the entire permafrost zone. In the western and northwestern areas of the
permafrost zone, the STC was above 0.98 W m−1 K−1, and only in some border areas in the
north and southwest was the STC within the range of 0.78–0.98, with very few areas below
0.78 W m−1 K−1.

However, the spatial characteristics during the freezing period were quite different
(Figure 11d). Specifically, the total STC in the eastern boundary of the permafrost during
the freezing period was above 1.15 W m−1 K−1, while the STC in the rest of the western
hinterland during the freezing period ranged from 0.78 to 1.15 W m−1 K−1, showing a clear
pattern of spread from the center of the northern Tibetan Plateau to the west, northwest,
and northeast. In the boundary zone of the permafrost in the western and southwestern
parts of the plateau, the STC ranged from 0.47 to 0.98 W m−1 K−1, with very few areas
exceeding 0.98 W m−1 K−1 (i.e., less than 1% of the total permafrost area). Therefore, in the
permafrost area of the Tibetan Plateau, the STC is higher overall during the thawing period
than during the freezing period, and higher in the eastern and southeastern regions than in
the western and northwestern regions during these periods.
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3.5. Interannual Variation in the Thermal Conductivity during the Freezing and Thawing Periods
from 2005 to 2018

In order to macroscopically understand the long-term interannual spatiotemporal
variation in the STC during the thawing and freezing periods on the Qinghai–Tibet Plateau
and in the permafrost region, this study calculated the difference between the variation in
the STC during the thawing and freezing periods for four periods (2005, 2010, 2015, and
2018; Figures 12–14).
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(1) Interannual changes in the spatial distribution of the thermal conductivity dur-
ing the thawing and freezing periods

Throughout the study period from 2005 to 2018, the difference in the STC changes on
the Tibetan Plateau clearly shows that the STC during the thawing period was higher than
that during the freezing period as a whole (Figure 12a–d).

The range of the difference between the two periods in 2005 was between −1.44 and
1.43 W m−1 K−1, although in most areas, the difference was around 0–0.50 W m−1 K−1.
The difference between the western border, the southern mountainous area, and some areas
in the north range between −0.45 and 0 W m−1 K−1.

In 2010, the difference between the thawing and freezing period ranged between
−1.35 and 1.52 W m−1 K−1, with most of the areas between −0.65 and 0.66 W m−1 K−1.
Compared with 2005, the range of areas with a negative difference increased, especially
in the western and northwestern regions, while the central and most of the eastern part
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maintained the trend of the STC being higher during the thawing period than during the
freezing period.

In 2015, the difference between the thawing and freezing period decreased to within
the range of −1.37 to 1.40 W m−1 K−1, and the negative range of their differences also
decreased, gradually returning to southern and southeastern mountainous areas and the
northern basin areas, with values between −0.33 and 0 W m−1 K−1. Some areas on the
central plateau and the southern Tibetan Plateau in the west also had STC values below
0. With the exception of or these areas, the thermal conductivity of the thawing period
was higher than that of the freezing period in most areas on the plateau, with a range
concentrated between 0 and 0.66 W m−1 K−1.

In 2018, the range of STC differences between the thawing and freezing periods de-
creased compared with the previous three periods, ranging from −0.62 to 1.64 W m−1 K−1.
There was an increase in the range of higher STC values during the thawing period than
during the freezing period. The positive difference ranged from 0.19 to 0.64 W m−1 K−1

in the central and eastern regions of the plateau, and the difference was around 0 to
0.19 W m−1 K−1 in most of the remaining regions. In contrast, the areas with negative differ-
ences were still concentrated in the Qaidam Basin and its northern, southern mountainous,
and southwestern marginal areas, with differences ranging from −0.62 to 0 W m−1 K−1.
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(2) Spatial distribution of changes in the thermal conductivity during the thawing
and freezing periods in the permafrost zone

The overall STC for the thawing period in the permafrost region of the Qinghai–Tibet
Plateau from 2005 to 2018 was also higher than that for the freezing period, as indicated by
the fact that the range of positive values for the difference between the two was significantly
larger than the range of negative values.

In 2005, the difference between the thawing and freezing periods in the permafrost
region ranged from −1.35 to 1.33 W m−1 K−1 (Figure 13a). The difference in the STC in
the hinterland region had a range of 0–0.51 W m−1 K−1, while in the peripheral, western,
and southern regions, the STC during the freezing period was higher than that during
the thawing period, with a difference ranging from −0.45 to 0 W m−1 K−1. According
to the in situ observations conducted by Li et al. (2019) at the Tanggula Station on the
Qinghai–Tibet Plateau (E 91.86, N32.58, H 5100 m) from 2004 to 2008, the average annual
thermal conductivity during the melting period was 1.56 W m−1 K−1, while the freezing
thermal conductivity was 1.39 W m−1 K−1, and the difference between the two was about
0.18 W m−1 K−1. The difference in thermal conductivity between the melting period and
the freezing period in 2005 was 0.26 W m−1 K−1, which is consistent with the conclusion of
this study.

In 2010, the difference in the STC between the thawing and freezing periods in the
permafrost region ranged from −1.27 to 1.52 W m−1 K−1 (Figure 13b). There was a gradual
increase in the STC on the northern Tibet Plateau, and in the western region as a whole,
the STC during the thawing period was higher than that during the freezing period, with
values ranging from 0 to 0.18 W m−1 K−1. However, in some regions and permafrost
boundary areas, the STC during the freezing period was higher than that during the
thawing period (–1.27 to 0 W m−1 K−1). Toward the central and eastern border areas and
the northeastern region, the STC during the thawing period was significantly higher than
that during the freezing period, with values ranging from 0.18 to 0.61 W m−1 K−1. In the
eastern and southeastern boundary areas of permafrost, the difference in the STC was
0.61–1.52 W m−1 K−1

In 2015, the difference between the thawing and freezing periods in the permafrost
area ranged from −1.21 to 1.39 W m−1 K−1 (Figure 13c). Overall, the difference in STC in
the permafrost hinterland area was positive, ranging from 0 to 1.39 W m−1 K−1, and from
the central to the peripheral areas, the difference in the STC gradually decreased in the
permafrost boundary area; the difference exhibited a decreasing trend, with values ranging
from 0 to 0.24 W m−1 K−1. In the southern, southwestern, and northeastern marginal areas,
the STC during the freezing period was higher than that during the thawing period, but
the difference was not large (–0.04 to 0 W m−1 K−1).

In 2018, the difference between the thawing and freezing periods in the permafrost
area ranged from −0.48 to 1.56 W m−1 K−1 (Figure 13d). Overall, the values were higher in
the hinterland and central parts of the permafrost zone, with the difference ranging from
0 to 0.59 W m−1 K−1. However, in the southeastern, eastern, western, and northeastern
border areas, the STC during the freezing period was higher than that during the thawing
period, with a difference ranging from −0.48 to 0 W m−1 K−1.
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(3) Annual variability and spatial distribution of differences in the thermal con-
ductivity between the thawing and freezing periods from 2005 to 2018

The annual variation in the STC and its spatial distribution across the Tibetan Plateau
during the 13-year period from 2005 to 2018 were investigated separately for the thawing
and freezing periods (Figure 14).

During the thawing period, the variability in the STC on the plateau ranged from
−0.11 to 0.12 W m−1 K−1 over the 13 years, with low variability in the east, high variability
in the central and northern areas, and scattered variability in the west. The variability in
the northeastern and eastern parts of the Tibetan Plateau was positive, ranging from 0
to 0.65 W m−1 K−1, while the STC in the southern mountainous areas ranged from 0.05
to 0.12 W m−1 K−1. In the northern, central–eastern, southern, and most of the western
parts of the plateau, the annual variability in the STC was negative, ranging from −0.03 to
0 W m−1 K−1. During the freezing period, the variability in the eastern and northeastern
parts of the plateau was positive, while the southern parts exhibited scattered high values
ranging from 0.05 to 0.12 W m−1 K−1. In the hinterland of the plateau, both positive
and negative values were present, and in the western region, the negative range in the
STC variability was relatively wide. This interannual variation is consistent with the
actual in situ observations. The 5-year observations (2004–2008) of Li et al. (2019) [11] on
the soil thermal conductivity in the TGL permafrost region showed that the soil thermal
conductivity of the site is gradually decreasing at a rate of 0.037 per year. This change may
be related to the change in soil water content caused by the thickening of the layer.

3.6. Distribution and Variation in the Thermal Conductivity of Different Underlying Surfaces in
the Permafrost Zone

There are five main types of substratum in the permafrost area of the Qinghai–Tibet
Plateau: bare land, alpine swamp meadow, alpine meadow, alpine steppe, and alpine
desert. Of these, alpine meadow, alpine swamp meadow, alpine steppe, and alpine desert
account for 48.59%, 4.18%, 27.69%, and 19.54% of the permafrost area, respectively [91].
Different substrates form an ecological equilibrium with the development of permafrost,
and the growth and development of different types of vegetation are also key indicators of
regional permafrost hydrothermal processes, climate, and precipitation [16,108]. In order
to analyze the difference in the STC between the substrata, regional statistical analysis
of the microscopic and macroscopic variation in the STC in the permafrost zone of the
Qinghai–Tibet Plateau was conducted for the thawing and freezing periods based on the
vegetation cover. The maximum, mean, variance, and variation range for the STC for the
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different vegetation types (Figure 15a) and the cumulative variation in the STC in different
vegetation zones (Figure 15b) were determined.

The interannual variability of the STC for the 13 years from 2005 to 2018 (Figure 15a)
shows that the maximum variability of the STC in the alpine meadow region was the
largest during the thawing period, with the sum of the maximum and minimum values
of the variability being 0.16 W m−1 K−1, followed by the alpine desert and alpine steppe,
with 0.14 W m−1 K−1 and 0.13 W m−1 K−1, respectively. The variability in the STC in the
alpine meadow region (0.21 W m−1 K−1) remained the largest during the freezing period,
followed by the alpine desert (0.183 W m−1 K−1) and the alpine steppe (0.18 W m−1 K−1).
The cumulative change in the STC over the 13-year period was negative during the thawing
period for all vegetation types except alpine meadow and alpine steppe, indicating an
overall decrease in the STC during the thawing period (Figure 15b). The magnitude of
the cumulative value for the alpine desert and alpine swamp meadow was the highest,
indicating a greater decrease in the STC in these substratum areas.
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In contrast, the cumulative value for the STC in all vegetation areas was negative
during the freezing period, indicating an overall decrease in the STC. For example, the
negative cumulative value for the bare ground was −40.7 W m−1 K−1, which was the most
variable type of the five sub-bedding areas, indicating that the STC of the bare ground
during the freezing period was characterized by a negative increase during the 13 years
from 2005 to 2018. The cumulative value of the STC in the alpine meadow and alpine
steppe also showed a negative trend during this period.

Overall, from a microscopic perspective, the interannual variability in the STC showed
that alpine meadows were the most sensitive to changes in the STC during the permafrost
thawing and freezing periods. From a macroscopic perspective, the cumulative change
in the interannual scale revealed that all vegetation types, except alpine meadows and
alpine steppes, showed an overall decreasing trend in the STC over the 13-year period. In
particular, bare land, alpine desert, and alpine swamp meadow areas were characterized
by the most pronounced negative changes in the cumulative STC.

4. Discussion
4.1. Soil Moisture Is the Most Important Factor for the Spatial Difference of STC
4.1.1. Precipitation Determines the Monthly Variation of STC

The monthly STC data for 2018 show that STC is the highest from May to August
and the lowest from January to April and September to December. This spatiotemporal
variation in the monthly STC is, to some extent, the intuitive result of the combined
influence of various factors, with soil moisture as the main controlling factor. In this regard,
precipitation on the Tibetan Plateau was the main driving factor controlling the variation
of the soil moisture levels at the soil surface and in the shallow layer (5 cm). In addition,
the shallow soil layer, which is a sensitive zone for water–heat and energy interactions,
is also strongly affected by temperature, surface stability, and solar radiation [109,110].
Differences in the effects of these factors between months, regions, and subsurface contexts
are directly responsible for the variation in the monthly STC.

4.1.2. Spatial Differences in Moisture and Heat Determine the Spatial Distribution Pattern
of STC during the Thawing and Freezing Periods

This regional variation in the STC on the Qinghai–Tibet Plateau and in the extensive
permafrost areas during the thawing and freezing periods is affected by a number of factors,
such as the climate, precipitation, topography, soil texture, and vegetation characteristics of
the substratum [108,111]. In general, the thawing period is the period of the year during
which the temperature is the highest and precipitation, under the influence of summer
winds, is the greatest, so that the water in the soil is mainly in a liquid form and at higher
levels [112], which directly leads to an increase in the STC across the plateau and permafrost
areas. In contrast, the freezing period is characterized by a rapid decrease in the temperature
(and solar radiation) and reduced precipitation, leading to a sharp decrease in liquid water
content and an increase in the solid ice content. The spatial differences in moisture and heat
between the two periods therefore determine the spatial distribution patterns of the STC.

4.1.3. Precipitation Causes a Gradual Decrease in the STC Difference between the Thawing
and Freezing Periods in the Permafrost Zone

Comparing the spatial distribution of changes in the thermal conductivity during
the thawing and freezing periods in the permafrost zone, we can find that the difference
between the thawing and freezing periods in the permafrost region has been gradually
decreasing, although it varies by region. In the hinterland of permafrost area, small changes
in the western region and large changes in the eastern region were observed. In the
eastern, southeastern, northwestern, and some small marginal areas in the west of the
permafrost, the STC during the thawing period was lower than that during the freezing
period; this trend is consistent with the characteristics of the whole plateau. The most
important driver of these patterns was soil moisture, particularly the surface water and
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shallow soil moisture, which are controlled by precipitation [113,114]. In recent years, the
permafrost region of the Tibetan Plateau has been characterized by warming and increased
precipitation [108,115–117]. Except for the southeastern region, where annual precipitation
has decreased significantly, precipitation has increased in most regions of the Tibetan
Plateau, especially in the central and western areas and in the arid northwestern region.
The annual precipitation in the arid northwestern permafrost region is the highest. In
addition, the soil water levels in the permafrost region increased overall, with a slight
decrease in areas with a high soil water content in the northeastern part of the Tibetan
Plateau and an increase in the southwestern part of the Tibetan Plateau and most of the
hinterland. These regional differences in precipitation and soil water content, as well as
the processes associated with the ice–water phase change during the thawing and freezing
periods, directly lead to interannual variation in the STC in the permafrost region during
these two periods.

4.2. The Interannual Spatial Distribution Variation of STC from 2005 to 2018 Is Macroscopically
Similar and Microscopically Homogeneous

The spatial patterns in the STC difference between the thawing and freezing periods
over the years had similarities at the macroscopic scale. For example, in the northern and
southern mountainous areas and around the basin of the whole plateau, the STC during
the freezing period was more likely to be higher than that during the thawing period,
possibly because the complex geomorphology, rich vegetation system, and higher soil
moisture content at the beginning of the freezing period, as well as other favorable factors
in these regions, influence the key physical processes associated with the change in the
STC, resulting in the STC remaining high or decreasing more slowly during the freezing
period. As a result, a negative difference between the freezing and thawing periods was
observed in these areas.

In terms of microphysical mechanisms, the coarser soil texture and lower water-
holding capacity of the soil on the Tibetan Plateau [118], coupled with its location in an
arid and semiarid climate zone with low precipitation recharge, results in generally low
water content in the surface soil. Regional precipitation recharge increases during the
summer, resulting in relatively high soil water content during the thawing period, while
at the beginning of freezing, precipitation on the plateau decreases significantly, and the
surface soil water content becomes lower than a critical value, meaning that the thermal
conductivity of the permafrost is lower than that of the thawing ground [11]. In contrast, in
the mountainous regions and basins, where the soil texture is influenced by the topography,
the moisture conditions are different from those of other regions, so the water content
at the beginning of the freezing period may be above the critical level, resulting in a
higher thermal conductivity during the freezing period than during the thawing period.
However, this critical value may vary regionally due to factors such as the soil texture and
composition [11,113,114,118]. Together, these microscopic mechanisms are responsible for
the spatial distribution patterns of the STC on the Tibetan Plateau during the thawing and
freezing periods.

4.3. The Reasons for the Differences in STC Variation Trends in Areas with Special Landforms
during the Thawing and Freezing Periods Are Complex

The annual variability characteristics of the STC difference value during the thawing
and freezing periods of the Qinghai–Tibet Plateau from 2005 to 2018 show that the STC of the
whole plateau changed during the 13-year period, but the range of this change was limited.
However, the spatial distribution showed significant differences. In areas with complex
geomorphology such as basins and mountains, the change in the STC during the thawing
and freezing periods exhibited different or even opposite trends. The reasons for these
differences are complicated. In these areas, the weathering and cumulative precipitation of
the soil are more intense, and the soil itself is subject to greater environmental influence,
which may lead to changes in the soil texture and other factors in the soil that affect the STC,
such as the levels of organic matter, quartz, gravel, and other components. Secondly, in
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these areas, local climatic zones are more likely to form, creating unique climatic phenomena
such as extreme precipitation and drought that have a strong effects on the regional surface
and subsurface shallow moisture. This results in different patterns in the STC in such areas
with complex landforms.

5. Conclusions

In order to understand the spatiotemporal variation in the STC on the Tibetan Plateau
and permafrost areas, this study established a thermal conductivity dataset consisting of
2972 measurements and employed an optimal machine learning method to investigate the
monthly spatiotemporal variation in the STC during the freezing and thawing periods,
the interannual variation in the STC during the freezing and thawing periods from 2005
to 2018, and the spatiotemporal variation in the STC on different substrates. The main
conclusions of the present study are as follows.

First, by comparing the models proposed by Johansen (1975) and by Côté and Konrad
(2005) and four machine learning models (ANN, KNN, ELM, and XGBoost), it was found
that XGBoost is the optimal machine learning model for STC simulations, with the highest
simulation accuracy. Using this method, STC data were obtained for the Qinghai–Tibet
Plateau and permafrost. Data products for the STC of this region from 2005 to 2018 were
obtained based on this method.

Second, the STC of the Qinghai–Tibet Plateau shows the following characteristics in
terms of temporal variation and spatial distribution: (i) The results of the monthly STC
analysis in 2018 showed that the STC was high from May to August and low from January
to April and September to December. (ii) In terms of spatial differences, the STC was high
in the central, central–eastern, and northeastern regions and low in the Qaidam Basin
and the northern Tibetan Plateau. (iii) The mean STC during the thawing period was
higher than that during the freezing period in the permafrost region as a whole, and the
difference between the STC during the thawing and freezing periods gradually decreased
in the eastern and southeastern regions relative to the western and northwestern regions.
(iv) During the 13-year period from 2005 to 2018, the difference in the STC between the
thawing and freezing periods in the permafrost region gradually decreased, and this change
was smaller in the western part of the central region and larger in the eastern area; for
the whole Tibetan Plateau, although the change in the STC was limited in its range, there
were large differences in its spatial distribution, especially in the basin, mountainous areas,
and other areas with complex landforms, where the trend of changes in STC during the
thawing and freezing periods was different from that in other regions. (v) The STC in the
alpine meadows was most sensitive to the changes in the thawing and freezing periods in
the permafrost areas, while the STC in bare land, alpine desert, and alpine swamp meadow
areas showed an overall decrease between 2005 and 2018.

Finally, the main reason for the spatiotemporal patterns in the STC on the Qinghai–
Tibet Plateau and permafrost areas was the complex combination of climate, precipita-
tion, topography, geomorphology, soil texture, and vegetation on the substrata, with
precipitation-dominated differences in regional soil moisture being the key factor affecting
the spatial distribution of the STC.

Outlook for this research: It should be pointed out that the thermal conductivity of
soil varies greatly under different soil types and regional backgrounds. This study is the
latest soil thermal conductivity data product in such a large-scale area of the Qinghai–
Tibet Plateau. Although we evaluated the reliability of the data as much as possible from
according to the aspects of data, methods, result verification, and comparative analysis,
such unified data products still have inevitable limitations. For example, in terms of the
base data, thousands of scales STC measurements were collected as far as possible in
this study, but the number of these points distributed on the Tibetan Plateau still cannot
meet the demand for more accurate simulations, and the representativeness of the points
needs to be enhanced. In addition, the simulation is based on 10 influencing factors, and
the problem of homogeneity and variability among different influencing factors needs
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to be further properly addressed. Finally, in the face of such a large area of the Tibetan
Plateau, the use of a single model and data combination to carry out multiple types
of STC simulations is bound to have large errors, especially the shallow depth of 5 cm
carried out in this study is often affected by rainfall, snow, freeze-thaw and other types of
influences, and the soil properties are easily affected, and the changes of related factors
on STC deserve further attention. The mechanisms of unfrozen water and ice content,
soil microstructure changes and other factors on STC under multiple freeze-thaw cycles
also need to be further investigated. Therefore, this study concluded that carrying out
the simulation combination of soil thermal conductivity calculation schemes according
to different regional characteristics to meet the thermal conductivity modeling needs of
different types of soil regions should be the focus of future attention in this field. The
influence mechanism of various factors, including unfrozen water and ice content and soil
microstructure changes under multiple freeze–thaw cycles, on soil thermal conductivity
also needs to be further elucidated. The resolution of these problems will provide more
reliable basic mechanistic support for more accurate simulation of thermal conductivity in
permafrost regions.
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