
Citation: Zuo, H.; Guo, H. Structural

Nonlinear Damage Identification

Method Based on the Kullback–

Leibler Distance of Time Domain

Model Residuals. Remote Sens. 2023,

15, 1135. https://doi.org/10.3390/

rs15041135

Academic Editor: Giuseppe

Lacidogna

Received: 18 January 2023

Revised: 16 February 2023

Accepted: 16 February 2023

Published: 19 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Structural Nonlinear Damage Identification Method Based on
the Kullback–Leibler Distance of Time Domain Model Residuals
Heng Zuo and Huiyong Guo *

School of Civil Engineering, Chongqing University, Chongqing 400045, China
* Correspondence: guohy@cqu.edu.cn

Abstract: Under external load excitation, damage such as breathing cracks and bolt loosening
will cause structural time domain acceleration to have nonlinear features. To solve the problem
of time domain nonlinear damage identification, a damage identification method based on the
Kullback–Leibler (KL) distance of time domain model residuals is proposed in this paper. First,
an autoregressive (AR) model order was selected using the autocorrelation function (ACF) and Akaike
information criterion (AIC). Then, an AR model was obtained based on the structural acceleration
response time series, and the AR model residual was extracted. Finally, the KL distance was used
as a damage indicator to judge the structural damage source location. The effectiveness of the
proposed method was verified by using a multi-story, multi-span stand model experiment and
a simulated eight-story shear structure. The results show that the proposed structural nonlinear
damage identification method can effectively distinguish the structural damage location of multi-
degree-of-freedom shear structures and complex stand structures, and it is robust enough to detect
environmental noise and small damage.
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1. Introduction

Structural health monitoring (SHM) is a process for damage identification in civil
systems [1], and SHM of civil structures during operation is a prerequisite for ensuring their
safety and normal service. Traditional SHM is usually completed by manual inspection,
which is time-consuming and prone to error [2]. The benefit of the SHM system is that it can
replace conventional manual visual inspections to evaluate structural damage situations [3].
Currently, many automatic damage identification methods have been developed to replace
manual inspection [4].

In general, the structural damage of systems includes material damage or geometric
degradation. In the damage identification field, damage is usually assumed to be linear,
i.e., the stiffness of the structure or structural components did not change before or after
damage occurred. However, most damage in engineering structures is nonlinear [5,6].
Examples include crack edge contact and disengagement, which can lead to open and closed
breathing-like phenomena and nonlinear responses in the system during vibration [7];
friction slip; and bolt looseness [8]. In other words, the stiffness of nonlinear damaged
components will change during vibration processes.

Changes in structural physical parameters will cause changes in structural vibration
features [9]. In general, for a structure subjected to environmental loads, extracting dam-
age features from the structural vibration response is one of the most useful methods of
damage inspection [3]. The frequency response function (FRF) is one of the classic models
to describe the input–output relationship of structural dynamic systems. FRF contains
a large amount of structural modal information, which can describe structural dynamic
features accurately. The identification method based on FRF can effectively avoid the errors
caused by the traditional method based on structural modal information. Prawin et al. [5]
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extended the describing function method to distinguish the damage in the initially healthy
nonlinear system with limited measurements. The describing function method requires a
complete FRF of the underlying linear system; a new model based on nonparametric prin-
cipal component analysis (PCA) is adopted to overcome this requirement. Chomette [10]
proposed a breathing crack recognition method based on the direct zeros estimation of
higher-order FRF. This method identifies and locates breathing cracks by identifying the
antiresonances of the system.

The finite element model updating method modifies the structural finite element model
with the measured dynamic information of the structure and makes the structural dynamic
characteristics consistent with the measured dynamic characteristics of the structure; then,
damage identification is conducted by comparing finite model data with measured data.
Zheng et al. [11] proposed a structural damage identification method based on a sensitivity
analysis of power spectral density. This method first uses the pseudo-excitation method
to acquire the response and power spectral density of the structure under stationary and
random excitation, and then analyzes the sensitivity of the power spectral density. Finally,
this method was used to identify the location of structural damage and damage level.
Esfandiari [12] presented an approach to directly modify the parameters of the structural
finite element model. This approach modifies the model parameters based on the measured
structural frequency and mode shape data, and identifies structural damage by analyzing
the sensitivity relationship between the damage modal information and damage coefficient.
Mirzaee et al. [13] proposed an adjoint variable method for bridge damage identification.
This method can identify a bridge’s bending stiffness from the acceleration response data.
The calculated bridge bending stiffness was compared with the bridge bending stiffness in
the healthy state for damage identification.

The time series analysis method is a signal analysis method for extracting the char-
acteristics of a time series. Although this method already exists and is widely used in
other fields such as economics and weather forecasting, the time series analysis method
has been used in structural damage identification reports filed in recent years [3]. Damage
identification methods based on time series can distinguish damage using only structural
response data. Chen et al. [6] established an autoregressive moving average (ARMA) model
for structural acceleration data, used vector space cosine similarity (VSCS) to improve the
residual standard deviation damage indicator, and then used K-means cluster analysis and
Bayes discriminant analysis to classify the improved VSCS. Zhu et al. [14] used a sparse
regularization method to solve the underdetermined equations, and conducted a damage
indicator sensitivity analysis on the autoregressive coefficients of the ARMA model. The
research result shows that sparse regularization equations can accurately distinguish the
damage characteristics in the acceleration data. Mei et al. [15] presented a detection method
using an AR model and a pole-based optimal subpattern assignment (OSPA). The AR
model was obtained according to the structural response data, and then the OSPA was used
as a damage indicator for structural damage detection. However, the change of story mass
during the operation of the structure may lead to misjudgment in damage identification.
To identify changes in time series data features caused by changes in mass and stiffness
of a shear structure, Ngoan et al. [16] presented a damage detection approach based on
an ARMAX model and a structural motion equation; the researchers used the ARMAX
model’s parameters to establish a stiffness indicator and a quality indicator to identify
structural stiffness and quality changes, respectively.

Most damage identification methods require baseline data from when the structure
was undamaged, so that it can be compared with the test data to determine the structural
health status. However, many SHMs did not start when the structure was completed,
so it is often difficult to obtain baseline data in practical applications. To solve this prob-
lem, many researchers have studied baseline-free damage identification methods. Prawin
et al. [17] proposed a baseline-free detection approach for breathing crack identification
using acceleration time history responses. This approach uses the Fourier power spectrum
spatial curvature as the damage feature for breathing crack detection, and uses higher-order
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harmonics to detect damage. Voggu et al. [18] proposed a baseline-free and vibration-based
approach for breathing crack identification. The damage characteristics at different damage
levels were obtained using signal statistics, phase–plane information, harmonics, and so
on. The experimental results verify the effectiveness of this method. Li et al. [4] proposed
a signal segmental cross-correlation method for nonlinear detection. As an output-only
and baseline-free method, damage detection is performed by defining a signal segment
cross-correlation matrix and signal segment cross-correlation indicator. Experimental and
numerical results verify the effectiveness and robustness of this method. Yang et al. pro-
posed a comprehensive indirect method [19] and movable sensory system [20] to estimate
the modal properties and element bending stiffness of a bridge. In order to detect initial
breathing cracks, Cao et al. [21] proposed the concept of quadratic Teager–Kaiser energies
(Q-TKEs) based on the phenomenon of the energy modulation effect (EME). Hidden higher
harmonics in Q-TKEs can be significantly enhanced, and breathing cracks can be easily
identified. The reliability of this approach was verified by experiments and finite element
simulations. Yang et al. [22] proposed a local damage identification method for frame
structure based on the approximate Metropolis-Hastings (AMH) algorithm and statistical
moment. This method selects the fourth order displacement moment and the eighth order
acceleration moment as the fusion index. And then the damage of frame structure was
preliminarily evaluated by AMH algorithm. The probability density evolution method
(PDEM) was used to analyze the uncertainty of the structural damage

In order to solve the problem of time domain nonlinear damage identification more
efficiently, we present a structural nonlinear damage identification method based on the
Kullback–Leibler (KL) distance of time domain model residuals. First, the proposed method
uses the autocorrelation function (ACF) and Akaike information criterion (AIC) to choose
the order of the AR model, and the AR model was established. Then the KL distance
is used as the damage indicator to determine the location of structural damage sources.
The numerical simulation and experimental results show that the proposed method can
effectively detect the nonlinear damage of multi-degree-of-freedom shear structures and
complex structures.

2. Basic theory of AR model
2.1. AR Model

The AR model is an effective time series model proposed by Yule. The AR model was
first used in the field of economics, but it has also been used in the damage identification
field. A p-order AR model can be denoted as AR (p), and its expression is given by:

yt = c +
p

∑
i=1

ϕiyt−i + εt (1)

where yt is the time series data at time t, yt-I is the time series data at time t-i, c is a constant, p
is the order, ϕi is the i-th parameters of the AR model, and εt is the residual of the AR model.

2.2. Order Determination of AR Model

The AR model order is determined by the autocorrelation function (ACF) and the
Akaike information criterion (AIC). The ACF of the AR model is expressed as:

λ(p) =
p

∑
i=1

ϕiλ(p− i) (2)

where λ(p− i) and λ(p) comprise the ACF. The AR model order range is preliminarily
selected according to the tail-off features of the ACF, and then the AR model order is
determined according to the AIC. The AIC is expressed as [23]:

AIC = −2In(L) + 2m (3)
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where L expresses the likelihood function, and m expresses the number of estimated
parameters. In Equation (3), the first item represents the accuracy of the time series
model, and the second item represents the complexity of the time series model. Therefore,
the model order corresponding to the minimum AIC can be considered as the optimal
model order.

2.3. Parameter Estimation of AR Model

After the order of the AR model is determined, the Yule–Walker method is used to
estimate the parameters of the AR model. Rewrite Equation (2) into the following form:

λ(0) λ(1) . . . λ(p− 1)
λ(1) λ(2) . . . λ(p− 2)
. . . . . . . . . . . .

λ(p− 1) λ(p− 2) . . . λ(0)




ϕ1
ϕ2
. . .
ϕp

 =


λ(1)
λ(2)
. . .

λ(p)

 (4)

Then the AR model parameters can be expressed as:
ϕ1
ϕ2
. . .
ϕp

 =


λ(0) λ(1) . . . λ(p− 1)
λ(1) λ(2) . . . λ(p− 2)
. . . . . . . . . . . .

λ(p− 1) λ(p− 2) . . . λ(0)


−1

λ(1)
λ(2)
. . .

λ(p)

 (5)

The parameter estimates of the AR model can be obtained by replacing the theoretical
autocorrelation function with the sample autocorrelation function:


ϕ̂1
ϕ̂2
. . .
ϕ̂p

 =


λ̂(0) λ̂(1) . . . λ̂(p− 1)
λ̂(1) λ̂(2) . . . λ̂(p− 2)
. . . . . . . . . . . .

λ̂(p− 1) λ̂(p− 2) . . . λ̂(0)


−1

λ̂(1)
λ̂(2)
. . .

λ̂(p)

 (6)

3. Damage Identification Based on the KL Distance of Time Series Model Residual
3.1. Nonlinear Damage in Time Domain

Damage in actual structures usually has nonlinear features because of nonlinear
stiffness and damping [5]. For example, bolt looseness and breathing cracks are two
typical examples of nonlinear damage. Loosened bolts will cause changes in stiffness and
damping of bolted joints, and will produce time domain nonlinear characteristics during
vibration [24].

A structural component with a breathing crack will exhibit bilinear stiffness character-
istics because of the opening and closing of a breathing crack under vibration [25], and the
change of bilinear stiffness is a typical nonlinear process, so the measured acceleration of a
structure with breathing cracks has nonlinear features in the time domain [26]. The bilinear
stiffness is utilized to describe the nonlinear damage stiffness changes caused by breathing
cracks in a multi-degree-of-freedom structure under external excitation [27]:

ki[xi(t)] =

{
ki when xi(t)− xi−1(t) ≤ 0
(1− α)ki when xi(t)− xi−1(t) > 0

(i = 1, . . . , n; x0(t) = 0) (7)

where ki(xi(t)) is the stiffness of i-th degree-of-freedom (DOF), ki is the stiffness when
a breathing crack was closed, and α is the damaged factor when a breathing crack was
opened. xi(t) and xi(t)(i 6= 1) represent the displacement of i-th DOF and (i − 1)-th DOF at
time t, respectively. In particular, when i = 1, xi−1(t) = x0(t) = 0.
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3.2. Nonlinear Damage Identification Based on the SOVI

In this paper, the damage identification method proposed by Cheng et al. is compared
with the proposed method. Cheng et al. [28] constructed the damage indicator SOVI based
on the conditional heteroscedasticity series of the AR/ARCH model. It is assumed that the
baseline state is the state when the structure is without damage, and the test state is the
state when the structure is damaged. The SOVI expression is as follows:

SOVI = Var{σ2test

t } −Var{σ2re f

t } (8)

where σ2test
t and σ2re f

t are the conditional heteroscedasticity series of the test state and
baseline state, respectively, and Var{} is the variance calculation.

3.3. Nonlinear Damage Identification Method Based on the KL Distance of the AR Model Residual

Since the damage identification method proposed by Cheng et al. [28] was difficult
to use to identify nonlinear damage of multi-story and multi-span structures, this paper
proposes a new nonlinear damage identification method based on the KL distance of the
AR model residual. The residual of the time series refers to the difference between the
real time series and the fitted time series, and the residual series carries useful information
for damage identification [29]. Therefore, the KL distance of the AR model residual was
regarded as the damage indicator in this paper, and structural damages were distinguished
by this damage indicator.

The Kullback–Leibler (KL) distance is a special case of the Kullback distance, which
was first proposed by S. Kullback and R. Leibler based on probability theory [30]. It is
assumed that the baseline state is the status when a structure is undamaged, and the test
state refers to the status when a structure has an unknown status. The baseline time series
is denoted as {yt}ref, and the test time series is denoted as {yt}test. The AR model established

by {yt}ref is denoted as {AR}ref, and the residual of the AR model is denoted as ε
re f
t . The AR

model established by {yt}test is denoted as {AR}test, and the residual of the AR model is
denoted as εtest

t . Therefore, a new time series {yt}RT can be established by substituting
{yt}test into {AR}ref model, and the residual of the model is denoted as εRT

t . The information
feature difference between the baseline time series {yt}ref and the test time series {yt}test can
be determined by calculating the KL distance:

D2
KL= In

Var{εre f
t }

Var{εtest
t }

+
Var{εRT

t }
Var{εre f

t }
− 1 (9)

where εRT
t is the model residual calculated from {AR}ref model and {yt}test, εtest

t is the model

residual calculated from {AR}test model and {yt}test, ε
re f
t is the model residual calculated

from {AR}ref model and {yt}re f , and Var{} is the variance calculation.

3.4. Process of Damage Identification Using the KL Distance of the AR Model Residual

These residual-based methods are based on the fact that a well-fitted model trained on
undamaged data is not suitable to use to determine damage data. Thus, this paper divides
the data into two states. The baseline state is the state when a structure is undamaged,
and the test state is the state when a structure is damaged. A flow chart showing damage
identification using the KL distance of the AR model residual appears in Figure 1, and the
damage identification process is as follows:
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Figure 1. Damage identification using the KL distance of the AR model residual.

Step 1: Collect the structural acceleration response data when the monitored structure
is in the baseline state and in the test state, and perform the stationarity test for the collected
data. If the stationarity test conditions are not met, then perform continuous difference
processing until the structure meets the stationarity test’s conditions.

Step 2: Select the AR model order by ACF and AIC. Specifically, first determine the
AR model order range through ACF, and then select the model order corresponding to the
minimum AIC as the AR model order.

Step 3: Establish the AR model according to the baseline and the test time series, and
then obtain the residuals series ε

re f
t ,εtest

t , and εRT
t .

Step 4: According to the residual series ε
re f
t ,εtest

t , and εRT
t , the KL distance between

the baseline state and test state is calculated by Equation (9). Then identify the structural
nonlinear damage location based on the KL distance.

4. Numerical Example
4.1. Simulation of Eight-Story Shear Building Model

Numerical simulations were carried out for an eight-story shear structure model with
external excitation at the bottom, as shown in Figure 2. It was assumed that the mass of
each story of the model was 100 kg, the shear stiffness of each story was 1 MN/m, and
the structural damping ratio was 0.03. The identification results of structural nonlinear
damage are generally related to the amplitude of the excitation load. Therefore, in this
paper, two kinds of white noise with different amplitudes were used to excite the structure.
The white noise as shown in Figure 3a was used for the loading of damage scenario 1 to
damage scenario 16, and the white noise as shown in Figure 3b was used for the loading of
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damage scenario 17 to damage scenario 24. The resulting dynamic response was calculated
by the Wilson-θ method, where the θ was taken as 1.4.
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Nonlinear damage sources with bilinear stiffness were set in the structural model, the
bilinear stiffness (see Equation (7)) was used to simulate the breathing cracks in columns
between two adjacent stories, and the nonlinear elastic or plastic behaviors of the structure
were not considered. As shown in Table 1, the 10% and 30% damage scenarios of the
1st–8th stories were simulated respectively. Due to space limitations, only a 30% damage
level was considered for the damage scenario of 100 kN excitation amplitude. In order to
simulate the noise disturbance in the actual acquisition, 5% white noise was considered in
each acceleration response. The acceleration data with measurement noise is obtained by
the following calculation:

{yt} =
{

y′t
}
+ H · {ωt} (10)

where {yt} is the acceleration response with measurement noise, {y′t} is the acceleration
response without measurement noise, H is the level of measurement noise, and {ωt} is a
random amount of white noise at the same level as the magnitude of {y′t}.

Table 1. Damage scenarios of 8-story shear structure.

Damage Scenarios Damage Story Damage Level Excitation Amplitude/(kn)

1 1 10% 250
2 2 10% 250
3 3 10% 250
4 4 10% 250
5 5 10% 250
6 6 10% 250
7 7 10% 250
8 8 10% 250
9 1 30% 250
10 2 30% 250
11 3 30% 250
12 4 30% 250
13 5 30% 250
14 6 30% 250
15 7 30% 250
16 8 30% 250
17 1 30% 100
18 2 30% 100
19 3 30% 100
20 4 30% 100
21 5 30% 100
22 6 30% 100
23 7 30% 100
24 8 30% 100

4.2. Establishment of AR Model

The structural acceleration data include 9000 data points. Acquire the acceleration
data of the baseline state when the structure is without damage, The acceleration response
curves under the baseline state with excitation amplitude of 250 kN are shown in Figure 4.

In this paper, ACF and AIC criteria were used to select the most appropriate AR model
order. First, ACF was used to preliminarily select the AR model range, and then the model
order corresponding to the smallest AIC was taken as the AR model order. The ACF curve
of each channel under the baseline state is shown in Figure 5. The AR model order range
was initially selected to be 10–25 according to the ACF curve, and finally the model order
was selected to be 20 according to the AIC.
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4.3. Nonlinear Damage Identification Results

After the AR model is established, the KL distance can be calculated according to the
residuals of the AR model. The method based on SOVI [28] was used for comparison, the
AR model order was taken as 30, and the ARCH part order was taken as 3. To compare the
two methods, a dimensionless transformation method is suggested as follows:

v′ i =
vi

∑n
i=1 vi

(11)

where v′ i is the dimensionless expression of damage indicator,vi is the original value of the
KL distance or the SOVI, and n is the number of damage indicators.

The AR-KL method is an identification method based on the substructure. This means
that the KL distance corresponding to the damaged region calculated by the proposed
methods should be the largest. For the structural model shown in Figure 2, when there
is damage in the nth (n ≤ 8) story, the damage indicator of the nth story and the (n−1)th
story is much larger than that of other stories. In particular, when there is damage in the
1st story, since the 0th story corresponds to the model base story, only the 1st story has the
largest damage indicator.

The identification results of the scenario 1–8 is shown in Figure 6. Both the AR/ARCH-
SOVI method and the AR-KL method can distinguish the damage location for the damage
scenario with 10% stiffness reduction. However, the AR-KL method can distinguish
the location of structural nonlinear damage more effectively than the AR/ARCH-SOVI
method. The damage indicator of the damaged floor channel obtained by the AR-KL
method was larger than other undamaged stories. Further, this method is beneficial in
distinguishing the damage location quickly and accurately. In addition, when the 3rd story
was damaged (Figure 6c), it was hard to accurately find the structural damage location
using the calculation results from the AR/ARCH-SOVI method, but the damage location
could be accurately determined using the identification results of the AR-KL method. Thus,
the AR-KL method can distinguish structural damage with small damage levels more
effectively than the AR/ARCH-SOVI method.
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The identification results of scenarios 9–16 are shown in Figure 7. The damage location
can be determined using the identification results of both methods. It should be noted that
the indicator of the undamaged story obtained by the AR-KL method was lower than that
of the AR/ARCH-SOVI method. This shows that the AR-KL method can identify structural
damage more effectively than AR/ARCH-SOVI method with high damage level.Remote Sens. 2023, 15, 1135 13 of 22 
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(c) Scenario 11. (d) Scenario 12. 
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(e) Scenario 13. (f) Scenario 14. 
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Figure 7. Damage identification results of damage scenarios 9–16.

Damage scenarios 17–24 considered a 30% damage level under the excitation of
100 kN white noise amplitude, and the identification results are shown in Figure 8. It can
be noted that the calculation results were similar to those of damage scenarios 9–17, that
is, the identification results of both methods can distinguish the structural damage source
location. Further, the indicator of the undamaged story obtained by the AR-KL method
was less than that of the AR/ARCH-SOVI method. It is worth noting that compared with
damage scenarios 9–17, the identification results of AR/ARCH-SOVI were better, while the
identification results of the AR-KL method were almost unchanged. This shows that the
AR-KL method is more robust under external excitations with different amplitudes.

Both the AR/ARCH-SOVI method and the AR-KL method can distinguish the bilinear
stiffness damage of the eight-story shear model. Further, the AR-KL method can distinguish
the damage in all levels damage effectively. The indicator of the damaged story obtained by the
AR-KL method was larger than those of the undamaged stories. This shows that the AR-KL
method is beneficial to detect and locate the structural nonlinear damage source accurately.
In addition, the damage identification results of the AR-KL method hardly changed under
external excitations with different amplitudes, which indicates that the AR-KL method is more
robust than the AR/ARCH-SOVI method. Further, it is worth noting that the noise in actual
engineering is generally 5% to 10%, and it is hard to distinguish damage caused by these low
levels. In this paper, 5% of noise effects were considered in the eight-story shear model, and
the minimum damage level of the bilinear stiffness damage that can be identified is 10%.
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(c) Scenario 19. (d) Scenario 20. 
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(e) Scenario 21. (f) Scenario 22. 
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5. Experimental Study on the Stand Structure Model
5.1. Introduction of the Stand Structure Model Experiment

Our experimental model was manufactured and tested in Chongqing University. The
experiment was loaded by the shake table in the geotechnical laboratory of Chongqing
University. The size of shake table is 1.2 m × 1.2 m, with the maximum payload of
1000 kg. The stand structure model experimental data are shown in Figure 9a. The ex-
perimental model has two spans along the x and y directions, and the model plane size
is 1.53 m × 0.90 m (x× y). The height of the model is 1.57 m (Figure 10a). Since the plane
size of the model is larger than the size of the shake table, a 200 mm high model rigid
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pedestal (Figure 9a) was designed to raise the experimental model. The main body of
the experimental model was welded by steel pipe (φ10 mm× 2 mm). The vertical and
horizontal braces of the model were aluminum squares (10 mm× 10 mm), and the braces
were connected to the main body of the model using bolts.
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(b) Accelerometer. 

(a) Experimental model. 

 

(c) The data acquisition instrument. 

Figure 9. The stand structure experimental model.

A random excitation in y-direction was applied to the bottom of the model through
the shake table, the excitation amplitude for every damage scenario was 0.1 g, and the
excitation time was 30 s. As shown in Figure 10a, the experimental model was divided into
three monitoring regions. Three FA101–5 g accelerometers (Figure 9b) were installed in the
middle span of the model to measure the acceleration response of each region, and region
1–region 3 correspond to acquisition channel 1–channel 3 (Figure 10a). The acceleration
response of the model was acquired by the data acquisition instrument shown in Figure 9c,
and the acquisition frequency was 250 Hz.
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Figure 10. The region divisions and damaged brace locations in the experimental model. 
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Figure 10. The region divisions and damaged brace locations in the experimental model.

A stand structure is usually composed of multiple components connected by bolts.
During the operation of the structure, the bolts may loosen due to ambient vibration. The
loosening bolts have an adverse impact on structural safety. Therefore, it is necessary to
carry out damage monitoring of bolt loosening on a stand structure. In this paper, the
bolt-looseness damage of y-direction braces was simulated, and the interfacial contact
between loosened bolts and bolt holes resulted in nonlinear vibrational responses [31]. The
damage scenarios of the stand structure model are shown as Table 2. The bolt-loosened
braces numbers are shown in Figure 10b. Two different levels of nonlinear damage were
considered for each monitoring region, i.e., a single brace or three braces had bolt-looseness
nonlinear damage. When there was a single brace in the region with loosened bolts, the
bolts at both ends of the middle span brace in the corresponding region were loosened.
When there were three braces in the region with loosened bolts, the bolts at both ends of all
the braces in the corresponding region were loosened.

Table 2. The damage scenarios of the stand structure model.

Damage Scenario Damaged Region Bolt-Loosened Braces Number

1 1 B2
2 1 B1, B2, B3
3 2 B5
4 2 B4, B5, B6
5 3 B8
6 3 B7, B8, B9

5.2. Modeling Analysis of AR Model

The acceleration acquisition frequency was 250 Hz, and each acquisition time was 30 s,
that is, 7500 data points were collected each time. To avoid the effect of the shake impact,
the first and last 625 data points were deleted. We collected the baseline acceleration time
series data when the stand structure was undamaged, and the structural acceleration curve
of channel 1–3 under baseline state is shown as Figure 11.

The ACF curve of each channel under the baseline state is shown in Figure 12. The AR
model order range was initially selected to be 15–30 according to the ACF curve, and finally
the AR model order was selected to be 15 according to the AIC criterion.
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5.3. Damage Identification Results of the Stand Structure Model Experiment

The AR/ARCH-SOVI method [25] was used for comparison in this experiment. The
order of the AR model was taken as 30, and the order of the ARCH part was taken as 6.
Since The AR-KL method is based on the substructure, according to the accelerometer setup
shown in Figure 10a, when an experimental model region was damaged, the KL distance
of the damaged region calculated by proposed method should be the largest.

The identification results of the stand model experiment are shown in Figure 13. The
damage indicators of region 1 calculated by the SOVI method were all the largest, that
is, it was hard to judge the damage location using the calculation results of this method.
However, the damage indicator of the damaged region calculated by the AR-KL method
was the largest, that is, the AR-KL method could judge the structural damage location
accurately. This shows that the AR-KL method is more suitable for complex structural
damage identification than the AR/ARCH-SOVI method.
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The stand structure model is a multi-story and multi-span complex structure. Based on
its structural characteristics, it was divided into three monitoring regions (Figure 10a). From
the identification results of the stand model experiment, it can be seen that the AR/ARCH-
SOVI method was unable to accurately identify the damage source location due to the
complexity of the structural response. However, the AR-KL method can distinguish the
damage scenario in all regions. Therefore, the AR-KL method can effectively identify
nonlinear damage in a complex stand structure. In addition, when using the proposed
method for damage localization, the minimum required number of acceleration sensors
is related to the division of monitoring substructures, and each monitoring substructure
needs at least one acceleration sensor to collect its acceleration data.

6. Discussion

The damage identification method based on the KL distance indicator is proposed, and
its effectiveness was verified by numerical simulation and experimental data. However,
there are still some problems in the practical application of this method. Future research
can be carried out from the following aspects.

This paper focuses on the scenario of the structure with a single source of damage,
while there are usually multiple damage sources in practical engineering. Further, other
types of structural nonlinear damage often occur in practical engineering. Therefore, the
study of multiple damage sources and different nonlinear damage types should be carried
out in the future. It is worth noting that it may be difficult to extract the damage features of
multiple damage sources or other structural nonlinear damage types from the structural
response time series information. Therefore, this method should be combined with other
information-processing methods to extract the damage features of the structure, such as
principal component analysis, a machine learning method, a frequency response function
analysis method, and so on.

In this paper, research on the damage indicator threshold is not included, which means
that it is necessary to judge the damage location by combining the results with prior infor-
mation on the damage. However, prior information about damage is usually unavailable
in practical engineering. Therefore, the research on damage indicator thresholds should be
carried out in future research.

7. Conclusions

The structural nonlinear damage detection method based on the Kullback–Leibler
distance of the AR model residual is proposed. Because the AR model is one of the simplest
time series models, it is beneficial for improving the computational efficiency in engineering
applications. Therefore, this method establishes an AR model for the structural acceleration
response, and the KL distance is used as damage indicator for damage identification.
The effectiveness of the proposed method was verified through a shear structure nonlinear
damage numerical simulation and a stand model experiment. The main contribution of this
paper is that the combination and application of the AR model and the KL model in civil
structural nonlinear damage identification field for the first time. The main conclusions are
as follows:

(1) The proposed method is a damage identification method based on the substructure.
The damage indicator of the damaged story is larger than the other stories, which can
determine the structural damage location accurately.

(2) The proposed method can accurately distinguish nonlinear damage of a multi-degree-
of-freedom shear structure caused by bilinear stiffness changes. This method is robust
enough to analyze environmental noise and small damage.

(3) The proposed method can effectively find nonlinear damage in a multi-story and
multi-span complex structure caused by bolt looseness, which is beneficial in practi-
cal applications.
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(4) In this paper, only a multi-degrees-of-freedom shear structure and a stand structure
were used to verify the proposed method, and the nonlinear damage identification
problem of more structural types should be considered in subsequent research.

(5) This paper only considers the damage identification results of white noise conducted
from the ground to the structure, and the damage identification results of excitation at
different locations should be considered in subsequent research.
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