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Abstract: Super-resolution methods for real beam mapping (RBM) imagery play a significant role in
many microwave remote sensing applications. However, the existing super-resolution methods
require high-dimensional matrix operations in the case of wide-field imaging, which makes it
difficult to satisfy the requirements of real-time signal processing. To solve this problem, this
paper introduces an improved Poisson distribution-based maximum likelihood (IPML) method by
adding an adaptive iterative acceleration factor to effectively improve the algorithm convergence
speed without introducing high-dimensional matrix operations. Furthermore, a GPU-based parallel
processing architecture is proposed through the multithreading characteristics of the computing
platform, and a cooperative CPU–GPU working model is constructed. This can realize the parallel
optimization of the echo reception, preprocessing, and super-resolution processing. We verify that
the proposed parallel super-resolution method can significantly improve the computational efficiency
without sacrificing performance, using a real dataset.

Keywords: real beam mapping; super-resolution; improved Poisson distribution-based maximum
likelihood; GPU; parallel computing

1. Introduction

Real beam mapping (RBM) has attracted attention for various modern remote sens-
ing applications, such as surface surveillance, path navigation, weather monitoring, and
target strikes as it has a dense revisit time and allows for wide-area observations un-
der an arbitrary geometry [1–4]. The RBM system achieves high resolution in the range
dimension through matched filtering, but its azimuth resolution is still limited by the
antenna aperture [5–7]. More recently, super-resolution technology has been used to break
through the limitations of the angular resolution and has been extensively studied. Super-
resolution technology extracts effective information from low-resolution blurred images
and reconstructs image details, enabling image reconstruction and separating adjacent
targets within the mainlobe [8,9]. At present, super-resolution imaging methods can be
divided into three main categories, including inverse filtering methods [10–12], regulariza-
tion methods [13,14], and spectral estimation methods [15,16]. In [17,18], a classical inverse
filtering method called Wiener filtering was proposed to achieve super-resolution imag-
ing, but it had a smoothing effect due to its low-pass filtering properties, and its angular
resolution enhancement was unsatisfactory. In [2,14,19], the total variation (TV) and the
L1 and L2 norms were introduced as constrained terms in the regularization framework;
then, the essence of the super-resolution imaging was transformed into a convex opti-
mization problem. In addition, an iterative reweighted least square (IRLS) method based
on truncated singular value decomposition (TSVD) was proposed for super-resolution
imaging [20–22]. This suppressed noise by cutting some small singular value components
in the antenna pattern measurement matrix, which caused information loss due to the
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truncation operation. However, the resolution improvement in the above super-resolution
methods requires numerous matrix inversions and multiplication operations, which re-
duces the computational efficiency. Spectral estimation approaches, such as an extended
multiple signal classification (MUSIC) algorithm and a capon beamforming method, were
put forward in [23,24]. However, the improvement in resolution caused by these methods
required the accumulation of a large number of snapshots. In [25], the authors proposed
an iterative adaptive approach (IAA) to achieve RBM super-resolution imaging, which
utilized one snapshot to realize a higher azimuth resolution. Regrettably, the improvements
in the angular resolution obtained by the existing regularization methods and the spectral
estimation methods came at the cost of an extremely high computational complexity, in-
cluding high-dimensional matrix multiplication and inversion, which reduce the imaging
efficiency and use a large amount of storage space resources [26–28].

Recently, various Bayesian methods have been proposed in RBM super-resolution
imaging [29,30]. In these methods, reasonable prior assumptions of noise and targets
can be introduced based on a maximum a posteriori (MAP) criterion [31–33], which can
obtain a higher angular resolution in different applications. However, during actual RBM
signal processing, the noise distribution is unknown; therefore, the above methods have
limited improvements in resolution. In addition, the regularization operator, sparse norm
terms, and other optimization terms were considered prior information in these super-
resolution algorithms, and obtained better resolution enhancement in RBM super-resolution
imaging [34–36]. Unfortunately, the Bayesian methods required multiple iterative oper-
ations, and the convergence speed was slow and could not meet the real-time imaging
required in practical applications.

To enable real-time super-resolution imaging, an improved Poisson distribution maxi-
mum likelihood method is introduced in this paper, which effectively improves the iterative
processing of the algorithm by introducing an adaptive iterative acceleration factor. In
addition, this paper proposes a parallel optimization processing architecture based on a
GPU, which was used to accelerate the processing of the range pulse compression and
the super-resolution. Compared with the CPU serial processing method, the GPU parallel
processing method can greatly improve computational efficiency.

The rest of the paper is organized as follows. In Section 2, the echo model of the RBM
is introduced. In Section 3, the improved Poisson distribution-based maximum likelihood
method (IPML) is introduced in detail. In Section 4, the effectiveness of the introduced
algorithm is verified by the simulation and real data-processing results. Section 5 intro-
duces the parallel processing architecture of the super-resolution imaging algorithm using
the GPU platform and uses the experiment data to verify the superiority of the parallel
processing method. Our conclusions are discussed in Section 6.

2. Echo Model

This section introduces the continuous and discrete signal model in the RBM working
mode; we mainly consider the one-dimensional echo signal model with a stationary platform.

2.1. Continuous Signal Model

In RBM imaging mode, the antenna beam scans the entire imaging area, while a pulse
radar transmits a typical chirp signal at a certain pulse repetition frequency to improve the
range resolution. To obtain a two-dimensional microwave image with the radar position
as the center of the circle, the circular beam scans in the azimuth direction at a certain
scanning speed while transmitting the pulse signal. During the interval between adjacent
transmission pulses, the received echo signals can be expressed as [37,38]:

y(θ) =
∫

Φ
s(θ)h(θ)dθ, (1)

where y(θ) denotes the received RBM echo signal, s(θ) is the target scattering coefficient,
h(θ) is the antenna function, and Φ denotes the antenna beam scanning range.
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2.2. Discrete Signal Model

In RBM imaging, the microwave sensor transmits a linear frequency modulated (LFM)
signal with a large bandwidth [39]. After range pulse compression, we can obtain a high
resolution in the range dimension. In order to make the resolution in the azimuth and
range dimension consistent, we focus on the improvements in resolution in the azimuth
dimension. The azimuth signal model of the RBM system can be expressed as follows:

y = h⊗ s + n, (2)

where y ∈ CM×1, h ∈ CL×1, s ∈ CK×1, and n ∈ CM×1 denote the vectors of the azimuth
echo, the antenna pattern, the reflectivity function, and the noise term, respectively. The
symbol ⊗ represents the convolution operation, and K and L denote the lengths of the
antenna pattern and the reflectivity function vectors, respectively, which are defined by

L =
∆θ

Ω
PRF, (3)

M = K + L− 1, (4)

where M represents the number of azimuth echo sampling points, Ω represents the antenna
scanning speed, and ∆θ is the coverage area scanned by the antenna. Therefore, the
reconstruction of s from the measurements y in the time domain becomes a classical
deconvolution problem. Rewriting (2) in matrix form, we have:

y = As + n, (5)

where:

A =



h1
h2 h1
... h2

. . .

hL
...

. . . h1
hL h2

. . .
...

hL


, [a1, a2, . . . , aK]. (6)

3. Improved Poisson Distribution-Based Maximum Likelihood Super-Resolution
Imaging Algorithm
3.1. Poisson Distribution-Based Maximum Likelihood Super-Resolution Imaging Algorithm

The essential problem of the RBM azimuth super-resolution algorithm is how to solve
the deconvolution problem. Direct deconvolution is inherently ill-conditioned. In this
section, an iterative deconvolution method based on the maximum likelihood criterion
is introduced in detail [29]. The resulting algorithm can transform the pathological na-
ture of the direct deconvolution into benignity and restore the high-frequency scattering
information of the target.

We assume that the mth element in the azimuth echo signal is independent and satisfies
the Poisson distribution and the influence of the noise is ignored [30]; that is,

ym = poisson((As)m). (7)
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Using the properties of the Poisson distribution, the expectation and variance of each
element of the azimuth echo signal can be expressed as follows:

D(ym) = ŷm =
K−1

∑
k=0

Amksk, (8)

where the variance and expectation are denoted by D(ym) and ŷm.
The probability distribution of the likelihood function of each element of the azimuth

echo signal is:

p(ym/s) =
(

K−1
∑

k=0
Amksk)

ym

ym!
e
−

K−1
∑

k=0
Amksk . (9)

Since the elements of the azimuth echo signal vector are independent from each other,
the joint distribution probability likelihood function of each element of the echo signal s is:

p(y/s) =
M−1

∏
m=0

(
K−1
∑

k=0
Amksk)

ym

ym!
e
−

K−1
∑

k=0
Amksk . (10)

According to the Bayesian criterion [32,33],

p(s/y) =
p(y/s)p(s)

p(y)
, (11)

where p(s/y) is the probability distribution of the target under the condition of a known
echo signal probability distribution, p(y/s) is the joint probability distribution likelihood
function of each element of the echo signal, and p(s) the target probability distribution.

In actual RBM imaging, since p(s) cannot be known in real time, it can be assumed
that it is subject to a uniform distribution; then, the maximum likelihood estimate is:

f̂ = arg max
f

p(y/s). (12)

It can be seen from (11) that when the likelihood function p(y/s) is the largest, the
estimated value that is obtained p(s/y) can more closely represent the azimuth scattering
information of the target. To obtain the maximum value of p(y/s), logarithms are taken on
both sides of (10):

ln p(y/s) =
M−1
∑

m=0

(
ym ln

K−1
∑

k=0
Amkym −

K−1
∑

k=0
Amksk − ln ym!

)
. (13)

When evaluating p(y/s), we can set the derivative of (13) as zero, resulting in:

M−1
∑

m=0
Amk(

ym
K−1
∑

k=0
Amksk

− 1) = 0
. (14)

In the practical processing of RBM imaging, it is necessary to perform normalization
processing for a; therefore, (14) can be transformed into:

AT
( y

As

)
= I, (15)

where I is a unit vector.
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Using the method of an iterative solution of an equation, the iterative solution of (15)
can be obtained as:

si+1 = si
[
AT(

y
Asi )

]
, (16)

where si is the solution of the ith iterative iteration.

3.2. Adaptive Selection of Iteration Factor

There is a problem of convergence speed in the iterative solution. The iterative solution
method of (16) can be improved by adding an iterative acceleration factor [40], which is

si+1 = [AT(
y

Asi )]
qsi. (17)

Compared with the iterative solution formulas of (16) and (17), when the iterative accelera-
tion factor q of (17) is greater than 1, the iterative convergence acceleration can be achieved.
However, the iterative process of (17) is only stable when the value range of the iterative
acceleration factor q is between 1 and 3. Taking a larger value in this range can effectively
speed up the iterative convergence process, but this increases the risk of solution instability
at the same time; however, taking a smaller value slows down the iterative convergence
speed, but can reduce the risk of solution instability [40,41].

In order to determine the optimal selection of the iterative acceleration factor q, an
adaptive selection of the iterative acceleration factor q is given by the following expression:

q(k + 1) = exp(

∥∥∇si
∥∥

2∥∥∇si−1
∥∥

2
)−

∥∥∇s2
∥∥

2
‖∇s1‖2

, (18)

where ∇si is the first derivative of si, and ‖•‖2 represents the L2 norm of the vector. ∇si

characterizes the rate of change of the signal, which is the degree of azimuth sharpening
from the perspective of the entire RBM echo signal. In the initial stage of iteration, the
adaptive iteration acceleration factor represented by (18) will be greater than 3. At this
time, the second term of (18) will limit the iteration acceleration factor to be much greater
than 3, maintaining the stability of the iterative process. In the whole iterative process,
at the initial stage, the convergence speed of the iterative process can be accelerated due
to the exponential term of the iterative acceleration factor. The reason for this is that as
the number of iterations increases, the iterative result gradually approaches the real value
and the iterative acceleration factor gradually converges to 1, ensuring the stability of the
iterative results. Therefore, the adaptive iteration acceleration factor is a good tradeoff and
leads to a reconciliation between the iteration convergence speed and stability [42].

In order to initialize the accelerated iterative algorithm, the first two iterations of q
must choose a fixed value (1 6 q 6 3). The value of q is generally selected as 1 to ensure
stability at the initial stage of the iteration.

4. Simulation and Real Data Processing Results

In this section, we compare the super-resolution performance of the REGU method [14],
the TSVD method [43], the TV method [19], the PML method, and the IPML method by
conducting some simulations.

4.1. Point Target Simulation

This section compares the IPML method with other traditional super-resolution meth-
ods to verify its excellent imaging performance. The simulation parameters of the point
simulation are shown in Table 1. As shown in Figure 1a, the RBM antenna pattern, with its
3 dB beam width, was about 1.2 degrees. The point target distribution scene is shown in
Figure 1b; the point target included two groups, and each group consisted of an isolated
target and two relative neighboring targets. The width of the left target was 0.4 degrees,
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the width between adjacent targets was 0.3 degrees, and the target amplitude was 0.8; the
width of the right target was 0.6 degrees, the width between adjacent targets was 0.4, and
the target amplitude was 1.

In order to simulate in the same environment, we added different Gaussian white
noise. Therefore, the signal-to-noise ratio (SNR) is defined as:

SNR= 10log10
‖s‖2

2

‖y−As‖2
2

. (19)

Table 1. Simulation parameters.

Parameters Value

Antenna beamwidth 1.2°
Antenna scanning speed 30°/s

Carrier frequency 30 GHz
Bandwidth 2 MHz
Pulse width 5 µs

Pulse repetition frequency 1500 Hz
Scanning range −10°–10°

(a) (b)

Figure 1. Antenna pattern and target scene. (a) Antenna pattern. (b) Target distribution scene.

First, we conducted simulations under a high SNR situation, and the processing
results are shown in Figure 2. Figure 2a shows the raw RBM echo with Gaussian noise,
with the SNR set to 30 dB. As the interval between the adjacent point targets is less than the
beamwidth, the adjacent targets could not be distinguished. The result processed by the
REGU method is shown in Figure 2b. The adjacent targets could be distinguished, but the
target amplitude showed a certain loss. The processing result of the TV method is shown
in Figure 2c. Compared with the REGU method, this had a higher resolution, but there
were still some sidelobes affecting the resolution and the processing result was not smooth
enough. Figure 2d shows the processing result of the TSVD method. A better azimuth
resolution was achieved; since the cutoff value was an empirical selection parameter, it still
had higher sidelobes. Figure 2e and Figure 2f represent the processing results of the PML
method and IPML method, respectively. They had a visibly higher angular resolution and
lower sidelobes than the other traditional methods.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. RBM echo and super-resolution processing results with different methods. (a) RBM raw
echo in SNR = 30 dB. (b) The processing result using the REGU method. (c) The processing result
using the TV method. (d) The processing result using the TSVD method. (e) The processing result
using the PML method. (f) The processing result using the IPML method.

To further demonstrate the effectiveness of the algorithm introduced in this paper,
we conducted some simulations under a low SNR situation. We compared the processing
results with the above methods, with SNR = 10 dB. The raw RBM echo with Gaussian noise
is shown in Figure 3a. The processing result of the REGU method is shown in Figure 3b, the
angular resolution became weaker, and the sidelobes were raised. The processing results of
the TV method and the TSVD method are shown in Figure 3c and Figure 3d, respectively.
There was a ladder effect and more false targets in the TV method, and the noise was
amplified in the TSVD method. In contrast, the processing results of the PML method and
the IPML method, shown in Figure 3e and Figure 3f, respectively, had a better angular
resolution and noise-suppression ability. Furthermore, the super-resolution performance of
the REGU method, the TV method, and the TSVD method were poorer in a higher noise
environment, the sidelobe protrusions were more severe, and false targets were generated.
The PML method and IPML method still had a good super-resolution performance, but
sidelobes remained due to noise.



Remote Sens. 2023, 15, 1164 8 of 19

(a) (b)

(c) (d)

(e) (f)

Figure 3. RBM echo and super-resolution processing results using different methods. (a) RBM raw
echo in SNR = 10 dB. (b) The processing result using the REGU method. (c) The processing result
using the TV method. (d) The processing result using the TSVD method. (e) The processing result
using the PML method. (f) The processing result using the IPML method.

4.2. Real Data Processing

To verify the effectiveness of the IPML method in this section, we carried out verifica-
tion experiments at Chaotianmen bridge, Chongqing, China. The RBM system parameters
are shown in Table 2. There are two groups of boats marked with the red circles on the
Changjiang River, as shown by Figure 4a.

Table 2. System Parameters.

Parameter Value

Carrier frequency X band
Beam width 5.1°
Bandwidth 75 MHz

PRF 204 Hz
Scanning speed 72°/s
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Real data processing results with different methods. (a) Optical scenario. (b) RBM raw echo.
(c) The processing result using the REGU method. (d) The processing result using the TSVD method.
(e) The processing result using the PML method. (f) The processing result using the IPML method.

The real beam data are shown in Figure 4b. We cannot distinguish the two boats and
the whole scene is drowned in noise. The processing results obtained by the REGU method
are shown in Figure 4c; the two boats can barely separate, but the outline of the boats
is almost distorted. The processing results obtained by the TSVD method are shown in
Figure 4d; we can distinguish the distribution of the two boats. Regrettably, many parasitic
ripples appear. The processing results obtained by the PML method and the IPML method
are shown in Figure 4e,f. We can clearly distinguish the two boats and the IPML method
can suppress the noise and clutter well.

4.3. Error and Speedup Analysis

Under different signal-to-noise ratio conditions, the comparison of the convergence
speed of the super-resolution algorithm with the accelerated iterative factor and the general
iterative algorithm is shown through a plot of the mean square error in Figure 5. Through
the comparison of the mean square error curve of the two iterative processes (the PML
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and the IPML), the Poisson distribution-based super-resolution algorithm (PML) generally
needs to process more than 40 iterations to obtain the optimal iterative result, while the
improved Poisson distribution-based super-resolution algorithm (IPML) can obtain the
optimal result after about 15 iterations. Therefore, the improved super-resolution algorithm
effectively increased the iterative convergence speed by more than two times, and the
mean square error of the optimal point was smaller, which improved the super-resolution
performance.

(a) (b)

Figure 5. Iterative process mean square error curve. (a) PML. (b) IPML.

5. Efficient Implementation of the IPML Algorithm Based on the GPU Framework

Although the IPML method introduced in Section 3 could effectively improve the
computational efficiency, this was mainly aimed at reducing the calculation amount in the
azimuth dimension. In practice, it is necessary to process the data of multiple range cells,
and there is still a large amount of data. Considering the engineering implementation of
the algorithm, this section proposes an efficient IPML implementation method based on
the GPU parallel computing platform. First, the computational complexity of the imaging
process for range pulse compression is analyzed. Then, the GPU platform architecture
for parallel implementation is outlined, and the parallel optimization process is studied.
Finally, the excellent acceleration performance and imaging effect obtained by this method
are verified by the experiment data.

5.1. Algorithm Complexity Analysis

The super-resolution imaging algorithm of the RBM is divided into two main stages:
one is the echo signal preprocessing stage of the range pulse compression, and the other
uses the preprocessed echo signal to realize the IPML super-resolution processing stage.
Next, the computational complexity of each stage in the super-resolution imaging process
is analyzed in turn.

5.1.1. Range Pulse Compression

In actual engineering, the range pulse compression is completed in the frequency
domain. According to the Fast Fourier Transform (FFT) principle, the FFT of the azimuth
echo signal to M pulse points requires M ∗ (N/2)log2N complex multiplications and
M ∗ Nlog2N complex additions; multiplying the echo matrix of the range-dimensional
FFT with the frequency-domain function of the matched filtering requires N ∗M complex
multiplications, which inversely transform the result of the two multiplications to the time
domain, requiring M ∗ (N/2)log2N complex multiplications and M ∗ Nlog2N complex ad-
ditions. Therefore, the range pulse compression requires a total of M ∗ N ∗ log2N + N ∗M
complex multiplications and 2*M ∗ Nlog2N complex additions.

5.1.2. Azimuth IPML Super-Resolution

We used the IPML algorithm to perform azimuth super-resolution processing on the
echo data after range pulse compression. The steps and calculations required for each
iterative deconvolution of each range unit are as follows: the frequency domain calculation
convolution requires (M/2)log2M complex multiplications and complex additions, and
calculating the y

/
Asn requires M floating-point multiplications; the frequency domain
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calculation of AT and convolution of y
/

Asn require (M/2)log2M complex multiplications
and Mlog2M complex additions, and computing the product of sn and AT(y/Asn

)
requires

M floating-point multiplications. For N rows of range cells, when the number of iterations
is K, the total number of operations is: 4K ∗ N ∗ (2*Mlog2M + 2 ∗M) + 2K ∗ N ∗M floating-
point multiplications and 2K ∗ N ∗ (2*Mlog2M + 2 ∗M) + 8K ∗ N ∗Mlog2M
floating-point additions.

5.2. Two-Dimensional Super-Resolution Efficient Implementation

The previous introduction to the CUDA programming architecture and the GPU
platform show that the parallel processing of multiunit signals can effectively improve the
data processing efficiency by using the relatively independent characteristics of each range
unit of the RBM echo [26–28]. The efficient implementation of RBM imaging process can
be designed in parallel from the three levels of data-receiving, echo preprocessing, and
algorithm design.

5.2.1. Parallel Implementation of Fourier Transform and Antenna Pattern Preprocessing

During the signal processing of the RBM imaging algorithm, the process of the range
pulse compression and azimuth super-resolution involves the Fourier transform, and the
azimuth deconvolution of each range unit requires the same antenna pattern to participate.
Therefore, these same point Fourier transforms and antenna patterns are pre-stored in the
GPU memory or pre-allocated as required by the CPU and GPU resources before the RBM
echo signal processing to avoid repeating the same signal processing processes, which
can effectively shorten the time required for RBM imaging. The flow chart of the antenna
pattern preprocessing is shown in Figure 6, and the specific steps are as follows:

Step 1: RBM antenna pattern reading. We used the CPU to read the original one-
dimensional RBM antenna pattern, stored the RBM antenna pattern in the page-locked host
memory of the CPU, and then copied the RBM antenna pattern in the page-locked host
memory to the global storage unit of the GPU.

Step 2: RBM antenna pattern data type conversion. The RBM antenna pattern was
converted into a complex number in parallel on the GPU, the imaginary part was set to
zero, and the real part was equal to the value of the original data element.

Step 3: Frequency domain interpolation of the RBM antenna pattern. We performed
frequency domain interpolation on the RBM antenna pattern in step 2. In order to ensure
that the mainlobe beamwidth of the RBM antenna pattern remained unchanged after
interpolation and the sampling rate of the antenna pattern was the same as the azimuth echo
sampling rate, a loop iterative multiple interpolation method was added, using the CPU to
control the loop process and the GPU to implement the FFT, IFFT, and vector operations.

Step 4: RBM antenna pattern normalization. In the iterative deconvolution process,
the antenna pattern needed to be normalized, and the normalization of the antenna pattern
was completed in the GPU. An optimization method adapted to parallel reductions was
used to solve the maximum value.

Step 5: Dimensional expansion of the RBM antenna pattern. In practice, the inter-
polated antenna pattern could not match the azimuth echo sampling points, so it was
necessary to pad the antenna pattern with zeros at the end of the time domain.

In step 3, the method of the adaptive reduction, which was used to find the maximum
value, combined the characteristics of thread asynchronous execution, thread communica-
tion, and cooperative synchronization in the CUDA thread block. In the thread block, the
communication was realized through shared memory, and the thread block was realized
through the barrier method and intrathread synchronization. The maximum value in a se-
ries is usually found through traversal comparison. The time complexity is O(n), while the
time complexity required to use the self-adaptive parallel reduction to find the maximum
value is O(log2n). A seven-point vector adaptive parallel reduction was developed to find
the maximum value model, as diagrammed in Figure 7.
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Allocate CPU memory

Initialize CPU memory

Call Kernel function

CPU  memory 

storage  results 

Return imaging results

CPU Host

Allocate GPU video memory

Allocate GPU video memory

Execute Kernel function 

GPU video memory 

storage  results 

GPU Device

Data copy

Input

parameters

Data copy

Figure 6. Antenna pattern preprocessing flowchart.

thread number

vector 1 2 3 4 5 6 7 zero padding

0

shared memory

Maximum value

1 2 3

0 1 2 3

0 1

0

0

Figure 7. Model diagram of the point vector adaptive reduction parallel maximization.

5.2.2. Parallel Realization of the RBM Echo Receiving and Processing

The RBM system is a continuous scanning, continuously receiving echo data, and
continuous imaging system mode, with echo data being received for a long time. The total
amount of echo data is very large; hence, the linear storage method has insufficient storage
space. The circular queue method can simultaneously reuse the allocated storage space,
receive the original RBM echo data, and perform signal processing on the RBM echo data.
To solve the problem of the echo data processing conflict, the CPU multithread parallel
optimization processing method can be used.

Integrating a circular queue into a CPU multithread parallel optimization solver
can solve the contradiction between the continuous echo data reception and continuous
imaging. According to the theory of CPU multithreading, two CPU threads are created:
one CPU thread continuously receives the original RBM echo data by looping them into the
queue, denoted as threadW, and the other CPU thread reads the original RBM echo data
by looping out of the queue, completes the preprocessing of the original RBM echo data,
and calls the GPU to implement the RBM echo data signal processing in parallel, which is
recorded as threadR. After receiving a scan of the RBM echo data, the CPU will complete
the preprocessing of the original RBM echo data. In order to realize the communication
between the two CPU threads, it is also necessary to create a CPU global memory storage
space as a communication platform between the two CPU threads. A flow chart of the
echo-data-receiving and processing parallel optimization solver is shown in Figure 8.



Remote Sens. 2023, 15, 1164 13 of 19

Received radar  

Echo data 

threadW

Single raw 

radar echo data 

Cyclic

in

Azimuth deconvolution

Global 

memory  

storage

Cyclic 

out

threadR

Range pulse compression

Raw radar echo 

data processing

CPU

GPU

Figure 8. Parallel optimization of the radar echo data receiving and processing.

5.2.3. Parallel Implementation of the Range Pulse Compression

In actual engineering, range pulse compression is performed in the frequency domain.
Combining the characteristics of CPU serial and GPU parallel computing, the CPU thread
threadR is used to control the RBM echo signal processing flow, and the GPU is used to
realize the RBM echo processing. Giving full play to the respective advantages of CPU and
GPU processing greatly improves the processing speed of the RBM echo data and realizes
real-time super-resolution imaging.

In the CPU thread threadR, the preprocessed RBM echo was copied to the global
memory of the GPU; then, the GPU was used to parallelize the pulse compression of the
range dimension. The specific steps are as follows:

Step 1: CUDA stream creation. We created two streams, denoted as Astream and
Bstream; Astream and Bstream were used for the data construction and signal processing
control in the range pulse compression, respectively.

Step 2: In Astream, we removed the RBM system carrier frequency phase factor matrix
R, the matched filtering system spectrum function matrix RMF, and frequency domain
phase factor matrix RRMC in parallel.

Step 3: When the RBM echo data in the real-number domain were received, the
RBM echo in the real-number domain was converted to the complex-number domain in
Bstream. Then, the Hilbert transform was performed on the RBM echo in the complex-
number domain so that the RBM echo matrix could obtain the range and azimuth phase
information, which is denoted as Ehilbert. The matrix dot multiplication of Ehilbert and R
was implemented in the time domain to realize the removal of the system carrier frequency
phase factor in the RBM echo. The RBM echo matrix obtained after removing the carrier
frequency is denoted as ER.

Step 4: We took the range dimension FFT of the matrix ER using the Fourier transform
scheme FFTM(N). We conducted dot-multiply operations on matrix RMF and RRMC and
then performed range dimension IFFT to realize the range pulse compression. The RBM
echo matrix obtained after the range pulse compression is denoted as ERMC.

The serial CPU method could also be used to realize the construction of matrices R
and RMF, but its computational complexity was O

(
n2), while, when using the GPU parallel

implementation, its computational complexity was O(1), and the execution efficiency was
improved to n2. A schematic diagram of the principle of the GPU implementation of
the matrix construction is shown in Figure 9, describing the execution process of each
thread block and thread. Assuming that the input GPU storage space values were all
initialized to 0, the size of the kernel function was (2, 0, 0), and the size of each thread
block was (8, 0, 0); during the execution of the kernel function, the threads between the
thread blocks were executed synchronously. The threads in the thread block were executed
asynchronously, and 16 threads in the grid concurrently executed the kernel function
to construct the matrix elements once to complete the elements in the matrix structure.
Using the traditional serial method, we realized the point multiplication of two matrices
with a computational complexity of O

(
n2); taking advantage of the parallel computing
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advantages of the GPU super multicore and super multithreading, the time complexity of
the matrix point multiplication was reduced to O(1).
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Figure 9. Schematic diagram of the 2 ∗ 8 matrix parallel construction method.

5.2.4. Parallel Implementation of the IPML Super-Resolution Algorithm

In order to implement the IPML super-resolution imaging algorithm in parallel on the
GPU, the algorithm needed to be optimized for the parallel computing mode of the GPU.
The specific parallel implementation steps of IPML super-resolution imaging algorithm are
as follows:

Step 1: We used the method of combining the parallel matrix transposition and the
complex amplitude solution to realize the transposition of the RBM echo matrix ERMC after
the range pulse compression, and the solved amplitude of ERMC was stored in the GPU
global memory in the order of the range rows. The matrix after transposing and solving
the magnitude was recorded as

∣∣ET
RMC

∣∣, and the iterative deconvolution input matrix
s0(N, M) was initialized as

∣∣ET
RMC

∣∣.
Step 2: When the number of iterations j > 2, and j was a positive integer, we added a

vector factor λ
j
N to ensure that the deconvolution algorithm performed stably; the length

of the vector λ
j
N was the number of sampling points in the range dimension, and the nth

element of λ
j
N(n) was obtained by the following expression:

λ
j
N(n) = max(m in(∆Kj−1

1 (N, M)n. ∗ ∆Kj−1
2 (N, M)n

/(∆Kj−1
2 (N, M)n. ∗ ∆Kj−1

2 (N, M)n + ε), 1), 0)
, (20)

where .∗ represents the vector dot-product operation, j represents the deconvolution of
the jth iteration, ε represents an infinitesimal quantity, which takes ε = 10−12 in practical
engineering, ∆Kj−1

1 (N, M)n is a vector composed of elements in the nth range row of the

error matrix in the (j− 1)th iteration, ∆Kj−1
2 (N, M)n is a vector composed of elements of

the nth range row of the error matrix in the (j− 1)th iteration, and the solutions of the error
matrix ∆Kj−1

1 (N, M) and ∆Kj−1
2 (N, M) are as follows:

∆Kj−1
1 (N, M) = sj−1(N, M)− Yj−1(N, M), (21)

∆Kj−1
2 (N, M) = sj−2(N, M)− Yj−2(N, M), (22)
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where the matrices Yj−1(N, M) and Yj−2(N, M) are the (j− 1)th and (j− 2)th iterative
deconvolution results after processing in the positive constraints, respectively. The ma-
trices sj−1(N, M) and sj−2(N, M) are the results of the (j− 1)th and (j− 2)th iterative
deconvolution, respectively.

Step 3: We conducted positive constraint processing on the input matrix sj−1(N, M)
of the jth iterative deconvolution; the processed result was Yj(N, M), and the vector
composed of elements of the nth range row of the matrix Yj(N, M) was:

Yj(N, M)n = max(sj−1(N, M)n + ˘j
N(n)

× (sj−1(N, M)n − sj−2(N, M)n), 0)
, (23)

where the vectors sj−1(N, M)n and sj−2(N, M)n were the results of the (j− 1)th and
(j− 2)th iterative deconvolution, respectively.

Step 4: We calculated the convolution kernel matrix C(N, M), which was obtained by
the following formula:

Cj(N, M) =
∣∣∣ET

RMC

∣∣∣./(real(IFFTN(M)(A f f t(N, M)

. ∗ FFTN(M)(Y
j(N, M)))) + ε) + ε

, (24)

where .∗ represents the matrix point multiplication operation, ./ represents the matrix
point division operation, FFTN(M)(X) and IFFTN(M)(X) represent the performing FFT and
IFFT on the range rows of the matrix X, respectively, real(X) represents taking the real part
of each complex element in the matrix X, and A f f t(N, M) is the antenna pattern matrix
after the FFT.

Step 5: We output the deconvolution result of sj(N, M) and calculated the iterative
error matrix ∆Kj

1(N, M) and ∆Kj
2(N, M) at the same time; ∆Kj

1(N, M), sj(N, M), and

∆Kj
2(N, M) were solved by the following formulas, respectively:

sj(N, M) = max(Yj(N, M)

. ∗ real(IFFTN(M)(A f f tconj(N, M). ∗ Cj(N, M))), 0)
, (25)

∆Kj
1(N, M) = sj(N, M)− Yj(N, M), (26)

∆Kj
2(N, M) = ∆Kj−1

1 (N, M), (27)

where A f f tconj(N, M) is the conjugate matrix of A f f t(N, M).

5.3. Experiment Data Verification
5.3.1. Imaging Performance Analysis

In real-time super-resolution imaging, it was necessary to ensure the speed of the
radar signal processing and the image quality of the imaging results. In order to verify the
correctness, validity, and high quality of the imaging results implemented in parallel by
the GPU-based RBM super-resolution imaging algorithm, under the condition of the same
RBM echo, we compared the imaging results of the serial processing by Matlab and the
parallel processing by the GPU, and used the absolute value error as the judgment standard.
The RBM system and GPU server platform are shown in Figure 10. The RBM imaging
system software ran on the server computer, and the RBM echo data were transmitted to the
server computer through the local area network in real time. The CPU model was an Intel
(R) CPU E5-2690 v2 @3.00 GHz, and the graphics processor was an NVIDIA Tesla K40c.
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Figure 10. The RBM system and the GPU server platform.

In order to verify the effectiveness of the proposed parallel processing structure in
this section, we carried out the verification experiment with the RBM experiment data in
Section 4. The size of the RBM experiment data matrix was 1801 ∗ 257 (range ∗ azimuth),
and the calculation formula of the absolute value error was:

∆ξ = |M−G|, (28)

where M represents the result of the serial processing by Matlab, and G represents the
result of the parallel processing by the GPU. The mean error of the absolute value error
was defined as:

∆ξ̄ = ∆ξN ∗M, (29)

where M was the number of range rows, and N was the number of azimuth echoes.
The imaging results of the Matlab method and the GPU method are shown in Figure 11.

Figure 11a and Figure 11b represent the processing results by the Matlab method and
the GPU method, respectively. The two boats can be distinguished and the azimuth
resolution is greatly improved. After calculation, the absolute error between the Matlab
serial implementation method and the GPU parallel implementation method also tended
toward zero, and the absolute mean error was 0.0016. Combining Figure 11a,b illustrates
the correctness of the signal processing process, implemented in parallel by the entire GPU.

(a) (b)

Figure 11. Experiment data processing results. (a) The processing result using Matlab. (b) The
processing results obtained using the GPU.
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5.3.2. Speedup Ratio Analysis

In order to verify the performance of the IPML super-resolution imaging method
under the GPU framework, this section compares the results of the parallel processing with
the GPU and the serial processing with the CPU. The serial method based on Matlab and
the parallel implementation method based on the GPU were used to separately process the
RBM echo data of different scales. Table 3 compares the time taken by the two methods to
process RBM echoes of different sizes with 15 deconvolution iterations.

In Table 3, the speedup ratio is defined as the ratio of the time used by Matlab to
the time used by the GPU. From the test results, the parallel implementation method
of the super-resolution imaging algorithm based on the GPU had an extremely high
execution efficiency; the execution speed was improved by nearly 100 times. Therefore,
the parallel implementation method based on the GPU is very suitable for real-time RBM
super-resolution imaging.

Table 3. Comparison of the execution time between the serial method implemented by Matlab and
the parallel method implemented by the GPU (unit: ms).

Echo Size (Range ∗ Azimuth) Matlab GPU Speedup Ratio

1024 ∗ 1024 4411 37 119
1024 ∗ 2048 7824 58 135
2048 ∗ 2048 16,659 100 167
2048 ∗ 4096 28,294 230 123
4096 ∗ 4096 54,529 455 120
4096 ∗ 8192 104,967 961 109
8192 ∗ 8192 205,350 2151 95

6. Conclusions

This paper focused on the research hotspot of the angular resolution of real beam
mapping (RBM) imagery. For the Poisson distribution model, the IPML method based
on the adaptive iterative acceleration factor significantly improved the iterative operation
efficiency of the super-resolution maximum likelihood algorithm. In addition, this pa-
per proposed a parallel processing architecture for the super-resolution imaging method,
using GPU multithreading, multicomputing unit hardware architecture, and the parallel
optimization of RBM imaging. It was verified that the acceleration ratio of the parallel
processing method was about 100 times that of the traditional super-resolution algorithm,
which meets the needs of general real-time imaging applications in practical engineering.
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