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Abstract: Understanding the long-term dynamics and driving factors behind small and micro wet-
lands is critical for their management and future sustainability. This study explored the impacts of
natural and anthropogenic factors on the spatiotemporal evolution of these areas in Wuxi area using
the support vector machine (SVM) classification method and the geographic detector model based
on Landsat satellite image data from 1985 to 2020. The results revealed that: (1) Natural wetlands
were prominent in Wuxi area, with an average proportion of 70%, and although they exhibited a
downward trend over the last ten years, the scale of natural small and micro wetlands increased
1.5-fold—from 4349.59 hm2 in 1985 to 10,841.59 hm2 in 2020. (2) The small and micro wetlands in
Wuxi area had obvious seasonal variations, with most being 0.1–1 hm2 and 1–3 hm2, respectively.
From the perspective of spatial distribution, they were primarily distributed in Yixing district, which
accounts for 34% of Wuxi area. (3) The distribution of small and micro wetlands was systematically
affected by natural and human activities. The main factors that affected the distribution of small and
micro wetlands were the average annual temperature and GDP, with the interactions between all
factors being nonlinear and bi-linear. The influences of natural factors on small and micro wetlands
were weakened, with human activities steadily emerging as the dominant factor that affected their
distribution. The results of this study can provide supportive data and a scientific basis for the
ecological restoration and protection of wetlands.

Keywords: Wuxi area; natural wetland; small and micro wetlands; driving factors; geographical detector

1. Introduction

Wetlands are among the most productive and sensitive ecosystems in the world [1];
they provide indirect, albeit essential, ecosystem services such as water conservation [2],
water purification, carbon sequestration, and biodiversity conservation. The spatial distri-
bution of wetlands is a heterogeneous network comprising many small and micro wetlands,
as well as a few large wetlands. Small and micro wetlands are important for the support
of biodiversity [3], as they can serve as transit sites for species migration, provide critical
habitats for certain insects, waterbirds, etc., and support endangered species and the rich-
ness of rare species more effectively than large wetlands [4]. Small and micro wetlands are
highly sensitive to hydrological and climatic conditions, and the loss of small and micro
wetlands significantly weakens the structures and functional characteristics of ecological
networks [5]. Small and micro wetlands also provide critical watershed functions; thus,
their disappearance will seriously impact the potential for nutrient treatment at the land-
scape scale. Therefore, they must be more seriously considered in wetland conservation
and restoration efforts [6]. Recently, researchers have mainly focused on the functions of
independent small and micro wetlands at small regional scales, particularly small and
micro wetlands in ponds and lakes [7,8]. However, there is a lack of specific discourse on
the overall changes and driving factors behind small and micro wetlands at the regional
scale [9–11].
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The current research method for small and micro wetlands is mainly a field survey;
however, unmanned aerial vehicle (UAV) detection and remote sensing interpretation
are also utilized [12–14]. Although field surveys provide accurate data, they are time-
consuming and slow to update [7]. On the other hand, UAVs offer continuous dynamic
detection, and they come at a higher cost [14]. Remote sensing technology, with its strong
timeliness, wide coverage, large amount of information, and short update period, is an
indispensable technical tool for wetland surveys [15–17]. Currently, the extraction of
wetland information is mainly based on Landsat series, Sentinel series, and other high-
resolution satellite images [18–20]. The main methods used to extract information about
wetland water bodies are the threshold value method, the water body index method,
and algorithmic model extraction [21,22]. The threshold method is simple to calculate,
but the threshold value is often difficult to determine, resulting in unstable classification
results [23]. Water body index methods, such as the commonly used NDWI (normalized
difference water index), MNDWI (modified normalized difference water index), and NDVI
(normalized difference vegetation index) indicators, are more widely used and provide
better results [24,25]. The NDWI index is helpful for distinguishing open water conditions,
the MNDWI index facilitates the classification of areas characterized by shallow water,
mud, and vegetation mosaics, and the NDVI index can easily distinguish bare soil from
vegetated soil [26]. The algorithmic model extraction is not universally applicable, although
it is accurate [27]. In terms of classification, the most recent applications include traditional
supervised and unsupervised classification, as well as machine learning algorithms such
as random forest (RF) and support vector machines (SVM) [28,29]. Traditional manual
visual classification has high accuracy but is time-consuming and prone to errors [30]. The
RF classification can determine the optimal parameter combination based on the number
of regression trees (t) and the number of variables used by each node in the tree (m),
and it can carry out training samples, but it is easy to overfit [31]. The SVM algorithm
has the advantages of small sample training and support for high-dimensional feature
spaces, along with high accuracy and wide applicability [32], which have been verified
in the studies of Balogun et al. [33], Ghosh et al. [34], and Zhang et al. [35]. Therefore,
based on Landsat series images with a long time series, this paper intends to use the water
index method for feature extraction and SVM classification for interpretation to obtain the
information of small and micro wetlands in the study area.

A number of studies have found that wetlands in various regions are facing threats
from both natural and anthropogenic factors, such as climate change and alterations in land
use and land cover [36]. These factors exert linear as well as non-linear impacts on wetland
changes, making it crucial to understand the drivers of these changes [37]. Previous studies
have investigated the reasons for the decline in small and micro wetlands and identified
several potential factors, such as socio-economic factors such as urbanization-induced shifts
in land use, changes in population density, and road networks and natural factors such as
climate and topography [38–40]. The methods employed to study the drivers of changes
in small and micro wetlands include logistic regression, correlation analysis, and cluster
analysis [41–43]. The geodetector model is a statistical approach based on spatial ANOVA
for the detection of spatial heterogeneity and the exploration of its driving mechanisms [44].
It overcomes the limitations of traditional statistical methods and can accurately identify
the contribution of individual factors and their interactions, as well as test for significant
differences between groups [45]. The geodetector model has been successfully applied to
the study of spatial differentiation and influencing factors in the contexts of urbanization
expansion [46], land use change [47], vegetation cover change [48], landslides [49], wetland
change [50], etc. Therefore, the geodetector model can be utilized to study the causes of
small and micro wetland changes.

The Yangtze River Delta region, the second-largest delta in the world, holding more
than one-fifth of China’s wetland resources. However, while most of the large wetlands in
the watershed have been explored, little research has been conducted on small and micro
wetlands, and there is a scarcity of basic data. This study seeks to address this gap by using
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Landsat imagery from 1985 to 2020 to extract wetlands in Wuxi through SVM classification
and explores the influencing factors on the evolution of small and micro wetlands in Wuxi
area by combining this with the geodetector model. The study aims to: (1) analyze the
spatiotemporal distribution and dynamic changes of small and micro wetlands in Wuxi
over the past 35 years; (2) explore the relationship between small/micro wetlands and
wetland change in Wuxi area; and (3) quantify the contribution of climate change and
human activities to the changes in micro and small wetlands. This study is helpful in
understanding the changes of small and micro wetlands under the influence of climate
change and strong human activities, and it also provides ideas for the research of small and
micro wetlands in other areas.

2. Materials and Methods
2.1. Study Area

Earlier studies have investigated wetlands on a large scale; however, they have rarely
been investigated at small and medium scales. To illustrate the evolution of small and
micro wetlands in the Taihu Lake Basin, this investigation selected Wuxi area as the study
region, including the urban and rural areas under its jurisdiction: Jiangyin district, Huishan
district, Xishan district, Liangxi district, Jingkai district, Xinwu district, Binhu district, and
Yixing district, which is situated between 31◦07′N–32◦02′N and 119◦33′E–120◦38′E. Wuxi
is an important prefecture-level metropolis in the Taihu Lake Basin of the Yangtze River
Delta corridor, with a total area of 4628 km2. It is home to a humid subtropical monsoon
climate, with high temperatures and rainfall in the summer and mild, dry winters. The
annual average temperature and precipitation are 16.2 ◦C and 1121.7 mm, respectively. The
city is dominated by a plain that faces the Yangtze River in the north, is crisscrossed by
rivers and lakes, and has numerous and widely distributed wetlands. The total wetland
area accounts for ~22.5% of the national land area. In 2020, the conservation rate of natural
wetlands reached 62% (Figure 1).
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Figure 1. Location of the Wuxi area.

2.2. Data Sources

Remote sensing datasets were obtained from the United States Geological Survey
(USGS, https://www.usgs.gov/, accessed on 30 September 2021). Landsat images were
selected from Landsat 4/5 TM and Landsat 8 OLI, with a spatial resolution of 30 m × 30 m
and a row number of 119/38. The image follows the selection of plant growing season
months and cloud cover <10% as far as possible. Under the influences of cloud cover
interference and image quality, 11 scene image data were selected (Table 1).

https://www.usgs.gov/
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Table 1. Description of data used in the present study.

Data Type Data Year Date of Acquisition Spatial
Resolution (m) Sources

Remote sensing
Landsat 4/5 TM

1980 01/11 30 × 30

USGS: https://www.usgs.gov/
(accessed on 30 September 2021)

1990 10/08 30 × 30

2000 04/26, 06/13, 09/17 30 × 30

2010 05/24, 10/31, 12/18 30 × 30

Landsat 8 OLI 2020 03/16, 05/19, 09/08 30 × 30

Natural factors

Temperature

2000, 2010, 2020

1000 × 1000 The National Meteorological
Information Center

(http://data.cma.cn/, accessed
on 28 July 2022)

Precipitation 1000 × 1000

DEM, Slope 2020 30 × 30
Geospatial Data Cloud:

http://www.gscloud.cn/
(accessed on 28 July 2022)

Anthropogenic
factors

Population 2000–2020 1000 × 1000
WorldPop:

https://www.worldpop.org
(accessed on 28 July 2022)

Gross Domestic
Product (GDP) 2000–2020 1000 × 1000

Resources and Environmental
Sciences: http://www.resdc.cn
and Wuxi Statistical Yearbook

(accessed on 28 July 2022)

Roads 2000–2020
Openstreetmap: https:

//www.openstreetmap.org
(accessed on 28 July 2022)

Land use/land
cover

1985

30 × 30

Resources and Environmental
Science Data Center of the

Chinese Academy of Sciences:
http://www.resdc.cn (accessed

on 28 July 2022)

1990

2000

2010

2020

The temperature and precipitation data (2000–2020) were collected from the National
Meteorological Information Center (http://data.cma.cn/, accessed on 28 July 2022). ANUS-
PLIN 4.2 software was used to interpolate the raster meteorological data, after which the
ArcGIS raster computing tool was used to calculate the average annual temperature and
precipitation. The Global Digital Elevation Model (GDEM), with a resolution of 30 m,
was downloaded from the Geospatial Data Cloud (http://www.gscloud.cn/, accessed on
28 July 2022), and the DEM slope was extracted using ArcGIS software.

Population density data (2000–2020) were obtained from the WorldPop dataset
(https://www.worldpop.org (accessed on 28 July 2022)), with a resolution of 1 km. The
GDP data (2000–2020) were obtained from the Resources and Environmental Sciences
(http://www.resdc.cn, accessed on 28 July 2022) of the Chinese Academy of Sciences
and Wuxi Statistical Yearbook, with a resolution of 1 km after spatial interpolation. The
vector data for major roads (e.g., national and provincial roads) and railways were from
Openstreetmap (https://www.openstreetmap.org, accessed on 28 July 2022), with a reso-
lution of 1 km, and the distances from the main roads were calculated using the Euclidean
distance method. The land use and land cover data (1980–2020) were obtained from
the Resources and Environmental Science Data Center of the Chinese Academy of Sci-
ences (http://www.resdc.cn, accessed on 28 July 2022). The spatial resolution was 30
m, and the land use types were divided into six categories (cultivated land, woodland,
grassland, water, construction land, and unused land). Basic geographic data (study bound-
ary) were acquired from the National Geographic Information Center of China (NGCC,
http://www.NGCC.cn, accessed on 28 July 2022).

https://www.usgs.gov/
http://data.cma.cn/
http://www.gscloud.cn/
https://www.worldpop.org
http://www.resdc.cn
https://www.openstreetmap.org
https://www.openstreetmap.org
http://www.resdc.cn
http://data.cma.cn/
http://www.gscloud.cn/
https://www.worldpop.org
http://www.resdc.cn
https://www.
http://www.resdc.cn
http://www.NGCC.cn
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2.3. Methodology

The method flow chart of this study is depicted in Figure 2. The method framework
consists of three major parts. First, enhanced images were obtained based on NDVI and
MNDWI, interpretation markers were established, SVM was used to extract wetland
information in the region, and the dynamic change characteristics of small and micro
wetlands were obtained from remote sensing images. Second, the transfer matrix of land
use types including wetlands was obtained by reclassifying the data of land use types. The
CA-Markov model was applied to predict the future wetland change trend. Finally, the
driving factors were analyzed using the geographic detector, and the influences of natural
factors and human activities on the changes in small and micro wetlands were discussed.
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2.3.1. Wetland Dynamic Analysis

Wetlands are threatened on a global scale due to anthropogenic activities and climate
change, manifested as reduced wetland areas and changes in vegetation or land cover.
Understanding these changes can assist with the protection of wetland ecosystems. In the
literature, there is no clearly defined spatial range and water depth for small and micro
wetlands, and the area threshold for distinguishing them is broad and diverse. Based
on the universal definition of wetland in the world and considering the characteristics of
wetlands, for this study, water bodies with an annual or seasonal presence of water, an
average depth < 4 m, and areas of <8 hm2, including lakes, swamps, reservoirs, and rivers
with widths of <10 m and lengths of <5000 m, were defined as small and micro wetlands.

In this study, ENVI 5.3 was employed to conduct a series of image preprocessing tasks
(e.g., mosaic cutting, radiometric calibration, atmospheric correction, etc.) on the acquired
remote sensing images, after which the modified normalized water index (MNDWI) was
used for water extraction. The normalized difference vegetation index (NDVI) was used
for vegetation extraction, and the corresponding enhanced images were obtained. The
interpretation signs were established based on the salient features of the enhanced images.
The support vector machine classification (SVM) was utilized to extract the wetland data
for the region. Using the Kappa coefficient and the overall accuracy test, the data was
transferred to ArcGIS 10.5 for manual visual interpretation. The small and micro wetlands
were classified to acquire the spatial and temporal characteristics of their changes in Wuxi
area. The calculation formulae of the improved normalized water and vegetation indices
are as follows:

WMNDWI =
BGreen − BMIR
BGreen + BMIR

(1)

where BGreen represents the reflectance of the green light band (band 2 in TM data and
band 3 in OLI data); BMIR represents the mid-infrared band (band 5 in TM data and band 6
in OLI data) reflectance [51].
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WNDVI =
BNIR − BRED
BNIR + BRED

(2)

where BNIR represents the reflectance of the near-infrared band (band 4 in TM data and
band 5 in OLI data); BRED refers to the red light band (band 3 in TM data and band 4 in
OLI data) reflectance [52].

To effectively understand the processes involved in wetland changes (based on land
use data from 1980 to 2020), the land use transformation matrix was used to analyze the
spatiotemporal changes in land use. Changes in Wuxi area wetlands were quantitatively
analyzed and supplemented, and the CA-Markov model was used to predict the land use
status of Wuxi area in 2030. The land use transfer matrix is a method used to describe the
directions and levels of changes in land use type transfers [53]:

L(t+1) = Pij × L(t) (3)

P =

P11 P12 . . .
P21 P22 . . .
Pm1 Pm2 . . .

P1m
P2m
Pmm

 (4)

where L(t+1) and L(t) are the land use/land cover conditions at (t + 1) and (t), respectively,
and Pij is the transition probability matrix of a certain state. Furthermore, 0 ≤ Pij < 1 and
∑m

j=1 Pij = 1 (i, j = 1, 2, . . . m) comprise the migration probability matrix. Specific procedures
can be found in the literature [54,55].

2.3.2. Analysis of Driving Factors behind Wetland Changes

1. Factors selection

To detect the drivers behind the changes in the small and micro wetlands of Wuxi area,
four individual factors were selected for this study (distance from main roads (X1), average
GDP (X2), population density (X3), and land use type (X4)). Two natural factors (annual
precipitation (X5) and annual average temperature (X6)) and two topographic factors (slope
(X7) and elevation (X8)) were used to detect changes in the Wuxi wetlands (Table 2). The
wetland change area was taken as the dependent variable, and the eight driving factors
were taken as independent variables (Table 3). Based on Create Fishnet in ArcGIS 10.5,
1 km × 1 km, 2 km × 2 km, 3 km × 3 km, 4 km × 4 km, and 5 km × 5 km grids were
created. A total of 4989, 1318, 612, 360, and 236 sample points were generated, respectively,
and a 2 km × 2 km grid was determined following the optimal scale selection [56]. The
input variables of the Geodetector model can only be discrete variables. Thus, the selected
factors were discretely transformed and reclassified into six categories based on the natural
break point method (Figure 3). Subsequently, the Extract Values to Point function in ArcGIS
was utilized to extract the data of all variables according to the locations of sample points.
The single-factor contributions of small and micro wetlands, as well as the relationships
between small and micro wetlands and driving factors, were quantified.

Table 2. Influencing factors of small and micro wetlands change.

Categories Factors Code Unit

Anthropogenic activity

Distance to main roads X1 km
GDP X2 104 yuan/km2

Population density X3 person/km2

Land-use type X4 categorical

Climate
Average annual precipitation X5 mm
Average annual temperature X6 ◦C

Topography Slope X7 degree
Elevation X8 m
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Table 3. Factors grading standards.

Categories
\Factors

Distance to
Main Roads GDP Population

Density Land-Use Type
Average
Annual

Precipitation

Average
Annual

Temperature
Slope Elevation

1 0–1.1 1442–8408 0–1610 Farmland 1197.1–1268.8 14.88–16.14 0–2 3–10
2 1.1–2.5 8408–15,799 1610–4258 Forestry 1268.8–1311.4 16.14–16.88 2–6 10–20
3 2.5–4.6 15,799–29,191 4258–9396 Grassland 1311.4–1350.1 16.88–17.29 6–12 20–30
4 4.6–7.3 29,191–55,251 9396–19,441 Water body 1350.1–1393.4 17.29–17.45 12–20 30–100

5 7.3–11.6 55,251–124,436 19,441–37,046 Urban–rural
construction land 1393.4–1445.2 17.45–17.60 20–30 100–300

6 11.6–18.6 124,436–228,808 37,046–67,612 Unused land 1445.2–1548.2 17.60–17.80 >30 300–585
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2. Geodetector Model

Both natural and anthropogenic factors can have significant impacts on wetlands.
Geographical detectors are used extensively to analyze the mechanisms of various influ-
encing factors due to their unique advantages. General geographical detectors include four
components: the core, which is a factor detector that quantifies the relative importance
of different geographical variables, working in conjunction with interaction, risk, and
ecological detectors [57]. For this paper, the driving factors of changes in small and micro
wetlands were primarily analyzed through factor and interaction detectors.

The general form was as follows:

(1) Factor detector

This module was used to detect the spatial heterogeneity of variables and the extent to
which factors explained the spatial heterogeneity of variables [50]. The q statistic value was
employed to quantitatively detect the explanatory degree of driving factors for the spatial
differentiation of small and micro wetlands.

q = 1− SSW
SST

(5)

SSW = ∑L
h=1 N

hσ2
h

, SST = Nσ2 (6)

where q represents the explanatory power of driving factors for small and micro wetlands
in the area; SSW is the sum of variance of the factors within all layers; and SST is the total
variance of the whole region. h is the hierarchy of the class number of driver X, h = 1, . . . ;
L is the number of layers of the dependent variable or independent variable; Nh and N
are the number of units in layer h and that in the entire region, respectively; σ2

h and σ2 are
the variances of the attribute values of the dependent variable at layer h and the whole
region, respectively [44]. The statistical value of q is between [0,1], which increases with the
intensity of stratified heterogeneity [58]. The larger the q value, the greater the explanatory
power of driving factor X for small and micro wetlands. The specific calculation steps and
an explanation of the equations can be found in the literature [59,60].

(2) Interaction detector

This module can identify the interactions between the two drivers for the wetland.
Initially, the q values of the two driving factors of wetlands (q(X1) and q(X2)) were calcu-
lated, respectively, and the two layers of variables X1 and X2 were superimposed to obtain
a new layer: X1∩X2 (interaction was denoted by ∩ in this study), after which the q value
of the interactive effect (q(X1∩X2)) was calculated and compared with q(X1) and q(X2) to
determine the interaction modes between the two driving factors (Table 4) [61–63].

Table 4. Interaction detection types.

Interaction Relationship Interaction

q(X1∩X2) > q(X1) + q(X2) Enhanced, nonlinear
q(X1∩X2) = q(X1) + q(X2) Independent

q(X1∩X2) > Max(q(X1), q(X2)) Enhanced, double factors
Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1), q(X2)) Weakened, single-factor nonlinear

q(X1∩X2) < Min(q(X1), q(X2)) Weakened, nonlinear

3. Results
3.1. Dynamic Changes in Natural Wetlands and Small-Micro Wetlands of Wuxi Area

In this study, the Support Vector Machine (SVM) was used for wetland extraction,
and all the classification results passed the Kappa coefficient validation (all Kappa coeffi-
cients >0.9) and the overall accuracy validation (overall accuracy verification >95%) with
a high classification accuracy. Further, combined with the paddy field data during the
study period, the natural wetland stripping was realized based on the ArcGIS Erase tool.
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According to the calculations, Wuxi area is dominated by natural wetlands, where the
multi-year average retention of natural wetlands was stable at 79% during the study period.
Therefore, this study is focused on the natural small and micro wetlands of Wuxi area. To
further verify the accuracy of the natural small and micro wetlands, we randomly selected
several sample areas in the study area to be compared with the third adjustment data of
the National Land Survey published by Wuxi Municipal Government, using 2020 as an
example. The error values were obtained (Table 5). It is not difficult to find that the error
values were small.

Table 5. Accuracy verification of remote sensing image extraction data.

Serial Number Geographical
Coordinate

Image Extraction
Area (hm2)

Field Survey
Area (hm2)

Difference
(hm2) Error (%) Location

1 31◦14′N, 119◦46′E 4.76 4.83 −0.07 −1.45 Yixing district
2 31◦15′N, 119◦50′E 2.41 2.50 −0.09 −3.60
3 31◦33′N, 120◦13′E 2.93 2.98 −0.05 −1.68 Binhu district
4 31◦35′N, 120◦6′E 4.71 4.88 −0.17 −3.48 Huishan district
5 31◦46′N, 120◦34′E 1.85 1.94 −0.09 −4.64 Jiangyin district
6 31◦52′N, 120◦4′E 2.23 2.33 −0.10 −4.29

As shown in Figure 4, the natural wetland resources of Wuxi exhibited a fluctuating
growth trend from 1985 to 2020 but have shown a degrading trend since 2010. From
1985 to 2010, the wetland area increased significantly—from 8.68 × 104 hm2 in 1985 to
10.33 × 104 hm2 in 2010—which translated to an increase of ~19%. Following 2010, the
total natural wetlands area decreased by 10% to ~9.39 × 104 hm2. In terms of quantity, the
number of natural wetlands in Wuxi area reached 1.50 × 104 in 2020, which was nearly
2.7 times that in 1985 (0.55 × 104). In terms of administrative regions, Yixing district and
Binhu District were the top areas for natural wetlands, at 44% and 38%, respectively, by
2020. The trends in changes in wetland areas in each district were basically consistent with
those of the total natural wetland area changes in Wuxi area, where, after a continuous
increase until 2010, there was a decline over the last decade. Among them, Liangxi District
and Xinwu District lost more natural wetlands area compared with the value in 1985,
decreasing by 59% and 23%, respectively. In contrast, the natural wetland areas in Yixing
and Huishan Districts showed an increasing trend prior to 2000 but underwent a continued
decrease subsequently.

In terms of area, the natural small and micro wetlands in Wuxi area were divided
into four categories (0.1–1 hm2, 1–3 hm2, 3–5 hm2, and 5–8 hm2). Figure 5 reveals the
spatial distribution and proportion of small and micro wetlands for each district. From
the spatial distribution, the micro and small wetlands in Wuxi were mainly distributed in
Yixing district, and the area of natural micro and small wetlands accounted for 34% of Wuxi
area. It was observed that the small and micro wetland areas of each district in Wuxi were
mainly 0.1–1 hm2 and 1–3 hm2, with an average proportion of 38% and 32%, respectively.
The area and patch number of small and micro wetlands increased, particularly in Yixing
and Jiangyin Cities. It is worth noting that although the scale of natural small and micro
wetlands in each district increased, the spatial composition of natural small and micro
wetlands in each district was significantly altered, where the proportion of 3–5 hm2 and
5–8 hm2 in each district decreased significantly after 2010, with an average proportion of
only 13% and 12%, respectively. The spatial and temporal distributions of small and micro
wetlands have also changed. The distribution of small and micro wetlands in the south of
Jiangyin district was higher before 1990, while the distribution of small and micro wetlands
along the Yangtze River in Jiangyin district increased significantly after 1990. Prior to 2000,
many wetlands were distributed in the southern portion of Yixing district; however, by
2020, this trend was reversed. Many small and micro wetlands were distributed in the
northern portion of Yixing, with Ge Lake as the central site.

The change trend of the total number and area of natural small and micro wetlands
in Wuxi area has been consistent with that of the total area, which has increased over
the last 35 years (Figure 6a). In terms of area, most natural small and micro wetlands in
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Wuxi are 0.1–1 hm2 and 1–3 hm2. In 1985, the natural small and micro wetlands area was
~4349.59 hm2, whereas in 2020, it was ~10,841.59 hm2, which was ~1.5-fold higher. In terms
of quantity, Wuxi is dominated by small and micro wetland patches (0.1–1 hm2), which
will diminish with increased patch areas. In 2020, the number of small and micro wetland
patches at 0.1–1 hm2 accounted for 81%, while the number of other types of small and
micro wetland patches accounted for 14%, 3%, and 2%, respectively. In 1985, the number of
natural small and micro wetland patches in Wuxi area was 5366, whereas in 2020, it was
14,690, an increase of nearly 1.7 times.
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Seasonal changes in the natural small and micro wetlands of Wuxi from 2000 to
2020 were further analyzed (Figure 6b) and were found to be obvious, with more and
expanded wetland areas during the summer and autumn and fewer wetland areas in
the spring. In contrast to the year 2000, both the numbers and areas of small and micro
wetlands increased significantly in Wuxi, increasing by 31% by the spring of 2020, by 50%
in summer, and by 71% in autumn. The number of wetlands increased by 43% in the spring
and nearly doubled in summer and autumn. This confirmed that the small and micro
wetlands in Wuxi were extensively fragmented and that wetland resources were patched.
Seasonal variations within groups were also analyzed for small wetlands (as shown in
Figure 6c). The results showed that the trends of seasonal changes in small wetlands of all
categories aligned with the overall trend. However, compared to 2000, the proportion of
other categories of small wetlands in summer and autumn declined continuously, except
for small and micro wetlands, with an area of 0.1–1 hm2 as of 2020. Notably, the seasonal
changes of small and micro wetlands with an area of 5–8 hm2 have stabilized over the past
20 years, with only a 0.2% change in each season. The trends of seasonal changes in the
number of small wetlands in each category followed the trends of changes in area. The
smaller wetlands (0.1–1 hm2) have become more prominent in terms of their proportion
and more sensitive to seasonal fluctuations, indicating the increased vulnerability of smaller
wetlands to seasonal disturbances.

3.2. Relationship between Wetlands and Land Use in Wuxi Area

Wetlands are an important type of land use and land cover. The extent of land use
(LULC) changes in the study area (Figure 7) and the Sankey diagram that reflected them
(Figure 8) revealed that the largest proportion of land use was arable land. The land
use transfer matrix is a tool used to quantify the changes in land use types. It does this
by analyzing the shift in land use from the start to the end of the study period. Inflow
refers to the transformation of one land class into another, while outflow refers to the
transformation of one land type into other land types. The inflow and outflow reflect the
area and structure transformation of each land type, and we can understand the general
change trend and structural change of regional land use types [64]. The overall attributes of
land use changes in Wuxi area (1980–2020) encompassed urbanization, a rapid increase in
urban and rural construction, and a sharp decrease in cultivated land. From 1980 to 2020,
the various types of land use were significantly altered, with the greatest changes occurring
in the inland portions of the study area via urban and rural construction. The urban and
rural construction area in Wuxi more than tripled, climbing from 40,167.63 hm2 in 1985
to 131,385.42 hm2 in 2020, with the total land category proportions increasing from 6.23%
to 19.54%, respectively. The inflow of urban and rural construction land (103,513.56 hm2)
comprised mainly arable land (88,265.78 hm2), followed by natural wetlands, small and
micro wetlands, and woodlands. There was also a small amount of grassland outflow
to construction land, with the largest outflow for each land category being from arable
land (115,021.23 hm2). The outflow of arable land was much smaller than the inflow, with
the inflow area being only 1.40% of the outflow area, which was mainly transferred to
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construction land and natural wetlands. Specifically, urban and rural construction land
accounted for 76.74% of the total outflow of arable land. The water area also fluctuated to a
certain extent, with the main outflow transfer of water bodies going to natural wetlands.
However, the inflow and outflow areas were mostly balanced, which was likely due to
86.33% of the natural wetlands flowing back into the water bodies. Over the last 35 years,
a total of 4703.57 hm2 of small and micro wetlands was outflowed, of which 61.01% was
transferred to urban construction land, with only 23.15% of the construction land being
transferred back to the small and micro wetlands. Cultivated land was the main inflow
source for small and micro wetlands (6462.14 hm2), which accounted for 52.13% of the
inflow source.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 22 
 

 

   

  

 
 
 
 

 

Figure 7. Changes in land use types in Wuxi area from 1980 to 2020: 1980 (a), 1990 (b), 2000 (c), 2010 
(d), 2020 (e). 

 
Figure 8. Sankey map of land use changes in Wuxi area from 1985 to 2020. 

Understanding land use and land cover changes is useful in the development of ef-
fective environmental management strategies for coping with wetland degradation and 
loss [64]. Thus, a CA-Markov model was also applied in this study to predict the LULC 
for Wuxi area. The change trends for natural wetlands were consistent with those of water 
bodies; therefore, we predicted the future status of water bodies to identify the changing 
trends in wetlands. To verify the accuracy of our forecast, the CROSSTAB module of 
IDRISI 17.0 was used to verify the existing data and the LULC forecast for 2020. The veri-
fied CA-Markov model was used to predict the LULC in Wuxi in 2030, with a Kappa co-
efficient of 0.92, which could better reflect the LULC estimate. Figure 9 displays the sim-
ulated LULC maps and land use dynamics for 2020 and 2030, respectively, with future 
projections revealing that the level of urbanization increased further compared to that in 
2020, with arable land and water remaining the main inflow sources. The future estimated 

Figure 7. Changes in land use types in Wuxi area from 1980 to 2020: 1980 (a), 1990 (b), 2000 (c),
2010 (d), 2020 (e).

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 22 
 

 

   

  

 
 
 
 

 

Figure 7. Changes in land use types in Wuxi area from 1980 to 2020: 1980 (a), 1990 (b), 2000 (c), 2010 
(d), 2020 (e). 

 
Figure 8. Sankey map of land use changes in Wuxi area from 1985 to 2020. 

Understanding land use and land cover changes is useful in the development of ef-
fective environmental management strategies for coping with wetland degradation and 
loss [64]. Thus, a CA-Markov model was also applied in this study to predict the LULC 
for Wuxi area. The change trends for natural wetlands were consistent with those of water 
bodies; therefore, we predicted the future status of water bodies to identify the changing 
trends in wetlands. To verify the accuracy of our forecast, the CROSSTAB module of 
IDRISI 17.0 was used to verify the existing data and the LULC forecast for 2020. The veri-
fied CA-Markov model was used to predict the LULC in Wuxi in 2030, with a Kappa co-
efficient of 0.92, which could better reflect the LULC estimate. Figure 9 displays the sim-
ulated LULC maps and land use dynamics for 2020 and 2030, respectively, with future 
projections revealing that the level of urbanization increased further compared to that in 
2020, with arable land and water remaining the main inflow sources. The future estimated 

Figure 8. Sankey map of land use changes in Wuxi area from 1985 to 2020.



Remote Sens. 2023, 15, 1152 13 of 21

Understanding land use and land cover changes is useful in the development of
effective environmental management strategies for coping with wetland degradation and
loss [64]. Thus, a CA-Markov model was also applied in this study to predict the LULC
for Wuxi area. The change trends for natural wetlands were consistent with those of water
bodies; therefore, we predicted the future status of water bodies to identify the changing
trends in wetlands. To verify the accuracy of our forecast, the CROSSTAB module of IDRISI
17.0 was used to verify the existing data and the LULC forecast for 2020. The verified
CA-Markov model was used to predict the LULC in Wuxi in 2030, with a Kappa coefficient
of 0.92, which could better reflect the LULC estimate. Figure 9 displays the simulated
LULC maps and land use dynamics for 2020 and 2030, respectively, with future projections
revealing that the level of urbanization increased further compared to that in 2020, with
arable land and water remaining the main inflow sources. The future estimated total water
outflow area was ~11,090.66 hm2, representing a reduction of ~12% in contrast to that in
2020. In terms of allocation, 57% of the outflow area will be for cultivated land, and 35%
will be for urban and rural construction land. This indicated that the wetlands will be
greatly affected and further damaged by human activities in the future, primarily through
the occupation of cultivated and urban construction land.
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3.3. Analysis of Driving Factors behind Natural Small and Micro Wetland Changes

The influences of the driving factors behind small and micro wetland changes were
thoroughly analyzed using factor detectors, which were obtained by calculating their q
values (Figure 10). In 2000, 2010, and 2020, the influences of impact factors on small
and micro wetlands fluctuated to a certain extent. The exception was the land use/cover
type (LULC) factor that exhibited increasing fluctuations. The other influencing factors
on small and micro wetlands were as follows: distance from main roads (RD), GDP,
population density (POP), annual average precipitation (PRE), annual average tempera-
ture (TEM), slope (SL), and elevation (ELE), all of which showed a decreasing trend. In
2000, the explanatory abilities of each driving factor to wetland changes from high to low
were TEM > GDP > ELE > POP > SL > PRE > RD > LULC. In 2010, they were: GDP > RD >
TEM > LULC > PRE > POP > SL > ELE, while, in 2020, they were: TEM > GDP> POP >
LULC > PRE > RD > SL > ELE. This indicated that the natural factors contributed more to
wetland changes prior to 2010, with the average annual temperature having the most sig-
nificant explanatory power (q > 0.04). From 2010, the explanatory power of socioeconomic
factors was enhanced. In 2010, the most significant explanatory power was the GDP and the
distance from the main roads, both of which exceeded 5%, followed by the average annual
temperature and LULC. In 2020, the most significant explanatory power was the average
annual temperature, followed by the GDP and population density. The q values of slope
and altitude were the lowest (q < 0.01) and had a negligible effect on the changes in small
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and micro wetlands. The average explanatory powers of each driving factor for natural
small and micro wetlands were TEM > GDP > POP > RD > PRE > LULC > ELE > SL. The
results of the factor detector indicated that the changes in small and micro wetlands were
impacted by natural and anthropogenic activities, mainly through the average annual
temperature and GDP.
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The results of the interaction detector showed (Figure 11) that the interactions between
the driving factors were only enhanced bi-linearly and nonlinearly. This indicated that the
interactions between any two factors of the eight selected for this study were greater than
that of any single factor and that there was no weakening effect. These results implied
that the combined effects of all factors had more explanatory power for the changes in
small and micro wetlands than single factors and played a more positive driving role. In
2000, GDP and ELE and POP and ELE showed bi-linear enhancement, and the interactions
between other factors showed nonlinear enhancement. The interactions between GDP
and TEM were the strongest, and the interaction degree was ~14%. In 2010, GDP and
POP and SL and ELE showed bi-linear enhancements, and the interactions between the
other factors showed nonlinear enhancements. The interactions between RD and TEM
were the strongest. In 2020, LULC and SL showed a bi-linear enhancement among all
factors, while the interactions between other factors showed nonlinear enhancements, with
the interactions between GDP and POP being the strongest. In summary, TEM and GDP
exhibited strong combined effects with all factors and had a high explanatory power, which
indicated that the changes in the small and micro wetlands of the study area were the result
of the combined effects of different driving factors. The changes in any factor had an impact
on small and micro wetlands, particularly the annual average temperature and GDP.
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4. Discussion

The accurate extraction and monitoring of changes in wetland areas and their spatial
distribution are prerequisites for wetland conservation and restoration [65]. Landsat
series images possess high spatial and temporal resolution and are easy to process and
obtain, which makes them suitable for wetland data extraction and dynamic monitoring
at small and medium regional scales [66]. For this study, based on Landsat series images,
MNDWI and NDVI were employed to enhance the distinction between wetlands and
vegetation [52,67], and the SVM method was used to classify and extract the status of
overall, small, and micro wetlands in Wuxi area. Rahimi et al. [1] and Ahmed et al. [68]
also utilized such methods to study wetlands and obtained images with a high accuracy.
Therefore, the research strategy for this study had certain scientific underpinnings.

The analytical results of the extracted wetland attributes indicated that the natural
wetlands in Wuxi area showed a degrading trend over the last decade, which was similar
to the findings of Darrah et al. [69] and Wen et al. [70], implying that wetland coverage
is currently facing the threat of degradation on a global scale. The spatial and temporal
distribution of the total wetland area in China indicated that wetland areas in the middle
and lower reaches of the Yangtze River provinces showed a declining trend after 2010, and
this decline was closely related to local economic development and urban expansion [71].
Duan et al. [72] and Wu et al. [73] studied the southeast coastal wetlands and found that
the biggest loss of coastal wetlands was due to the change in the method of utilization,
which was mostly occupied for aquaculture farms and ports. We found that the scale
of small and micro wetlands in Wuxi area, particularly in Yixing district and Jiangyin
district, increased during the study period, while the area and number of small and micro
wetlands around the Taihu Lake area did not change much. The location of small and micro
wetlands in Yixing transferred from the south to the north from 1985 to 2020, with Ge Lake
as the central point. This is likely to be further influenced by the growing aquaculture
industry in conjunction with local development. From Figure 7, it was easy to recognize
that urban construction lands along the Yangtze River in Jiangyin district have been steadily
expanding since 1990. Considering that the distribution of small and micro wetlands along
the Yangtze River has increased significantly since 1990, it was speculated that this trend
may be closely related to increase localized industrial development and urbanization. This
study found that although the total number of small and micro wetlands increased, the
patches of large, small, and micro wetlands decreased in size, which meant that the wetland
resources in Wuxi were fragmented and dispersed. This was consistent with the results
of previous studies on wetland resources in the middle and lower reaches of the Yangtze
River [37,74,75].

The results of the geographic detector analysis in this study showed that both natural
and anthropogenic factors had certain influences that altered small and micro wetlands [76].
Natural factors were mainly manifested through climate change, temperature, and
precipitation [77]. You et al. [78] explored the impacts of climate change on the wetlands of
Poyang Lake and found that the stability of the wetlands was vulnerable to climate change,
especially with higher temperatures. Vegetation grows rapidly, and the wetlands are in
a healthy state; however, with higher temperatures, the precipitation decreases, and the
wetland area shrinks. Mu et al. [79] also studied Poyang Lake and believed that seasonal
drought and flood disasters under climate change were serious threats to wetlands. In
this study, the factors of temperature, precipitation, and topography were quantified, and
in the results of the factor detector, the contributions of natural factors were decreased.
The q value of the mean annual temperature decreased from 0.048 to 0.039, while that of
the annual average precipitation also decreased from 0.019 to 0.012. This indicated that
the impacts of climate change on small and micro wetlands in Wuxi area were gradually
diminished. Furthermore, according to meteorological data, it was found that the tempera-
ture in Wuxi has increased by 1.2 ◦C and that precipitation has increased by 49% over the
last two decades, revealing a warming and wetting trend. However, the natural wetland
resources of Wuxi area continued to show a decreasing trend, while the natural small
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and micro wetlands exhibited increasing trends. This indicated that climate change may
have positive effects on small and micro wetlands but has little effect on large wetlands.
The current and projected impacts of climate warming on wetlands have been extensively
studied in recent years, with some researchers suggesting that climate change may amplify
wetland losses [80]. Wang et al. [81] also concluded that the influence of the climate on
large wetlands is diminishing.

Several researchers believe that human activities make the relationship between so-
cioeconomic development and wetland conservation more complex than obvious climate
change [36,82–84]. Some studies suggest that the land use and land cover (LULC) changes,
especially the rapid expansion of urban areas, intensify the ecological vulnerability of
wetlands [85–87]. For example, research by Ricaurte et al. [88] found that 24% of wetland
degradation in Colombia was caused by urban land expansion. Dang et al. [89] concluded
that anthropogenic activities (e.g., the intensification of agricultural activities and the ex-
pansion of aquaculture) were the primary driving factors behind wetland loss. Similarly,
Yu et al. [90] analyzed the landscape pattern index of the Xixi wetland in Hangzhou and
concluded that socio-economic development, accompanied by the appearance of artificial
landscapes, was detrimental to the stability and protection of the ecosystem functions native
to the wetland. A considerable number of studies indicate that, with the rapid urbanization
process, human ecological consciousness is gradually improving, and the emergence of
artificial wetlands such as wetland parks is conducive to wetland protection [91,92]. As
mentioned by Vymazal et al. [93] and Gabr et al. [94], the use of constructed wetland to
treat sewage can alleviate the damage to natural wetland to a certain extent. Therefore,
this study also explored the relationship between human activities and small and micro
wetlands. This study observed that, during the study period, the main human activities
that induced changes in small and micro wetlands were GDP and population density,
which emerged as the leading factors in 2010. Simultaneously, interactions between natural
factors and human activities were discussed. In this study, the interactions between the
two factors were mainly manifested as nonlinear enhancement, implying that the changes
in small and micro wetlands were the result of the comprehensive effects of various factors.
It can be seen in Figure 11 that the interactions between the GDP and all other factors were
significant. In combination with the fluctuation and growth of land use contributions in
the factor detector analyzed above, and in conjunction with accelerating urbanization, it
was implied that, although natural and anthropogenic factors have a great influence on
the distribution of small and micro wetlands, human activities and socioeconomic factors
are gradually emerging as the dominant factors. This was akin to the results of earlier
studies [54,81], with the difference being that the results of this study also indicated that
small and micro wetlands may be more impacted by human activities in the future, and the
intensification of human activities may expand the scale of small and micro wetlands. On
one hand, this may be caused by the inflow generated during the transformation of land
use types, while on the other hand, it may be driven by management policies, such as the
return of farmland to wetlands and the construction of artificial wetlands, which increases
the small areas of wetland patches.

Since this study was based on remote sensing image extraction for the analysis of wet-
land changes, which was limited by the quality of remote sensing images and algorithms,
the results of the study will have some errors. In the future, we will use higher-resolution
remote sensing images to extract wetland data. Furthermore, changes in wetlands are
influenced by many factors. The influencing factors selected for this paper are not com-
prehensive and do not consider drought, hydrological connectivity, water pollution, food
production, etc. Future studies should consider additional factors that affect the change
distribution of small and micro wetlands. Despite the above limitations, this study pre-
dicted future land use changes and effectively quantified the relative contributions of each
influencing factor to small and micro wetlands. This research shows that both natural
and human factors have impacts on small and micro wetlands. Numerous studies have
revealed that human activities have certain negative impacts on wetland resources [95–97],
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and our findings were similar. However, the difference is that, with urbanization, increased
disturbances brought by human activities have certain positive impacts on small and mi-
cro wetlands, which increase the number of small and micro wetland patches. However,
whether this growth is consistent with the concept of sustainable development requires
further research and discussion. The results of this study can update our understanding
of the influencing factors of small and micro wetlands and provide useful references for
wetland management in the Yangtze River Delta region.

5. Conclusions

Based on the remote sensing data from 1985 to 2020 and the geographic detector
model, the impacts of natural factors and human activities on small and micro wetlands in
Wuxi area were quantitatively analyzed. The main conclusions were as follows:

(1) From 1985 to 2010, the area of natural wetlands in Wuxi increased by 19% (1.26× 104 hm2)
but decreased by 10% (0.94 × 104 hm2) after 2010. Furthermore, the proportion of
small and micro wetlands in the total area of natural wetlands increased from 5% in
1985 to 12% in 2020.

(2) The natural small and micro wetlands in Wuxi area showed a trend of scale expansion
from 1985 to 2020, which was manifested by the increase in the area and quantity
(1.5 times and 1.7 times, respectively), with obvious seasonal characteristics. The
majority of small and micro wetlands were 0.1–1 hm2 and 1–3 hm2, while the number
of small and micro wetland patches of large-area categories decreased.

(3) Small and micro wetlands were affected by natural factors and human activities.
Before 2010, natural factors were the main factors, whereas the contributions of
human factors increased after 2010. The average annual temperature was the main
natural factor that affected the changes in wetlands, while the GDP and population
density were the most significant human factors that impacted the distribution of
wetlands. Small and micro wetlands were influenced by the interactive enhancement
between the two factors.
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