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Abstract: Due to a lack of labeled samples, deep learning methods generally tend to have poor
classification performance in practical applications. Few-shot learning (FSL), as an emerging learning
paradigm, has been widely utilized in hyperspectral image (HSI) classification with limited labeled
samples. However, the existing FSL methods generally ignore the domain shift problem in cross-
domain scenes and rarely explore the associations between samples in the source and target domain.
To tackle the above issues, a graph-based domain adaptation FSL (GDAFSL) method is proposed for
HSI classification with limited training samples, which utilizes the graph method to guide the domain
adaptation learning process in a uniformed framework. First, a novel deep residual hybrid attention
network (DRHAN) is designed to extract discriminative embedded features efficiently for few-shot
HSI classification. Then, a graph-based domain adaptation network (GDAN), which combines graph
construction with domain adversarial strategy, is proposed to fully explore the domain correlation
between source and target embedded features. By utilizing the fully explored domain correlations to
guide the domain adaptation process, a domain invariant feature metric space is learned for few-shot
HSI classification. Comprehensive experimental results conducted on three public HSI datasets
demonstrate that GDAFSL is superior to the state-of-the-art with a small sample size.

Keywords: few-shot leaning (FSL); domain adaptation; graph construction; attention mechanism;
few-shot classification

1. Introduction

Hyperspectral images (HSIs) generally consist of a series of continuous spectral bands
and contain abundant spectral characteristic information. By utilizing such abundant
HSI information, ground objects can be identified and classified into a specific category
accurately. As the cornerstone of HSI applications, HSI classification has been widely im-
plemented in various practical applications, such as urban development [1], environmental
protection [2], precision agriculture [3], and geological exploration [4].

As a powerful feature extraction method, deep learning has been widely utilized to
classify HSI and achieved satisfactory classification results. Firstly, the stacked autoencoder
(SAE) [5] and deep belief network (DBN) [6] were developed to perform HSI classification.
However, the above-mentioned methods generally take 1-D pixel vectors as the inputs of
deep models, which ignores the complex context information in 3-D pixel neighborhoods.
In addition, a large amount of parameters requires to be optimized because of the models
constructed by fully connected layers (FC). To address these issues, some works [7–10]
introduced a convolutional neural network (CNN) to learn deep feature representation,
which directly processes 3-D pixel neighborhoods without discarding context informa-
tion. For example, a regularized deep feature extraction (FE) method [7] is designed to
extract discriminative features by utilizing a CNN consisting of several convolutional and
pooling layers. Subsequently, in order to fully utilize spectral-spatial information in HSI
pixel neighborhoods, some works [11–13] introduced 3-D CNNs to synchronously learn
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spectral and spatial deep features for HSI classification. Li et al. [11] designed a spectral-
spatial deep model constructed by 3-D CNNs to jointly learn deep semantic features for
HSI classification.

However, as the network deepens, the number of learnable parameters increases
exponentially and the problem of gradient disappearance also arises. The residual blocks
introduced by the ResNet [14] are widely utilized in HSI classification [15–18] to alleviate
the above problems. A deep pyramidal residual network [15] is designed to perform HSIC,
which can significantly increase the depth of the network to extract diverse deep features
without introducing extra parameters. A spectral–spatial residual network (SSRN) [16],
which consists of several sequential 3-D convolutional blocks, is proposed to jointly learn
discriminative deep spectral-spatial features for HSI classification.

Although these abovementioned methods have achieved significant success in HSI
classification, they generally require sufficient labeled samples to optimize deep models.
In practical scenarios, sufficient training samples are hard to be acquired. Some data
augmentation-based methods [19–22] are proposed to address this issue. A novel pixel-
pair-based method [19], which can expand the training sample size without extra labeled
samples, is proposed to ensure the excellent classification performance of deep CNN
models with sufficient samples. Zheng et al. [20] designed a specific spectral-spatial HSI
classification model to tackle small sample size problems in HSI classification, which utilizes
superpixel segmentation to enhance the training sample set. Although these methods have
achieved excellent performances with small sample sizes, they rarely develop the feature
representation ability of deep models in the situation of limited labeled samples.

The attention mechanism, which utilizes similarity metric methods to capture impor-
tant information for classification, has attracted extensive interest in HSI classification. By
utilizing an attention mechanism to model the interactions between different locations of
HSI samples, those relevant features are enhanced and irrelevant features are inhibited.
Then, models can extract discriminative features to achieve more satisfactory classification
performance. In order to learn discriminative feature representation with limited training
samples, some works [23–26] introduced attention mechanisms into HSI classification.
Sun et al. [23] embedded spatial attention modules into 3-D CNN to jointly extract deep
semantic features for HSI classification. Zhong et al. [25] designed a spectral-spatial trans-
former network (SSTN) to achieve spectral-spatial classification for HSIs, which sequentially
utilizes an attention mechanism to explore spectral and spatial interactions in HSI pixel
neighborhoods. A novel attention-based kernel generation network [26] is designed to
learn discriminative feature representation with limited training samples, which utilizes a
self-attention mechanism to fully explore the specific spatial distributions over different
spatial locations. Although these methods can alleviate the problem of insufficient labeled
samples, they generally assume that both training and testing datasets have the same data
and label distributions, which makes them hardly generalize to unknown classes with
limited training samples.

To tackle the abovementioned issues, few-shot classification, aiming to learn general
knowledge for unknown classes, has recently attracted much attention [27–29].

Different from the ordinary deep learning method which aims to learn unique feature
representation for a specific class, few-shot learning (FSL) aims to learn the distinctions
between various object categories with limited training samples. In recent years, some
excellent works [30–36] also introduced FSL into HSI classification and achieved great
success. Liu et al. [30] proposed a deep FSL (DFSL) framework to perform HSI classification
with limited labeled training samples. Specifically, a metric space is first learned via a
feature extractor which consists of several 3-D convolutional residual blocks. Then, the
SVM and nearest neighbor (NN) classifier are adopted to classify the testing HSI datasets.
A novel FSL relation network (RN-FSL) [31], which is fully trained in source datasets and
fine-tuned with a few labeled target samples, is designed to perform HSI classification.

Although those abovementioned FSL methods achieved satisfactory classification
performance with limited training samples, they are generally based on the hypothesis
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that both source and target domain datasets have the same data distribution. However, in
practice scenarios, due to the difference in imaging mechanism, samples from the source
and target domain may possess unique data characteristics and object categories. In this
article, a novel graph-based domain adaptation FSL (GDAFSL) framework is developed to
tackle these issues. Specifically, a deep residual hybrid attention network (DRHAN) is first
proposed to learn a compact metric space. In this metric space, the embedding features
extracted by DRHAN have a small intraclass distance and a large interclass distance. This
means that the embedding features extracted by DRHAN are more compact within the
same class and separate away from the other classes. Then, a few-shot HSI classification
is performed on the learned compact metric space by calculating the Euclidean distance
between class prototypes and unlabeled samples. In order to tackle the domain-shift
problems, a novel graph-based domain adaptation network (GDAN) is proposed to align
domain distribution and learn domain-invariant feature transformation. Benefits from the
powerful ability of graphs to model complex interactions between nodes, a graph convo-
lutional network (GCN) is embedded into the domain adversarial framework to explore
the domain correlations between node features. The domain correlations are adopted as
edge weights to guide the update of node features. Different from the ordinary feature-
based domain adversarial strategy, the proposed method can more properly model domain
correlations between samples with non-Euclidean characteristics structure and guide the
optimization of learnable parameters to enhance the domain adaptation ability of deep
models. In addition, the training process of GDAFSL follows a fashion of meta-learning to
better simulate few-shot scenarios in practice. The experimental results conducted on three
public HSI datasets prove that GDAFSL is outperforming other ordinary deep learning
methods and state-of-the-art FSL methods. The main contribution of this article are as
follows: (1) A novel DRHAN, which utilizes an attention mechanism to emphasize critical
spatial features at a global scale and extract specific spatial features at a local scale, is
proposed to enhance the capability of feature representation with limited labeled samples.
(2) A novel graph-based domain adaptation network (GDAN) is proposed to achieve
domain adaptation FSL. The GDAN utilizes graph construction to measure the domain
correlations and generates more refined domain adaptation loss to guide the domain adap-
tation learning process. (3) A novel similarity measurement method is proposed to model
the cross-domain correlations. The proposed method can aggregate node features more
properly to obtain a more refined domain similarity graph for GDAN. (4) The proposed
GDAFSL combines the FSL and graph-based domain adaptation method organically to
improve the cross-domain few-shot classification performance. Extensive experiments
conducted on three HSI datasets demonstrate the effectiveness of the proposed GDAFSL.

The remainder of this article is organized as follows. Section 2 reviewed some related
works of GCNs and cross-domain FSL. Section 3 elaborates on the proposed GDAFSL.
Section 4 reports the experimental results and analysis on three HSI datasets. Section 5
gives a further discussion about the classification performance of our method. Section 6
summarizes this article and draws a conclusion.

2. Related Works

In this section, related works of HSI classification are briefly reviewed. Meanwhile,
the most relevant work of GCN and cross-domain FSL are reviewed in detail.

2.1. Graph Convolutional Network

In recent years, benefitting from the impressive representation ability of graph structure,
GCNs have been widely applied in HSI classification [37–41] and achieved great success. A
novel mini-batch-based GCN [37] is proposed to reduce the computation cost of large-scale HSIs
in a mini-batch paradigm. Wan et al. [38] designed a dual interactive GCN (DIGCN) to capture
spatial context information at different scales, which utilizes multiscale spatial interactions to
refine node features and edge information in graphs. To classify unknown classes with small
sample size, Zuo et al. [41] designed an edge-labeling graph neural network (FSL-EGNN) for
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few-shot HSI classification, which is the first attempt to combine GCN with FSL in a uniform
framework. The FSL-EGNN exploits graph construction to model the associations between
support set and quire set samples and utilizes edge labels to predict sample labels. Although
GCN-based methods made a great success in HSI classification, they generally assume that
both training and testing samples obey the same data distribution, ignoring the data and label
distinction between different domains. In this work, a graph-based cross-domain FSL method is
proposed to tackle the domain shift problems.

2.2. Cross-Domain FSL

Cross-domain FSL is an effective strategy to tackle the data and label shift problem between
different data domains. Li et al. [42] designed a deep cross-domain few-shot learning (DCFSL)
method which is the first attempt to combine FSL with domain adaptation and jointly realized
cross-domain few-shot HSI classification in a unified framework. In the DCFSL framework, a
spectral-spatial 3-D residual network is firstly designed to learn feature representation space
for few-shot HSI classification. Then, a domain adversarial strategy is exploited to develop a
domain invariant feature transformation for few-shot HSI classification. Bai et al. [43] introduced
feature transformation into FSL to learn a diverse feature space with limited labeled samples
and utilized a subspace classifier to classify testing data. Although obtaining satisfactory
classification performance, these domain adaptation methods ignored the domain correlation
between different domain samples which could reflect the deviation of domain distribution. In
this article, a graph-based domain adaptation method, utilizing a domain similarity graph to
model the deviations between source and target domain distributions, is proposed to guide
models to develop a domain adaptation feature space.

3. Materials and Methods

In cross-domain HSI classification, the source and target domain datasets are generally
from different scenes and captured by different sensors, which results in the variation
in object categories and the specificity of spectral characteristics between different data
domains. The samples from different data domains, which have non-Euclidean structural
characteristics, are hard to model in a Euclidean space with ordinary metric methods.
Therefore, a graph-based domain adversarial FSL method (GDAFSL) which utilizes graph
construction to model the domain correlations and guide the domain adaptation learning
process, is proposed to learn a domain invariant feature space under the cross-domain
few-shot condition. The overall framework of GDAFSL is depicted in Figure 1.
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3.1. Overview of the GDAFSL

To better illustrate the proposed GDAFSL for HSI classification, several relevant
concepts are defined in this part. In the cross-domain FSL framework, the entire learning
process contains two phases: the source domain training phase and the target domain
fine-tuning phase. Specifically, the source domain training phase is first conducted on the
source domain dataset DS in a meta-learning paradigm. Then, the pre-trained models are
transferred to the target domain and perform few-shot classification on the target domain
dataset DT . Generally, the number of classes in DS is larger than that of DT to better
construct meta-learning tasks. Due to the lack of labeled samples in the target domain,
few labelled samples are selected in DT to form the target fine-tuning dataset D f

T and the

remainder of unlabeled samples are regarded as testing dataset Dt
T , where D f

T ∪Dt
T = DT ,

D f
T ∩Dt

T = ∅. In FSL methods, the training processes are iteratively conducted on a series
of C-way-K-shot tasks, which are also called training episodes. In a training episode, C
classes are first selected from the source domain DS and then K-labeled samples per class
are randomly selected to construct the support set S [42]. Similarly, another Z different
unlabeled samples are also randomly selected from the same C classes in DS to construct
the query set Q, where S = {(xi , yi)}C×K

i=1 , Q =
{(

xj , yj)
}C×Z

j=1 and S∩Q = ∅.
In GDAFSL, the entire FSL training phase includes two parts: FSL training process and

the graph-based domain adaptation process. Specifically, FSL tasks are firstly constructed
and fed through the feature extractor DRHAN to obtain discriminative semantic features.
Then, metric learning methods are performed on these embedded features to generate
few-shot classification results and calculate FSL loss L f sl . After that, both source and target
embedded features are utilized to construct a domain similarity graph. A novel graph-
based domain adaptation network (GDAN) is designed to perform a domain adaptation
process on a domain similarity graph and calculate domain adaptation loss Ld. Finally, the
L f sl and Ld are combined to jointly optimize the deep model via backpropagation.

In the FSL testing phase, the fine-tuning datasets D f
T are firstly utilized to fit a simple

NN classifier. Then, the trained DRHAN and NN classifier are adopted to perform few-shot
classification on the testing dataset Dt

T .
In addition, following the training strategy adopted in DCFSL [42], both source and

target domain samples are exploited to train the DRHAN in an iterative manner. While
one domain dataset is adopted to execute training procedure, another is regarded as the
domain adversarial dataset to execute domain classification.

3.2. Feature Embedding with DRHAN

In this work, a novel deep residual hybrid attention network (DRHAN), which utilizes
self-attention to model spatial interaction at global and local scales, is introduced to fully
utilize context information in different spatial scales and efficiently extract discriminative
semantic features with limited labeled samples.

3.2.1. Global Attention Mask Module

To fully utilize global context information and inhibit irrelevant information in an
HSI patch, a novel global attention mask module (GAMM) which utilizes self-attention
to model the spatial correlation between global feature representation and pixel vectors is
proposed to generate a similarity mask. Those pixel vectors with larger similarity values
play a more important role in feature extraction and vice versa. In this way, the relevant
information is enhanced and irrelevant information is inhibited. The structure of GAMM is
presented in Figure 2.
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To acquire compact and precise feature representation of the input feature X ∈ RH×W×L,
global average pooling operation is firstly performed on X to obtain a global average vector
davg, as conducted in [44]. The davg can be formulated as follow:

davg =
1

H ×W

H

∑
i=1

W

∑
j=1

Xi,j ∈ R1×1×L. (1)

The davg is regarded as the query tensor to execute self-attention. Then, X and davg are
reshaped to a matrix with a size of HW × L and a matrix with a size of 1× L, respectively.
The similarity mask M can be calculated by

M = softmax

( X
‖X‖2

)(
davg

‖davg‖2

)T
 ∈ RHW×1, (2)

where ‖·‖2 denotes the L2-norm along the spectral dimension. After that, M is reshaped to
a matrix with the size of H ×W and executed element-wise multiplication with X in each
spectral dimension. The final output X′ of GAML can be calculated by

X′i,j,k = Xi,j,kMi,j. (3)

3.2.2. Local Attention Encoding Module

In order to extract discriminative features with limited labeled samples, a novel local
attention encoding module (LAEM) is proposed, which utilizes self-attention to model
specific spatial interaction in a pixel neighborhood at different spatial locations. Inspired
by the involution operators [45] which are spatial-specific and channel-agnostic feature
kernels, we combine self-attention with involution operators to construct specific attention
kernels for deep feature extraction. The structure of LAEM is presented in Figure 3.
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For the input feature X′ which is generated by GAML, the sliding windows operation
is first executed on it to perform resample procedure. The spatial size and stride of sliding
windows operation are set to S × S and 1, respectively. After that, the input feature is
transformed into a set of local pixel blocks. These sliding local blocks can be easily extracted
by using the unfolding technique in Pytorch. The local pixel blocks set can be defined as
B = {B1,1, B1,2, . . . , BH, W} ∈ RH×W×S×S×L, where Bi,j ∈ RS×S×L and X′i,j ∈ R1×1×L is the
center pixel of Bi,j. Then, a local attention mechanism (LAM) is adopted to generate specific
attention kernels. The flowchart of LAM is presented in Figure 4.
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Due to the positive effect of multihead attention mechanism to capture diverse seman-
tic features, X′i,j is mapped into a high-dimensional feature space to generate the multihead
query qi,j, which can be formulated as

qi,j = f
(

WQ, X′i,j
)
∈ R1×1×(GL), (4)

where f (·) denotes the 1× 1 convolutional layer with weights WQ ∈ R(GL)×L, and G is the
number of local attention kernels. After that, the matrix multiplication is performed on
qi,j and Bi,j to acquire attention kernels. The local attention kernels Ai,j can be formulated
as follows:

Ai,j = softmax

( Bi,j

‖Bi,j‖2

)(
Qi,j

‖Qi,j‖2

)T
 ∈ RSS×G. (5)

The local attention kernels set can be defined as A = {A1,1, A1,2, . . . , AH, W} ∈ RH×W×S×S×G,
where Ai,j ∈ RS×S×G. To obtain the final feature maps X′′ ∈ RH×W×L, these local attention
kernels Ai,j are applied on the corresponding pixel blocks Bi,j and executed element-wise
multiply-add operations. The X′′ can be formulated as follows:

X′′i,j,k =
S

∑
p=1

S

∑
q=1

Ai,j,p,q,kG/LBi,j,p,q,k. (6)

3.2.3. Deep Residual Hybrid Attention Network

The architecture of the proposed feature extractor DRHAN is presented in Figure 5. As
shown in Figure 5, the proposed DRHAN is composed of two 1× 1 convolutional layers, three
hybrid attention residual blocks (RHABs), and a global average pooling layer. The first 1× 1
convolutional layer is responsible for mapping the HSIs into a dimension-fixed feature space
to ensure that all input HSIs have a uniform spectral dimension before performing feature
extraction, which is also named as mapping layer [46]. The second 1× 1 convolutional layer
is responsible for the feature dimension reduction of the mapping layer’s output. The three
RHABs utilized to extract discriminative semantic features are constructed by embedding
GAMLs and LAEMs into ordinary residual blocks. The final global average pooling layer is
responsible for feature integration to acquire a compact feature representation for the following



Remote Sens. 2023, 15, 1125 8 of 24

few-shot classification. In this work, the spatial size of sliding windows S and the number of
local attention kernels G is set to 3 and 16, respectively.
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3.3. Few-Shot Classification for HSI

In the FSL framework, metric learning methods are generally adopted to perform
few-shot classification. Given a C-way-K-shot task, the feature extractor is first adopted to
extract discriminative semantic features. Then, a softmax-based distance metric method is
adopted to measure the probability distribution of query samples in FSL tasks. The class
probability of query sample x can be formulated as

P((y = l|x ∈ Q)) =
exp

(
−d
(

Fϕ(x), cl
))

∑C
l=1 exp

(
−d
(

Fϕ(x), cl
)) , (7)

where d(·) denotes Euclidean distance metric, Fϕ(·) denotes the feature extractor. cl is the
class prototype of the lth class in Q, the cl can be calculated as follows:

cl =
1
Nl

Nl

∑
h=1

Fϕ(xh), (8)

where Nl denotes the number of samples in lth class. Then, the FSL classification loss
function L f sl can be defined as

L f sl = −
1

NQ
∑

(x, y)∈Q

C

∑
l=1

1{l = y} log P((y = l|x)), (9)

where NQ denotes the number of samples in query set Q. 1{l = y} is an indicator function.
It means that if l is equal to y, the value of the function is 1; otherwise, its value is 0.

3.4. Graph Domain Adaptation Network

In order to explore the domain correlations and learn a domain invariant metric
space, a graph domain adaptation network (GDAN) is proposed, which explicitly updates
the domain correlation graph and utilizes it to guide the domain adaptation process.
Specifically, the GDAN consists of a graph construction module (GCM), three graph update
modules (GUMs), and a fully connected layer. Specifically, the GCM is first utilized to
construct an initial domain similarity graph from embedded features. Then, three GUMs
are stacked to explicitly update node features and edge weights of the graph. Finally, the
FC is responsible for executing domain distinction on those updated node features to obtain
domain labels. The structure of GDAN is presented in Figure 6.
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3.4.1. Graph Construction Module

The flowchart of GCM is presented in Figure 7. In the domain similarity graph, each
embedded feature of source and target domains is regarded as a graph node feature and the
domain similarities between embedded features are regarded as graph edge weights. Due
to the non-Euclidean structural characteristic of cross-domain data, general similarity metric
methods for Euclidean spaces (i.e., cosine similarity) cannot properly model their domain
correlations. In this work, the KL divergence, which is generally utilized to measure the
divergence between two probability distributions, is adopted to calculate domain similarity.
For the sample in source domain distribution Ps(x) and target domain distribution Pt(x),
given its corresponding graph node feature Vm ∈ R1×1×L, its statistical probability vector
can be expressed as

pm = softmax(Vm) ∈ R1×1×L. (10)
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The KL divergence of the probability statistics vector pm and pn can be calculated as

d(pm‖pn) =
L

∑
k=1

pk
m ln

pk
m

pk
n

, (11)

where pk
m and pk

n denote the element value in the kth spectral dimension of pm and
pn, respectively. As the KL divergence between pm and pn is asymmetrical, that is,
d(pm‖pn) 6= d(pm‖pn). According to the cross entropy between probability statistics
vectors, the domain correlation between the feature vector Vm and Vn can be formulated as

dKL(Vm‖Vn) = d(pm‖pn) + d(pn‖pm). (12)
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It is noteworthy that, KL divergence reflects the deviations between two distributions,
the larger the value of dKL is, the lower the domain similarity between feature vectors,
and vice versa. Therefore, dKL cannot be directly utilized as edge weights to perform
message aggregation. In order to obtain a proper similarity coefficient, we transform the
dKL as follows:

dsim(Vm‖Vn) = softmax(−dKL(Vm‖Vn)). (13)

Then, the edge weights matrix E of the whole graph can be formulated as

E =


dsim(V1‖V1) dsim(V1‖V2) · · · dsim

(
V1‖VNG

)
dsim(V2‖V1)

...
dsim(VN‖V1)

dsim(V2‖V2) · · · dsim
(
V2‖VNG

)
...

. . .
...

dsim(VN‖V2) · · · dsim
(
VN‖VNG

)
, (14)

where NG denotes the number of nodes in a graph. The node features and edge weights
are combined to construct the domain similarity graph.

3.4.2. Graph Update Module

In order to fully explore domain correlations and learn a domain invariant feature
transformation, a graph update module (GUM) is introduced to explicitly update the
domain similarity graph. The architecture of GUM is presented in Figure 8.
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The GUM contains two procedures: node update and edge update. Specifically, given
an input graph G with node features V and edge weights E, the message aggregation
mechanism is firstly executed to aggregate features of adjacent nodes. Then, the aggregated
node features are fed through two fully connected layers to perform feature transformation.
The updated node features V′ can be formulated as

V′m = f

(
W2, f

(
W1,

N

∑
n=1

Em,nVn

))
∈ R1×1×L, (15)

where f (·) denotes the fully connected layer, W1 ∈ RL×L′ and W2 ∈ RL′×L are learn-
able parameters of the two fully connected layers, respectively. After that, according
to Equations (7)–(11), the domain similarity matrixes of V′ are recalculated to obtain the
updated edge weights E′. Finally, the V′ and E′ are utilized to construct the updated
graph G′.
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3.4.3. Graph Domain Discriminator

After several iterations of GUM, the domain correlations between samples of source
and target domain have been fully explored. The domain discriminative node features in
the graph are fed through a domain discriminator which consists of a fully connected layer
to predict domain labels. The domain adaptation loss function Ld defined on the domain
similarity graph G can be formulated as

Ld = − 1
NG

NG

∑
m=1

[yVm log Θ(Vm) + (1− yVm) log(1−Θ(Vm))], (16)

where Θ(·) denotes the predicted probability that the sample corresponding to Vm is from
the source domain, yVm denotes the true domain label of the sample corresponding to
Vm. NG denotes the number of nodes in graph G. As the domain distinction is a binary
classification task, the true domain labels of source and target domain samples are set to 1
and 0, respectively.

Therefore, the domain adversarial loss function can be refined as

Ld = − 1
NS

NS

∑
r=1

log Θ
(

VS
r

)
− 1

NT

NT

∑
t=1

log
(

1−Θ
(

VT
t

))
, (17)

where NS and NT denote the number of training samples from the source and target
domain, respectively. VS

r and VT
t denote the node features corresponding to the source

sample xS
r and target sample xT

t , respectively. The GDAN minimizes the above loss function,
while the DRHAN maximizes it. By performing such an adversarial learning process, a
domain invariant metric space is gradually learned with limited labeled samples.

4. Experiments
4.1. Description of Experiment Datasets

To assess the classification performance of GDAFSL, several public HSI datasets,
including the Chikusei dataset, the Indian Pines (IP) dataset, the University of Pavia
(UP) dataset, and the Salina Valley (SV) dataset, are selected to conduct comprehensive
experiments. As the proposed GDAFSL is a cross-domain FSL, the Chikusei dataset is
adopted as the source domain dataset, and IP, UP, and SV datasets are regarded as the
target domain dataset. Another reason to select the Chikusei dataset as the source domain
dataset is that the spectral characteristics of the Chikusei dataset are different from the
other three datasets, which can better verify the effectiveness of GDAFSL.

The Chikusei dataset, captured by hyperspectral visible/near-infrared cameras
(Hyperspec-VNIR-C) in 2014, in Chikusei, Ibaraki, Japan, consists of 19 land-cover cate-
gories and a total of 77,592 labeled pixels. It has 2517 × 2335 pixels in spatial dimension
and 128 spectral bands in spectral dimension. The corresponding wavelengths ranged
between 363 and 1018 nm. Its spectral resolutions and ground sample distance (GSD) are
10nm and 2.5 m/pixel, respectively.

The Indian Pines dataset, captured by the airborne visible infrared imaging spectrom-
eter (AVIRIS) sensor in 1992, over Indiana, USA, contains 16 object categories and a total of
10,249 labeled pixels. It has 145 × 145 pixels in spatial dimension and 200 spectral bands in
spectral dimension. The corresponding wavelengths are ranged between 400 and 2500 nm.
The spectral resolution and GSD of the IP dataset are 10nm and 20 m/pixel, respectively.

The University of Pavia dataset, captured by the reflective optics system imaging
spectrometer (ROSIS) sensors over Pavia, Northern Italy, consists of nine land-cover cat-
egories and a total of 42,776 labeled pixels. It has 610 × 340 pixels in spatial dimension
and 103 spectral bands in spectral dimension. The corresponding wavelengths are evenly
distributed between 430 and 860 nm. The spectral resolution and GSD of the UP dataset
are 4nm and 1.3 m/pixel, respectively.
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The Salina Valley dataset, captured by the airborne visible/infrared imaging spectrometer
(AVIRIS) sensors over Salinas Valley, CA, USA, consists of 16 land-cover categories and a total
of 54,129 labeled pixels. It has 512 × 217 pixels in spatial dimension and 204 spectral bands in
spectral dimension. The corresponding wavelength ranged between 400 and 2500 nm. The
spectral resolution and GSD of the SV dataset are 10 nm and 3.7 m/pixel, respectively.

In our experiments, to ensure the balance of the number of training samples in various
classes, 200 labeled samples per class are randomly selected from the source domain dataset
to perform source FSL, as conducted in [30]. 5 labeled samples per class are also sampled
from target domain datasets to construct fine-tuning dataset (training dataset) for target
domain fine-tuning or target domain FSL. Tables 1–3 present the partitioning of IP, UP, and
SV datasets, respectively.

Table 1. The Numbers of Training, Testing, and Total Samples in IP Dataset.

Class Class Name Train Test Total

1 Alfalfa 5 41 46
2 Corn-notill 5 1423 1428
3 Corn-mintill 5 825 830
4 Corn 5 232 237
5 Grass-pasture 5 478 483
6 Grass-trees 5 725 730
7 Grass-pasture-mowed 5 23 28
8 Hay-windrowed 5 473 478
9 Oats 5 15 20
10 Soybean-notill 5 967 972
11 Soybean-mintill 5 2450 2455
12 Soybean-clean 5 588 593
13 Wheat 5 200 205
14 Woods 5 1260 1265
15 Buildings-Grass-Trees-Drives 5 381 386
16 Stone-Steel-Towers 5 88 93

Total 80 10,169 10,249

Table 2. The Numbers of Training, Testing, and Total Samples in UP Dataset.

Class Class Name Train Test Total

1 Asphalt 5 6626 6631
2 Meadows 5 18,644 18,649
3 Gravel 5 2094 2099
4 Trees 5 3059 3064
5 Painted metal sheets 5 1340 1345
6 Bare Soil 5 5024 5029
7 Bitumen 5 1325 1330
8 Self-Blocking Bricks 5 3677 3682
9 Shadows 5 942 947

Total 45 42,731 42,776

Since the FSL training processes are performed alternately on source and target data
sets, labeled samples in the target fine-tuning dataset are insufficient to construct target FSL
tasks, and data augmentation methods are adopted to expand the target fine-tuning dataset.
The samples of the original fine-tune dataset are firstly rotated 90, 180, and 270 degrees
clockwise, respectively. Then, the Gaussian noise is randomly added to the rotated samples
to further expand the target fine-tuning dataset. It is worth noting that the augmented
dataset is only used for target domain FSL and the original fine-tuning dataset is only used
to perform target domain fine-tuning.
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Table 3. The Numbers of Training, Testing, and Total Samples in SV Dataset.

Class Class Name Train Test Total

1 Brocoli_green_weeds_1 5 2004 2009
2 Brocoli_green_weeds_2 5 3721 3726
3 Fallow 5 1971 1976
4 Fallow_rough_plow 5 1389 1394
5 Fallow_smooth 5 2673 2678
6 Stubble 5 3954 3959
7 Celery 5 3574 3579
8 Grapes_untrained 5 11,266 11,271
9 Soil_vinyard_develop 5 6198 6203
10 Corn_senesced_green_weeds 5 3273 3278
11 Lettuce_romaine_4wk 5 1063 1068
12 Lettuce_romaine_5wk 5 1922 1927
13 Lettuce_romaine_6wk 5 911 916
14 Lettuce_romaine_7wk 5 1065 1070
15 Vinyard_untrained 5 7263 7268
16 Vinyard_vertical_trellis 5 1802 1807

Total 80 54,049 54,129

4.2. Experimental Setup

In this article, our experiments are conducted on a workstation with an AMD Thread-
ripper processor (2.90 GHz), 64 GB of memory, and an RTX 3090 graphics processing
unit with 24 GB RAM. All HSI classification methods adopted in our experiments are
constructed by utilizing Python language in the Pytorch platform.

In our experiments, the Adam optimizer is adopted to optimize learnable parameters.
The Xavier normalization method is adopted to initialize convolutional kernels in GDAFSL.
The initial learning rate is set to 0.001 and reduced by 5% after every 200 iterations. The
training epoch of the FSL training process is set to 10,000. For a C-way-K-shot task in the
FSL training process, C is set to the class number of the target dataset and K is set to 1. The
query sample size Z of the query set Q in each task is set to 19, as conducted in [30,31].
The overall accuracy (OA), average accuracy (AA), and Kappa coefficients (κ) are adopted
to quantitatively evaluate different HSI classification methods. All methods are executed
10 times on three HSI datasets to calculate averages and standard deviations of OA, AA,
and κ.

4.3. Parameters Setup

In this section, some main hyperparameters, the initial learning rate, the number of the
epoch, the size of tasks in FSL, the neighborhood size P, and the number of GUM NGUM,
are discussed to find the optimal value for GDAFSL.

The learning rate plays an important role in the training process. To find the optimal
initial learning rate, several experiments with different learning rates {0.0001, 0.0005, 0.001,
0.005, 0.01, 0.05, 0.1} are conducted on three target datasets. The experimental results are
presented in Figure 9. When the initial learning rate is set to 0.001, GDAFSL achieved the
best classification performance on three target datasets. The overlarge or overall learning
rate, such as 0.1 or 0.0001, may cause the model cannot to converge to the optimal solution.
Therefore, the initial learning rate is set to 0.001 and reduced by 5% after every 200 iterations.

The number of the epoch is another vital parameter in the training process. To find the
optimal value of it, we also conducted experiments with various numbers of epochs. The
number of epochs are set as 2000, 4000, 6000, 10,000, 12,000, 14,000, and 16,000, respectively.
The experimental results are presented in Figure 10. The OAs of GDAFSL on three datasets
increased continuously with the increase of the number of epochs. When it reached 10,000,
the OAs began to converge. Therefore, to balance the relationship between classification
performance and time cost, the number of epochs is set to 10,000 on three target datasets.
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Figure 10. OAs obtained by GDAFSL with different numbers of epochs on three target datasets.

As mentioned in Section 3.1, the training processes of the FSL method are iteratively
conducted on a series of C-way-K-shot tasks. The size of the task is also vital to the model’s
classification performance. To find the optimal task size of GDAFSL, several experiments
are conducted on three target datasets. Specifically, the number of support samples K and
the number of query samples Z are discussed in this part. The K is set to 1, 5, 10, 15, and 20,
respectively. The Z is set to 4, 9, 14, 19, 24, 29, 34, and 39, respectively. The experimental
results are presented in Figure 11. When K is set to 1, the OAs reached the maximum. Then,
the OAs decreased continuously with the increase of K. For the number of query samples
Z, the OAs increased continuously with the increase of Z. When the Z is set to 19, the OAs
start to converge. Therefore, the number of support samples K and the number of query
samples Z are set to 1 and 19, respectively.
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(b) The number of query samples.

To utilize abundant spatial-spectral information in HSIs, HSI pixels are firstly sampled
as P× P× L pixel neighborhoods to perform HSI classification. Several experiments with
different neighborhood sizes {7, 9, 11, 13, 15, 17} are conducted to find the optimal value
of P on three HSI datasets. As exhibited in Figure 12, when P is smaller than 11, the OAs
of GDAFSL increased continuously with the increase of P. When P is set to 11, GDAFSL
achieved the best classification performance and acquired the highest OAs. While P is
larger than 11, with the increase of P, the OAs decreased continuously instead. We consider
that properly expanding the spatial size of pixel neighborhoods generally has a positive
impact on classification performance, but the too-large value of P will introduce irrelevant
noises to weaken the classification performance of deep models. Therefore, the optimized
neighborhood size is set to 11.
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The number of GUM NGUM determines the ability of GDAN to explore domain cor-
relations between different domain samples. To find the optimal value of NGUM, several
experiments are conducted with different numbers of GUM {1, 2, 3, 4, 5}. The experimen-
tal results are reported in Figure 13. With the increase of NGUM, the OAs first increased and
then decreased, and when NGUM is set to 3, the OAs reached the highest value. We consider
that the appropriate deepening of GDAN helps to explore domain correlations, but the
overly large value of NGUM will make GDAN too complex to be optimized properly, which
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weakens the capability of GDAN to model domain correlations. Therefore, the optimal
value of NGUM is set to 3 in this work.
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4.4. Ablation Studies

Comprehensive ablation studies are conducted on several target HSI datasets to assess
the specifically designed modules in GDAFSL and evaluate their contributions to HSI
classification. In this article, the ordinary residual CNN, which has a similar structure to
DRHAN and utilizes 3 × 3 convolutional layers for feature extraction, is combined with
the FSL method as a baseline HSI classification method.

4.4.1. The Impact of DRHAN

To evaluate the feature representation ability of the proposed feature extractor DRHAN,
we gradually add GAMM and LAEM into the baseline and conduct experiments on three
target datasets under the GDAFSL framework. Table 4 presents the experimental results
and the best classification results are shown in bold. Due to the lack of additional specific
designed modules, the baseline method achieves the worst classification performance com-
pared with other specific designed combinations. The combination of “GAMM + LAEM”,
which is also called the DRHAN, achieves the best classification results on three target
datasets. Compared with DRHAN, separately utilizing GAMM or LAEM cannot achieve
competitive classification performance, and the performance of LAEM is better than that
of GAMM.

Table 4. OAs obtained by GDAFSL with various feature extraction modules on three target datasets.

Additional Module IP UP SV

Baseline 65.58 ± 2.75 78.87 ± 2.19 87.21 ± 1.89
GAMM 69.21 ± 2.37 82.78 ± 2.27 89.61 ± 1.46
LAEM 71.67 ± 2.17 84.12 ± 2.31 90.86 ± 1.23

GAMM + LAEM 72.97 ± 2.40 84.53 ± 1.59 91.37 ± 1.01

4.4.2. The Effectiveness of GDAN

The domain adaptation strategy plays an important role in our GDAFSL method. To
assess the contributions of GDAN to HSI classification, comprehensive ablation studies are
executed on IP, UP, and SV datasets. Specifically, the GDAN is firstly compared with an
ordinary FSL framework without domain adaptation strategy and FSL with the conditional
domain adversarial network (CDAN) [47] to verify its effectiveness. Then, to further explore
the effectiveness of the proposed KL- divergence-based message aggregation, mean-based
message aggregation, and cosine similarity-based message aggregation are compared with



Remote Sens. 2023, 15, 1125 17 of 24

our method. To ensure the fairness and consistency of experiments, DRHAN is adopted
as a feature extractor in all above methods. Table 5 reports our experimental results. It
is obvious that all domain-adaptation-based FSLs achieved higher OAs than ordinary
FSLs and the KL-divergence-based GDAN achieved the highest OAs. It is worth noting
that the cosine similarity-based GDAN achieved the worst classification performance in
the above four domain-adaptation-based FSLs. We consider that the cosine similarity
method has an insufficient capability to model the correlations between samples with non-
Euclidean structural characteristics, which results in a negative impact on cross-domain
classification performance.

Table 5. OAs obtained by GDAFSL with various domain adaptation methods on three HSI datasets.

Domain Adaptation IP UP SV

None 72.97 ± 2.40 84.53 ± 1.59 91.37 ± 1.01
CDAN 74.67 ± 2.15 85.87 ± 2.16 92.14 ± 0.99

GDAN-mean 74.12 ± 2.90 85.13 ± 2.01 91.67 ± 0.98
GDAN-cos 73.34 ± 2.81 84.92 ± 3.30 90.54 ± 1.35
GDAN-KL 76.26 ± 0.97 87.14 ± 2.01 93.48 ± 0.78

4.4.3. The Contribution of Different Modules in GDAFSL

To further verify the contribution of different modules in GDAFSL, the proposed mod-
ules are gradually added into the baseline to verify their contributions for HSI classification.
As presented in Table 6, due to the lack of specifically designed modules, the baseline
method achieved poor classification performance. After adding specifically designed mod-
ules, the classification performance of the baseline method has significant improvement. It
is worth noting that all combinations with GDAN, such as “GDAN”, “GDAN + GAMM”,
“GDAN + LAEM” and “GDAN + GAMM+LAEM”, achieved higher OAs than those combi-
nations without GDAN, such as “Baseline”, “GAMM”, “LAEM” and “GAMM+LAEM”,
which demonstrates that the proposed GDAN can not only enhance models’ classification
performance alone but also jointly improve models’ classification performance with other
modules. It is worth noting that the combination “GDAN” achieved competitive classifica-
tion results, even better than the combination “GAMM + LAEM”, which demonstrates that
domain adaptation modules have more contributions than feature extraction modules for
cross-domain FSL. It means that developing an effective domain adaptation method has
great significance to cross-domain few-shot HSI classification.

Table 6. OAs obtained by GDAFSL with various proposed modules on three HSI datasets.

Additional Modules IP UP SV

Baseline 65.58 ± 2.75 78.87 ± 2.19 87.21 ± 1.89
GAMM 69.21 ± 2.37 82.78 ± 2.27 89.61 ± 1.46
LAEM 71.67 ± 2.17 84.12 ± 2.31 90.86 ± 1.23
GDAN 74.45 ± 2.47 85.86 ± 1.70 91.97 ± 0.88

GAMM + LAEM 72.97 ± 2.40 84.53 ± 1.59 91.37 ± 1.01
GDAN + GAMM 75.42 ± 2.67 86.24 ± 1.87 92.53 ± 0.97
GDAN + LAEM 76.08 ± 2.13 86.62 ± 2.23 92.89 ± 1.10

GDAN + GAMM + LAEM 76.26 ± 0.97 87.14 ± 2.01 93.48 ± 0.78

4.5. Comparision Experimental Results

To evaluate the classification performance of GDAFSL, several state-of-the-art are selected
to conduct comparative experiments, including ordinary SVM, SSRN [16], RSAKGN [26],
DFSL + NN [30], DFSL + SVM [30], DCFSL [42], and FSL-EGNN [41].

Tables 7–9 report the quantitative experimental results acquired by different HSI clas-
sification methods on three HSI datasets. Compared with the machine learning methods
(SVM), deep learning methods (SSRN and RSAKGN) acquired more satisfactory classifi-
cation performance on all three target datasets. We consider that the higher classification
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accuracy is mainly caused by the sufficient capability of deep models to extract discrimi-
native semantic features. Compared with deep learning methods (SSRN and RSAKGN),
FSL methods (DFSL + NN, DFSL + SVM, DCFSL, and FSL-EGNN) and our GDAFSL
achieve more excellent classification performances with limited training samples, which
demonstrates the effectiveness of FSL methods for learning transfer knowledge.

Table 7. Classification Results (%) of Various HSI Classification Methods on IP Dataset with 5 Labeled
Samples Per Class.

Class SVM SSRN RSAKGN DFSL + NN DFSL + SVM DCFSL FSL-EGNN GDAFSL

1 27.45 92.22 96.11 96.75 96.75 95.37 98.26 99.51
2 37.90 47.19 43.93 38.65 36.38 43.26 58.11 61.25
3 24.13 40.29 57.54 42.79 38.34 57.95 56.47 63.96
4 25.04 85.20 93.30 68.10 77.16 80.60 82.95 92.03
5 54.59 69.09 76.81 71.20 73.92 72.91 76.23 79.18
6 81.61 85.25 92.92 76.18 86.25 87.96 91.26 89.31
7 26.46 100.00 100.00 100.00 97.10 99.57 100.00 100.00
8 94.59 80.24 88.38 74.84 81.82 86.26 92.91 96.19
9 12.74 100.00 100.00 100.00 75.56 99.33 100.00 100.00

10 36.85 63.69 61.50 47.98 52.22 62.44 57.60 71.42
11 59.51 33.05 50.07 57.95 59.96 62.75 67.56 72.56
12 21.55 56.09 59.55 38.21 36.56 48.72 52.01 64.93
13 71.55 97.49 99.18 97.50 98.00 99.35 96.98 97.50
14 86.02 92.56 79.31 83.44 84.63 85.40 92.70 89.10
15 29.60 62.13 67.58 62.29 74.10 66.69 72.64 87.45
16 80.59 97.83 97.23 100.00 100.00 97.61 98.17 92.95

OA (%) 47.86 ± 2.04 59.32 ± 7.76 64.44 ± 6.60 59.65 ± 0.63 61.69 ± 1.85 66.81 ± 2.37 67.99 ± 1.88 76.26 ± 0.97
AA (%) 48.13 ± 2.88 75.14 ± 5.31 78.96 ± 3.78 72.24 ± 0.42 73.05 ± 0.84 77.89 ± 0.8 80.87 ± 1.80 84.83 ± 0.73
κ × 100 41.75 ± 2.08 54.96 ± 8.09 60.43 ± 6.97 54.55 ± 0.52 56.78 ± 1.90 62.64 ± 0.86 63.71 ± 2.16 73.21 ± 1.04

Table 8. Classification Results (%) of Various HSI Classification Methods on UP Dataset with 5 Labeled
Samples Per Class.

Class SVM SSRN RSAKGN DFSL + NN DFSL + SVM DCFSL FSL-EGNN GDAFSL

1 91.85 75.87 73.31 69.19 73.43 82.20 88.40 88.02
2 84.01 66.95 69.64 84.63 89.25 87.74 84.61 87.58
3 29.72 61.30 72.71 57.47 48.09 67.46 79.44 76.33
4 51.51 80.65 88.31 89.99 84.72 93.16 85.55 91.31
5 93.90 99.24 98.52 100.00 99.65 99.49 99.62 98.74
6 36.54 61.57 62.97 71.23 67.81 77.32 78.32 77.51
7 35.17 91.15 80.75 70.62 64.48 81.18 92.50 91.37
8 62.04 66.54 48.32 58.13 67.37 66.73 87.32 91.72
9 99.79 95.46 97.55 96.92 92.92 98.66 96.03 93.43

OA (%) 61.35 ± 7.11 70.75 ± 5.01 74.51 ± 4.56 77.75 ± 1.16 79.63 ± 1.09 83.65 ± 1.77 85.48 ± 2.47 87.14 ± 2.01
AA (%) 64.95 ± 2.99 77.64 ± 4.87 78.66 ± 5.61 77.57 ± 0.31 76.41 ± 1.39 83.77 ± 1.74 87.98 ± 2.01 88.45 ± 2.82
κ × 100 52.71 ± 7.07 63.04 ± 3.71 67.68 ± 6.27 71.11 ± 1.22 73.05 ± 1.60 78.70 ± 2.01 81.11 ± 3.19 83.18 ± 2.69

For the abovementioned FSL methods, the proposed GDAFSL achieves the best
classification performance. The OAs of GDAFSL on IP, UP, and SV datasets are 76.26%,
87.14%, and 93.48%, respectively. Compared with those FSL methods without domain
adaptation (DFSL + NN and DFSL + SVM), the domain adaptation FSL methods (DCFSL
and GDAFSL) generate better classification performance. Due to adding GDAN to explore
domain similarities, GDAFSL achieves more satisfactory classification results. The OAs of
GDAFSL are 9.45%, 3.49%, and 4.14% higher than that of DCFSL on IP, UP, and SV datasets,
which demonstrates the effectiveness of GDAN. When compared with FSL-EGNN which
achieves the second-best classification performance, GDAFSL achieves higher classification
performance by virtue of the specifically designed domain adaptation module. The OAs
of GDAFSL are 8.27%, 1.66%, and 3.09% higher than that of FSL-EGNN on IP, UP, and SV
data sets, which demonstrated the superiority of our proposed GDAFSL method.
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Table 9. Classification Results (%) of Various HSI Classification Methods on SV Dataset with 5 Labeled
Samples Per Class.

Class SVM SSRN RSAKGN DFSL + NN DFSL + SVM DCFSL FSL-EGNN GDAFSL

1 92.88 78.68 95.42 95.63 73.92 99.40 97.79 98.88
2 98.30 99.89 94.18 99.09 96.85 99.76 99.93 99.53
3 80.47 69.19 65.58 94.01 96.28 91.96 90.53 97.62
4 96.83 97.90 99.23 99.54 99.11 99.55 98.70 98.87
5 89.04 93.57 91.47 90.58 80.72 92.70 94.84 93.15
6 99.79 98.94 99.91 98.47 91.63 99.52 99.78 98.86
7 90.47 95.56 99.56 99.81 97.73 98.88 99.78 99.39
8 67.42 69.43 67.51 77.74 82.33 74.57 76.75 86.83
9 96.45 90.52 96.37 91.13 94.44 99.59 99.12 99.65

10 77.64 81.44 83.98 60.98 80.96 86.42 88.34 89.02
11 57.96 91.79 90.88 95.99 93.38 96.61 97.18 99.02
12 91.73 96.15 96.87 93.13 97.94 99.93 98.83 99.38
13 83.27 95.31 99.81 99.34 95.79 99.30 99.72 98.95
14 83.99 97.46 96.02 98.06 98.87 98.85 99.10 98.40
15 51.21 71.92 77.42 77.54 71.13 75.38 78.27 85.10
16 90.32 91.09 96.16 85.05 90.57 92.22 94.84 90.61

OA (%) 79.25 ± 3.42 84.25 ± 2.91 85.96 ± 4.45 87.05 ± 0.83 86.95 ± 1.30 89.34 ± 2.19 90.39 ± 2.27 93.48 ± 0.78
AA (%) 84.23 ± 1.96 88.68 ± 3.10 90.65 ± 2.86 91.01 ± 0.66 90.08 ± 1.44 94.04 ± 1.14 94.59 ± 1.50 95.82 ± 0.47
κ × 100 77.03 ± 3.69 82.53 ± 3.16 84.48 ± 4.84 85.63 ± 0.91 85.51 ± 1.42 88.17 ± 1.53 89.32 ± 2.52 92.75 ± 0.87

It is worth noting that the GDAFSL achieves a more significant improvement of
classification performance on the IP dataset than on the UP and SV dataset. This is mainly
because the GDAFSL significantly improves the accuracy of those hardly classified classes
which are easily misclassified by other methods and have extremely lower classification
accuracy, such as class 3 (Corn-mintill), class 10 (Soybean-notill), class 11 (Soybean-mintill),
and class 15 (Buildings-Grass-Trees-Drives).

To further intuitively evaluate the classification performance of GDAFSL, classification
maps of three target datasets generated by various HSI classification methods are presented
in Figures 14–16. GDAFSL can generate more precise and consistent classification maps
which have fewer misclassification pixels. Compared with reference methods, GDAFSL
can not only significantly increase the intra-class consistency in the homogeneous region,
but also decrease the inter-class differences in border areas. These classification maps also
demonstrate the superiority of GDAFSL in a more intuitive view.
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and GDAFSL, respectively.
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and GDAFSL, respectively.
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5. Discussion

Extensive experiments with 1–5 shot labeled samples per class are conducted on
three target datasets to verify the impact of various labeled sample sizes per class in D f

T .
The experimental results are presented in Figure 17. It is obvious that the OAs of all
classification methods generally raise with the increases in labeled sample size and the
proposed GDAFSL can continuously outperform other HSI classification methods on three
target datasets. It is worth noting that even if the labeled samples are extremely insufficient,
such as only 1 or 2 shots per class, our GDAFSL still has a competitive classification
performance, which can further demonstrate the robustness and effectiveness of GDAFSL.

Remote Sens. 2023, 15, x FOR PEER REVIEW 26 of 29 
 

 

 

 
Figure 17. OA (%) of eight HSI classification methods with various labeled sample sizes on three 
target datasets. (a) IP. (b) UP. (c) SV. 

To intuitively evaluate the complexity of GDAFSL, the training and testing times, 
and the number of parameters are reported in Table 10. Compared with ordinary deep 
learning methods, FSL methods generally require longer training time to conduct a time-
consuming transfer learning process. As shown in Table 10, owning to continuously up-
date the graph constructions, those graph-based methods, FSL-EGNN and GDAFSL, are 
more time-consuming than other FSL methods. The FSL-EGNN, which utilizes graph con-
struction to generate predicted labels, achieves the longest training and testing times. Dif-
ferent from FSL-EGNN, the graph construction in GDAFSL is only utilized in the training 
stage to perform the domain adaptation learning process. Therefore, GDAFSL can achieve 
fast and accurate classification in the testing stage. 

Table 10. Training Time, Testing Time, and Parameters of Different HSI Classification Methods on 
Three Target Datasets. 

Dataset  SVM SSRN RSAKGN DFSL + 
NN 

DFSL + 
SVM 

DCFSL FSL-EGNN GDAFSL 

IP 
Training (s) 0.24 31.58 21.37 703.82 470.45 1255.45 2487.56 1564.63 
Testing (s) 0.41 4.91 2.71 1.28 4.71 1.39 12.89 1.35 
Parameters - 735,884 67,504 34,920 34,920 4,268,994 68,733 108,061 

UP 
Training (s) 0.31  39.63  27.09  436.71  648.47  1251.64  2028.88 1351.49  
Testing (s) 0.65  6.38  4.31 5.07  5.10  5.22  42.37 5.26  
Parameters - 396,993 74,281 34,920 34,920 4,259,294 68,733 98,361 

SV 
Training (s) 0.25 27.91 22.51 951.37 510.72 1287.21 2837.77 2224.01 
Testing (s) 1.74 8.08 6.71 6.59 14.23 7.44 78.35 7.58 
Parameters - 749,996 67,888 34,920 34,920 4,269,394 68,733 108,461 

6. Conclusions 
In this article, a novel cross-domain FSL method called GDAFSL is introduced to 

tackle the domain shift problem in cross-domain few-shot HSI classification. The pro-
posed method focuses on learning a domain invariant feature representation space and 
achieving cross-domain few-shot HSI classification by exploring the correlations between 
samples of different domains. Specifically designed feature extractor DRHAN, which can 
effectively model the spatial interactions in different scales pixel neighborhoods, is pro-
posed to extract discriminative semantic features. Then, by combining graph construction 
with domain adversarial strategy, a graph-based domain adaptation network, which can 
dynamically update graph construction to fully explore domain correlations, is designed 
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Figure 17. OA (%) of eight HSI classification methods with various labeled sample sizes on three
target datasets. (a) IP. (b) UP. (c) SV.

To intuitively evaluate the complexity of GDAFSL, the training and testing times, and
the number of parameters are reported in Table 10. Compared with ordinary deep learning
methods, FSL methods generally require longer training time to conduct a time-consuming
transfer learning process. As shown in Table 10, owning to continuously update the
graph constructions, those graph-based methods, FSL-EGNN and GDAFSL, are more time-
consuming than other FSL methods. The FSL-EGNN, which utilizes graph construction to
generate predicted labels, achieves the longest training and testing times. Different from
FSL-EGNN, the graph construction in GDAFSL is only utilized in the training stage to
perform the domain adaptation learning process. Therefore, GDAFSL can achieve fast and
accurate classification in the testing stage.

Table 10. Training Time, Testing Time, and Parameters of Different HSI Classification Methods on
Three Target Datasets.

Dataset SVM SSRN RSAKGN DFSL + NN DFSL + SVM DCFSL FSL-EGNN GDAFSL

IP
Training (s) 0.24 31.58 21.37 703.82 470.45 1255.45 2487.56 1564.63
Testing (s) 0.41 4.91 2.71 1.28 4.71 1.39 12.89 1.35
Parameters - 735,884 67,504 34,920 34,920 4,268,994 68,733 108,061

UP
Training (s) 0.31 39.63 27.09 436.71 648.47 1251.64 2028.88 1351.49
Testing (s) 0.65 6.38 4.31 5.07 5.10 5.22 42.37 5.26
Parameters - 396,993 74,281 34,920 34,920 4,259,294 68,733 98,361

SV
Training (s) 0.25 27.91 22.51 951.37 510.72 1287.21 2837.77 2224.01
Testing (s) 1.74 8.08 6.71 6.59 14.23 7.44 78.35 7.58
Parameters - 749,996 67,888 34,920 34,920 4,269,394 68,733 108,461

6. Conclusions

In this article, a novel cross-domain FSL method called GDAFSL is introduced to
tackle the domain shift problem in cross-domain few-shot HSI classification. The proposed
method focuses on learning a domain invariant feature representation space and achieving
cross-domain few-shot HSI classification by exploring the correlations between samples of
different domains. Specifically designed feature extractor DRHAN, which can effectively
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model the spatial interactions in different scales pixel neighborhoods, is proposed to extract
discriminative semantic features. Then, by combining graph construction with domain
adversarial strategy, a graph-based domain adaptation network, which can dynamically
update graph construction to fully explore domain correlations, is designed to overcome
domain shift. In addition, to properly model domain correlations in graph construction,
a novel similarity measurement method is proposed to perform feature aggregation on
samples with non-Euclidean structural characteristics. By performing such domain adapta-
tion FSL with a meta-learning paradigm, a discriminative domain-invariant metric space
is learned to execute a few-shot HSI classification. Comprehensive experimental results
conducted on three public HSI data sets demonstrate the effectiveness and superiority
of GDAFSL.
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