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Abstract: Every year, earthquakes cause thousands of casualties and high economic losses. For
example, in the time frame from 1998 to 2018, the total number of casualties due to earthquakes
was larger than 846 thousand people, and the recorded economic losses were about USD 661 billion.
At present, there are no earthquake precursors that can be used to trigger a warning. However,
some studies have analyzed land surface temperature (LST) anomalies as a potential earthquake
precursor. In this study, a large database of global LST data from the Geostationary Operational
Environmental Satellite (GOES) and AQUA satellites during the whole year 2020 has been used to
study the LST anomalies in the areas affected by earthquakes. A total of 1350 earthquakes with a
magnitude larger than M4 were analyzed. Two methods widely used in the literature have been used
to detect LST anomalies in the detrended LST time series: the interquartile (IQT) method and the
standard deviation (STD). To the authors’ knowledge, it is the first time that the confusion matrix
(CM), the receiver operating characteristic curve (ROC), and some other figures of merit (FoM) are
used to assess and optimize the performance of the methods, and to select the optimum combination
that could be used as a proxy for their occurrence. A positive anomaly was found a few days before
the studied earthquakes, followed by the LST decrease after the event. Further studies over larger
regions and more extended periods will be needed to consolidate these encouraging results.

Keywords: LST; time series; anomalies; earthquake precursors; big data analysis

1. Introduction

Earthquakes are one of the most destructive natural disasters, causing numerous
casualties and economic losses. Between 1998 and 2018, the total number of casualties due
to earthquakes was larger than 846 thousand people [1], and the reported material losses
were roughly USD 661 billion [2].

Seismic events are unavoidable, but their effects could be mitigated if a warning is
given in advance [3]. Using satellite data, remote sensing techniques can be exploited to
make maps of zones exposed to specific hazards, including fire, hurricanes, floods, etc.
However, earthquakes are unpredictable, and more efforts are required to prevent and mon-
itor later seismic activities using earth observation (EO) data [4]. Compared to seismograph
methods for earthquake monitoring, EO techniques have many advantages. For example,
ground stations devoted to seismic event monitoring are spatially sparse; therefore, their
ability to monitor crustal movements is limited. However, high spatio-temporal resolution
data provided by satellite instruments can be used to overcome this limitation.

Several approaches have attempted to detect these land surface temperature (LST)
anomalies using thermal infrared (TIR) datasets acquired from polar and geostationary
satellites [5–7]. TIR data provide continuity over long periods, allowing a more precise cal-
culation of the LST temporal anomalies over large regions. These anomalies are computed
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from the detrended LST values that are larger than a coefficient ‘C’ multiplied by the annual
STD or IQT in the same position. More detailed explanations are provided in Section 2.3.
Furthermore, satellite TIR data can depict extensive structures and short (from days to
weeks) variations of LST anomalies over active faults [8]. Moreover, the movement of faults
in earthquake-prone areas frequently affects micro-surface fracture growth, followed by
variations in the Earth’s electric and magnetic fields [9]. These variations lead to pre-seismic
LST anomalies in earthquake zones.

The main innovations of this work are: (1) the LST data pre-processing and analysis,
especially the LST data extraction, quality and nighttime filtering, and LST data fusing and
detrending over 1-year time series including seasonal effects as explained in Section 2.1
(Step 5), and (2) the use of techniques from detection theory such as the CM, the calculation
of the ROC to optimize the detection threshold. Moreover, 1350 recent earthquakes of
magnitude 4 or larger were studied for 2020 with consistent results.

Observations of thermal anomalies have been reported to precede earthquakes world-
wide since the 1980s [5,10]. However, the physical relationship between the detected LST
anomalies and the earthquakes has not yet been established [11]. Small earthquakes grow
into strong ones until they spread along the fault line surface. Distortions are associated
with the physical preparation of earthquakes; then, complex premonitory phenomena can
occur in seismic dynamic regions under influential tectonic forces. The growing pressure
energy establishes many changes in the Earth’s physical-chemical processes, appearing
before the earthquake [6]. Unfortunately, most LST anomalies may have origins different
from earthquakes and must be discarded [12].

In this study, after promising results presented in other previous studies, the LST varia-
tions in nearby areas affected by earthquakes have been analyzed [4] using the well-known
interquartile (IQT) and standard deviation (STD) methods. The LST time series anomalies
have been computed from the ABI/GOES and MODIS/AQUA data. Positive anomalies,
i.e., detrended LST larger than usual, occurred a few days before the earthquakes, and a
negative one, i.e., detrended LST less than normal, on 18 February 2018, and 2 April 2018,
earthquakes in Mexico and Bolivia, respectively.

The Jiuzhaigou earthquake was studied in [8]. The TIR images and total electron
content (TEC) fluctuations around the epicenter were recorded, encountering a high corre-
spondence between the earthquake occurrence and the TEC anomalies.

A method was applied in [13] to find localized spatio-temporal fluctuations of LST
using geostationary satellite data. The statistical results of the same regions over several
years were also compared, and a distinct and repeated LST pattern was found in the case
of an earthquake.

Significant pre-seismic TIR anomalies were also found 2 to 22 days before the earth-
quakes [14]. Thermal anomalies before large earthquakes are reported in [15], notably the
Wenchuan earthquake in 2008 with Mw = 8.

The variations of in situ surface and atmospheric data from the Defense Meteorological
Space Program (DMSP) Special Sensor Microwave Imager/Sounder (SSMIS) F17 satellite
were studied in [16] for 20 days before two strong earthquakes of magnitude Mw > 7. A
correlation among earthquakes, LST anomalies, and the air temperature was found during
the seismogenic period.

The IQT, wavelet, and Kalman filter methods were used in [17] to detect LST anomalies
before strong earthquakes (Mw > 6). Results show that the IQT was able to detect high
anomaly values. In addition, the wavelet was sensitive to sudden changes, and the Kalman
filter significantly detected minor LST anomalies.

A lithosphere–atmosphere–ionosphere–magnetosphere model was proposed in [18] to
detect the pre-seismic signal and explain the process of air ionization before the earthquake.

Despite these evidences, pre-seismic LST anomalies are still not considered a reli-
able precursor of earthquakes; detection methods need to be improved, data should be
made available to investigators for reproductivity purposes, and techniques to compute
earthquake-related precursors need to be well standardized. For example, topography,
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soil moisture, vegetation cover, and other atmospheric phenomena might also impact
pre-seismic thermal anomalies. This manuscript represents an attempt to improve the LST
anomalies detection methods, and to select the optimum detection parameters. This fact
led us to formulate the following research questions:

• How much can we trust the LST anomalies as earthquake precursors?
• What is the receiver operating curve of the detector, its optimum parameters, and the

optimum probability of detection, false alarm, and other figures of merit?

This study aims at calculating and detecting earthquake LST anomalies using the STD
and IQT methods in time series data [13] from the advanced baseline imager (ABI) [14]
on GOES and from MODIS [15] on the AQUA satellite to inspect if any occurrence of
LST anomalies before large, land-based earthquakes are detectable [19]. Only the data
measured between midnight and 6:00 am local time are used to mitigate the diurnal cycle.
The essential advantage of using multi-satellite data sources is the capability to generate
accurate global and gap-free LST maps by data fusion of ABI/GOES 16 and 17, as explained
in Section 2.1 (Step 4). Furthermore, earthquake events with a shock magnitude (Mw) larger
than 4 have been studied globally during the year 2020. A few days or weeks before the
seismic shocks, the LST anomaly of the pixels around the epicenters can be up to 1 ◦C
to 4 ◦C [18]. This result is understood as the Earth’s crust’s thermal flux in seismically
dynamic parts [20].

The rest of this manuscript is organized as follows. Section 2 describes the materials
and methods used to process and calculate the LST anomalies. Section 3 shows the results,
and Section 4 provides a discussion. Finally, Section 5 presents the main conclusions of
the paper.

2. Materials and Methods

This section explains the methodology used to acquire, pre-process, and calculate the
LST anomalies, including the EO datasets.

2.1. General Architecture for Data Acquisition and Processing

Figure 1 shows the LST data processing architecture from the data acquisition to the
visualization of the predicted earthquake risk maps.
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Step 1: Selection of relevant LST data sources [21], including MODIS/AQUA and
ABI/GOES (East and West). These instruments have different spatial (SPR), spectral (STR),
and temporal resolutions (TMR) [22], as detailed in Table 1.

Table 1. LST Satellites Data Sources.

Satellite Sensor Spatial Resolution Product Input/Day Rate/Day Output/Day

GOES ABI 4 km LSTF 100 MB 60 files 95 MB

AQUA MODIS 1 km MYD11 1 GB 300 files 4 GB

Step 2: Data acquisition from the Earth Observing System Data and Information
System (EOSDIS) of the National Aeronautics and Space Administration (NASA) [23].
This operation takes approximately 15 to 30 min, depending on the data transfer rate
and the internet bandwidth [24], depending on the satellite sensor’s data latency, and the
availability of the data center and data transmission [21].

Step 3: Pre-processing of the acquired LST data in 2020. First, the LST data is extracted
from the Network Common Data Form (NetCDF, [25]) files using the SAT-ETL-Integrator
software [26], and data filtering is conducted for land-only LST measurements. Erroneous,
cloudy, and poor-quality data are filtered out, as described in Table 2 [22]. Then, LST
is converted from Kelvin (K) to degrees Celsius (◦C), stored, and serialized into comma-
separated values (CSV) files for each day [26]. The yearly total size of the processed
data sumps up to 2 TB. Parallel and distributed tools were implemented to speed up
the processing time using SAT-Hadoop-Processor, the distributed version of the SAT-
ETL-Integrator. It is a new distributed software for remote sensing data pre-processing
and ingestion using cloud computing technology, specifically OpenStack. The developed
software discarded unneeded daily files and removed erroneous and inaccurate datasets.
This parallel processing optimized the total execution time by 90%.

Table 2. LST Data Quality Products.

LSTF-M6 DQF

0 2 4 8 16

Good retrieval
valid input data,

type, and LST
clear conditions

Wrong or missing
input data

Cloudy
conditions Degraded pixels Invalid-water

surface type

MYD11_L2 QC

0 1 2 3 -

Pixel produced,
good quality,

cloud-free pixel

Pixel produced,
unreliable quality,

missing pixel

Pixel not
produced due to

cloud effects,
fairly calibrated

Cloudy pixel not
produced, poor

calibration,
processing

skipped

Step 4: Filtering the nighttime datasets between 00:00 and 06:00 am local time only to
discard the diurnal cycle, i.e., the effect of variable sunlight and radiation on the LST values.
Afterwards, data fusion (Only ABI/GOES East/West data, as they have the same spatial,
radiometric, and spectral resolutions. MODIS/AQUA data is not fused with ABI/GOES
data) aggregates measurements with the same location (longitude and latitude) and local
time. Some figures, such as the average, standard deviation, and minimum and maximum
values, are then evaluated. Finally, data are sorted and arranged chronologically in a
time series.

Step 5: Computation of the average LST inside a region defined by the strain radius
(SR), as explained in Section 4. The data processing showed that most LST anomalies
occurred the week before the earthquake. Therefore, the average LST values within the SR
region are detrended with breakpoints (BP) every 7 days to remove seasonality effects.

Step 6: Calculating and detecting the LST anomalies based on the STD and the IQT
methods, as detailed in Section 3. Once the LST anomalies are calculated and detected, they
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are correlated and linked to the most probable earthquakes, as explained in Figure 3. Next,
the CM is calculated to identify the optimum detection parameters. Finally, the correlation
is visualized in charts and maps.

2.2. Input Data

LST is the radiative surface temperature of the land resulting from infrared radiation.
Some factors can influence the derivation of LST, such as temperature variations within the
pixel. Sub-pixel inhomogeneities in temperature and land covers, such as emissivity, atmo-
spheric temperature, humidity, and clouds, can also affect the quality of LST measurement.
LST is an important indicator of the energy flux between the atmosphere and ground, i.e.,
the Earth’s radiation budget.

Table 1 shows the satellites and sensors used in this study to provide the LST data.
Their spatial resolution (SPR) ranges between 1 and 4 km, and their temporal resolution
(TMP) resolution is between 1 h and 12 h, depending on the orbit [27]. In this study, global
data is collected for 2020 [28].

2.2.1. LST Datasets from ABI/GOES

LST from ABI/GOES longwave infrared spectral channels, notably bands 14 (11.2 µm)
and 15 (12.3 µm), with a NeDT of 0.1 ◦C [29]. Data were acquired from the Comprehensive
Large Array-data Stewardship System (CLASS). LST dataset 2020 [30] was obtained from
GOES 16 and 17 satellites. The product is available at a nominal SPR of 4 km, and a TMP of
24 images per day, although only seven images from midnight to 06:00 am were processed
daily to avoid diurnal effects. Its spatial coverage encompasses the Americas. Quality
information is also provided based on the total column moisture content, cloud coverage,
and satellite positioning. Table 2 includes the ABI product’s data quality Flags (DQF). DQF
ranges between 0 and 32; in our study, only data sets with a DQF equal to 0 are included,
meaning that the data are good, have valid input, land type, and have cloud-free conditions.

2.2.2. LST Datasets from MODIS/AQUA

AQUA satellite is in a sun-synchronous orbit (SSO) at 1:30 pm local time of the
ascending node. MODIS uses 36 spectral bands from 0.41 to 14.2 µm to sense the Earth’s
surface [31] with a NeDT 0.25 ◦C in most channels [31]. The AQUA MYD11_L2 Global 1
km SIN Grid LST night has been used (Table 1) [32]. The LST values are also computed
using a split-window algorithm. Table 2 includes the quality control (QC) of the MODIS
product. In this study, only datasets with a QC equal to 0 were used, meaning that the pixel
was produced with good quality and in clear conditions.

2.2.3. Earthquakes Datasets from the USGS Ground Stations

The United States Geological Survey (USGS) Earthquake Hazards Program (EHP) is a
part of the National Earthquake Hazards Reduction Program (NEHRP) [33]. Earthquakes
recorded within a 24 h window are clustered together. In this study, 1350 earthquakes with
Mw ≥ 4 were studied, but only 3 with Mw > 6 (Table 3) are illustrated as examples in this
paper to explain the methodology. Figure 2 shows the locations of the sample earthquakes
listed in Table 3.

Table 3. Details of earthquakes Mw > 6 in 2020 [33] that are presented in Figure 4. (From a total of
1350 earthquakes analyzed).

ID Date Location
Epicenter

Mw SR (km) Land Cover
Lat (Deg) Lon (Deg) Depth (km)

ID977 2020-01-24 Ankara, Turkey 38.43 39.06 10 6.7 760 Grassland

ID5086 2020-05-15 San Jose, CA, USA 38.17 −117.85 2.7 6.5 623 Shrub

ID9629 2020-09-06 Coquimbo, Chile −30.34 −71.49 30 6.3 511 Shrub
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2.3. LST Anomaly Calculation

This section explains the two most widely used statistical methods to calculate LST
anomalies in time series, notably the STD and the IQT methods.

2.3.1. STD Method

LST values further away than ±1.5. σ from the mean were flagged [34,35], and ±1.5.
STD and ±2. STD thresholds were used in [36]. The LST deviation is calculated as LST
deviation = LST – LST mean, where the LST mean is the average of detrended LST inside the
strain radius (SR). For the earthquake precursor, the following thresholding is considered.
The LST anomaly is detected if the flowing condition is met:

| LST deviation | ≥ C × STD, (1)

where “C” is a coefficient that multiplies the STD of the annual detrended LST to detect
LST anomaly.

In this study, 9 values for the C coefficient have been considered [0.7, 0.75, 0.8, 0.85,
0.9, 0.95, 1, 1.5, 2]. The first step calculates the STD values for each coefficient during 2020.
Values satisfying Equation (1) are flagged as LST anomalies in this time series. A sensitivity
analysis of this approach showed that this threshold captures fluctuations between 1 ◦C
and 3 ◦C, as compared to LST neighboring background. The link between LST anomalies
and studied earthquakes will be explained in Section 2.4.

2.3.2. IQT Method

The IQT is a statistical parameter that measures the numerical spread and data variabil-
ity by dividing the dataset into quartiles. Any dataset is ordered and splits into 4 distinct
intervals, including [0–0.25], (0.25–0.50], (0.50–0.75], and (0.75–1.00]. In this method, 9 val-
ues of C have been considered: 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.3, 1.5, and LST anomalies
are the values satisfying the following condition.

| LST deviation | ≥ C × IQT (2)

2.3.3. LST and Earthquakes Aggregation

Previous studies detected LST anomalies even 500 km away from the epicenter [37].
However, in [38], it is claimed that because the latent alarm zones are too large, observed
phenomena farther than 60 km from the earthquake epicenter are not useful as precursors,
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even if they were spatially correlated to the epicenters. The SR is the radius of the circle
of the earthquake’s groundwork zone, and it is related to the moment magnitude (Mw)
by [39].

SR (km)= 10 0.43 × Mw (3)

For instance, on 24 January 2020, an earthquake occurred in Ankara, Turkey, with
Mw = 6.7, and SR is ≈720 km. This study uses the SR (Equation (3)) to calculate the
averaged LST for every pixel. The neighboring radius (NR) is used to search for near
earthquakes to expand the correlation between LST anomalies and earthquakes. In this
study, NR is computed as:

NR max (km)= 2 × SR (4)

Figure 3a shows the aggregation process between the epicenters and the LST anomalies
in those pixels. First, neighbor earthquakes are searched within the NR and associated
with positive LST anomalies up to seven days before. As a result, multiple aggregations
are possible; the one selected is based on the strongest earthquakes, the most recent one,
the closest epicenter, and the largest LST anomaly, in this logical order. For instance, the
San Jose, USA earthquake (ID5086) showed two positive LST anomalies, 1 ◦C and 2.8 ◦C,
recorded 3 and 6 days before the earthquake, respectively. Accordingly, the first anomaly
was associated with the earthquake because it is the most recent one.
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Figure 3. (a). The flowchart of LST anomalies and earthquakes association, (b). Map showing the
epicenter (EP), SR, NR, and the NR max of the ID7854 earthquake with a Mw = 6.7, a SR = 760 km
NR max = 1520 km.

In 2020, the same area was examined with or without an earthquake occurrence. This
approach allows testing the effect of anomalies in periods without earthquakes. Prior
studies have frequently tested various periods, but only before and after the earthquake.
This leaves the possibility that similar irregularities may occur throughout the year(s)
without any associated earthquake [40]. In our case, we have found more than 60,000 LST
anomalies from 370,000 without any associated earthquake, as also found in [41,42]. Fur-
thermore, it has been shown that anomalies in the neighborhood of earthquake epicenters
and everywhere in the study areas happen during the year, regardless of the existence of
an earthquake.

2.4. LST Data Pre-Processing and Normalization

The high-level procedure to detect the LST anomalies as seismic precursors were
outlined in Section 3. Here, more details on the LST processing are provided. Among the
1350 earthquakes studied, three examples corresponding to Table 3 are also illustrated.
First, the thermal conditions around the epicenter’s nighttime are visually analyzed seven
days before and four days after the earthquake. A graphical analysis of the thermal images
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shows the approximate number of days of the appearance of an LST anomaly. Finally,
the plots of time series of LST anomalies are presented for the whole year to show other
examples in the same region but on different dates.

A spatial low pass filter (LPF) with a radius equal to the SR is applied to discard spatial
patterns. This operation eliminates local inhomogeneities of pixels, humid conditions, or a
heatwave spreading over large zones. Afterwards, only local anomalies remain highlighted
in the subsequent time series. Before an LST anomaly can be designated as a consistent
precursor, it should be considered whether or not it is an artificial anomaly associated with
an investigated event or a random anomaly. Before strong and moderate seismic events,
earthquake precursors appear at different distances. The zone of strain accumulation is
estimated following the definition of earthquake preparation area as described in [42].

Figure 4 illustrates the above procedures with three examples of the studied epicenters
(ID5086, ID9629, and ID977), as detailed in Table 3. On top, it shows the fused and LPF the
LST 4 days before, and 1 day after; the cyan star represents the epicenter of the earthquakes,
and the dashed circle is the region defined by the SR. The orange ellipse is the central
studied epicenter. Before each earthquake, an LST increase around the epicenters occurs
2 to 4 days before the seismic shock. Then, the LST cools down after the earthquakes.
Figure 4(a1–a4, b1–b4, and c1–c4) show the original, and the detrended LST for each
subplot during 2020 to show all the LST anomalies in the studied area. Differences in
seasonal detrended LST are due to the latitude (north vs. south, summer vs. winter), which
is more stable and independent of seasonal effects.Remote Sens. 2023, 15, 1110 9 of 21 
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Figure 4. Sample LST maps, original, detrended, and anomalies time series (°C) measured with 
ABI/GOES or MODIS/AQUA for epicenters (a1–a6) ID5086, (b1–b6) ID9629, and (c1–c6) ID977 in 
2020. 

Figure 4. Sample LST maps, original, detrended, and anomalies time series (◦C) measured with
ABI/GOES or MODIS/AQUA for epicenters (a1–a6) ID5086, (b1–b6) ID9629, and (c1–c6) ID977
in 2020.

Figure 4(a1–a4) show the calculated LST anomalies used for the San Jose earthquake
and the STD and IQT methods. Each chart has a main epicenter and neighbor epicenters
closer than the NR max. Thus, a positive LST anomaly can be noticed 1 to 4 days before
most studied earthquakes, as shown in Figure 4(a5). Recent LST anomalies to earthquakes
have been linked in this study because, logically, seismic events rapidly impact the LST.
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Thus, for instance, +1 ◦C and +3 ◦C were recorded 1 and 4 days before earthquake ID5086,
as shown in Figure 4(a5). Accordingly, the closest one in time, +1 ◦C, was associated with
the earthquake.

Figure 4(b1–b6) show the analyzed, fused, and LPF LST around Coquimbo (Chile)
between 3 and 7 September 2020. The epicenter is shown with a cyan star. Abnormal
LST increments of 1 to 4 ◦C are detected around the epicenter, increasing to a maximum
build-up of a thermal anomaly 2–4 days before the seismic events. Then, the LST anomaly
cools down immediately after the earthquakes.

Figure 4(c1–c6) illustrate the processed AQUA/MODIS LST data near Ankara, Turkey,
between the 20 and 25 of January 2020. The cyan star represents the epicenter. We noticed a
slight increase in LST 3 days before the earthquake. Still, a significant positive LST anomaly
was reported on the earthquake day, and then the LST cooled down the day after.

2.5. LST and Earthquakes Correlation Analytics Using the Full Confusion Matrix

The CM characterizes the performance of a detector. It helps measure other parameters
such as recall, precision, specificity, and accuracy. Each row of the matrix represents the
cases in an actual class. Conversely, each column denotes the samples in a predicted class
or vice versa [11]. The four components of CM in this study are defined as follows:

• True Positive (TP) is the number of correct predictions: An earthquake occurs, and an
LST anomaly occurs.

• False Negative (FN) is the number of incorrect predictions: An earthquake occurs, and
there is no LST anomaly.

• False Positive (FP) is the number of incorrect predictions: An earthquake does not
happen, but there is an LST anomaly.

• True Negative (TN) is the number of correct predictions: An earthquake does not
occur, and there is no LST anomaly.

Figure 3a shows the flowchart describing the CM calculation algorithm. Samples were
divided into two parts: the CP (an earthquake actually occurs) and CN (no earthquake
occurs). In CP, only samples with Mw ≥ 4 are retained, then every earthquake is associated
with its best LST anomaly, as explained in Section 3. The LST anomalies could either be
positive or neutral. If a positive LST anomaly and a neighboring earthquake are found for
up to 7 days, the TP is incremented. In contrast, the FP is incremented. If a neutral LST
anomaly and a neighboring earthquake are found for up to 7 days, the FN is incremented.
In contrast, the TN is incremented. Finally, the algorithm calculates the other metrics using
the formulas provided in Table 4.

Table 4. Details of the Confusion Matrix and Formulas of FoM Parameters.

Condition Positive (CP) TP FN True Positive Rate
(TPR) = TP/P

False Negative Rate
(FNR) = FN/P

Condition Negative (CN) FP TN False Positive Rate
(FPR) = FP/N

True Negative Rate
(TNR) = TN/N

Prevalence (P) =
CP/CP + CN Accuracy (ACC) = TP + TN/CP + CN Positive Likelihood Ratio

(LR+) = TPR/FPR
Negative Likelihood Ratio

(LR−) = FNR/TNR

G-mean
=

√
TP∗TN

(TP+FN)∗(TN+FP)
Kappa Coefficient = 2∗(TP∗TN)−(FN∗FP)

(TP+FP)∗(FP+TN)+(TP+FN)∗(FN+TN)

Diagnostic Odds Ratio
(DOR) = (LR+)/(LR−)

3. Results

This section describes the results obtained after the pre-processing, processing, and
statistical calculation of the ABI/GOES and MODIS/AQUA data. First, the numerical
correlation analysis is provided. Then, the results of the CM are presented, and finally, the
outcome of the CM for each Mw.
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3.1. Statistical Analysis of LST Anomalies and Earthquakes Correlations

Table 5 shows the average LST anomalies for each Mw. It can be noticed that the
detected LST anomalies are almost similar using the STD and IQT methods with the same
coefficient. In addition, the values of LST anomalies decrease when coefficient C increases.
The ABI/GOES LST anomalies are higher than the MODIS/AQUA ones with high Mw and
vice versa [43,44]. This could be explained because ABI/GOES and MODIS/AQUA have
different coverages and spatial resolutions [45]. MODIS scans the whole globe, while ABI
scans only America. The number of samples and pixel size are very different [46].

Table 5. Average LST Anomalies (◦C) for TP as a Function of Mw and FP.

C/Mw TP (Mw = 7–7.9) TP (Mw = 6–6.9) TP (Mw = 5–5.9) TP (Mw = 4–4.9)

Sensor M A M A M A M A

STD method: Mean LST anomalies (◦C)

0.7 - 0.56 1.41 3.1 2.69 1.46 2.9 1.83
0.75 - 0.51 1.31 3 2.54 1.38 2.71 1.75
0.8 - 0.45 1.21 2.89 2.39 1.31 2.53 1.68

0.85 - 0.4 1.1 2.79 2.24 1.24 2.36 1.61

0.9 - 0.35 1 2.69 2.1 1.17 2.19 1.54

0.95 - 0.29 0.89 2.59 1.96 1.1 2.03 1.48

1 - 0.24 0.79 2.5 1.82 1.04 1.87 1.41

1.5 - - 0.24 1.7 0.79 0.58 0.74 0.9

2 - - 0.03 1.12 0.27 0.29 0.26 0.58

IQT method: Mean LST anomalies (◦C)

0.7 - 0.42 0.83 3.02 2.16 1.44 2.02 1.81

0.75 - 0.36 0.7 2.92 1.98 1.37 1.82 1.74

0.8 - 0.29 0.59 2.82 1.81 1.3 1.64 1.67

0.85 - 0.23 0.52 2.72 1.65 1.23 1.47 1.59

0.9 - 0.16 0.46 2.62 1.5 1.16 1.32 1.52

0.95 - 0.1 0.4 2.52 1.35 1.1 1.18 1.46

1.1 - - 0.23 2.26 1 0.93 0.84 1.27

1.3 - - 0.07 1.98 0.65 0.75 0.54 1.06

1.5 - - 0.01 1.71 0.42 0.59 0.36 0.89

Other metrics

Days before - −6 −1.86 −2.2 −3.01 −2.4 −2.81 −2.7

Count 1 1 22 11 238 93 2972 1255

Cells with (-) are missing data due to gaps or poor-quality measurement data. (A) means ABI and (M)
means MODIS.

The ABI/GOES and MODIS/AQUA have different SPR and TMR, affecting the values
of the calculated LST anomalies. Furthermore, the measured LST anomalies are higher with
small Mw and lower with strong earthquakes. LST anomalies frequently appear earlier
than smaller ones. Finally, the average LST anomalies in FP values recorded from ABI are
higher than MODIS.

3.2. Output of the CM and Visualization of the ROC Curves

This section comprises the results obtained after the CM calculation. First, the numeri-
cal analyses of the CM acquired from ABI/GOES and MODIS/AQUA satellite instruments
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are provided. Then, the results of the partial CM for each Mw are presented. Finally, the
ROC curves are shown.

3.2.1. CM of ABI/GOES for Mw > 3

Figure 5 shows the results of the CM measured from ABI/GOES. It can be noticed
that all metrics are almost equal for both the STD and IQT methods using the same ‘C’
coefficient. The ACC, TPR, FNR, and TNR increase with increasing the ‘C’ coefficient,
while the FPR decreases. Accordingly, the LST anomaly detection increased for the ‘C’
coefficients, but the rate of false alarms is also significantly high. Few LST anomalies are
detected with large ‘C’ coefficients, with high confidence and less noise. The diagnostic
odds ratio (DOR) measures the effectiveness of a diagnostic test. It ranges from zero to
infinity. However, it is larger than one for practical tests, and the higher the DOR, the better
the test performance is. The geometric mean (G-mean) indicates the balance between the
classification performances of majority and minority classes. A low G-mean means a low
prediction of the TP cases, even if the TN cases are correctly classified, and vice-versa. The
kappa coefficient calculates the agreement between predicted and valid values. A kappa
coefficient value of 1 denotes perfect agreement, while a value of 0 represents no agreement
at all. In our case, the DOR (≈13), G-mean (≈0.78), and kappa coefficient (≈0.56) reach
the maximum value for C = 0.7, which confirms the selection of this value as the optimum
detection parameter for both methods.
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3.2.2. CM of MODIS/AQUA for Mw > 3

From Figure 6, it can be noted that for the STD method, using C = 0.7, the TPR, G-mean,
kappa coefficient, and the DOR reach the maximum values: 0.81, 0.79, 0.57, and 13.56,
respectively. However, the FPR is also high at 0.24, meaning a high prediction sensitivity at
the expense of a high rate of false alarms with small coefficients. The IQT method also uses
C = 0.7, the TPR, G-mean, kappa coefficient, and the DOR reach only a maximum value,
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correspondingly, 0.67, 0.76, 0.57, and 11.51. In contrast, the lower FPR recorded was 0.16.
Accordingly, for Mw ≥ 4, a C = 0.7 is the optimum method parameter.
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3.2.3. CM as a Function of the Earthquake Magnitude (Mw = 7, 6, 5, and 4)

Table 6 includes the CM measured from ABI/GOES and MODIS/AQUA data for
earthquake magnitudes from 4 to 4.9, 5 to 5.9, 6 to 6.9, and 7 to 7.9. It can be noticed that
the optimum thresholds do not depend on the earthquake magnitude. Furthermore, as
expected, the TPR, TNR, and DOR increase as earthquake magnitude increases, indicating
more detectability. Furthermore, the performance is dominated mainly by Mw = 4 earth-
quakes, which are much more abundant. The DOR improves because the FNR decreases
with increasing magnitude, while TPR, FPR, and TNR are roughly constant. There is no
monotonic behavior based on the magnitudes because the number of studied earthquakes
by magnitude is very different for different magnitudes. For instance, there was only one
earthquake with M7, hundreds of M5, and thousands with M5 and M4. Thus, we could not
deduce a such a rule.

Table 6. Optimum Coefficients of The CM for Each Mw.

TPR FPR FNR TNR DOR

Sensor A M A M A M A M A M

Mw = 7 (GOES CP = 1 and AQUA CP = 1)

0.7-STD 1.00 1.00 0.18 0.24 0.00 0.00 0.82 0.76 - -

0.7-IQT 1.00 1.00 0.18 0.17 0.00 0.00 0.82 0.83 - -

Mw = 6 (GOES CP = 42 and AQUA CP = 79)

0.7-STD 0.88 0.94 0.18 0.24 0.12 0.06 0.82 0.76 34.7 48.0

0.7-IQT 0.86 0.85 0.18 0.17 0.14 0.15 0.82 0.83 26.4 26.5

Mw = 5 (GOES CP = 185 and AQUA CP = 461)

0.7-STD 0.8 0.80 0.18 0.24 0.2 0.20 0.82 0.76 18.7 13.3

0.7-IQT 0.8 0.75 0.18 0.17 0.2 0.25 0.82 0.83 17.6 14.1

Mw = 4 (GOES CP = 2465 and AQUA CP = 5338)

0.7-STD 0.73 0.80 0.18 0.24 0.27 0.20 0.82 0.76 12.7 13.4

0.7-IQT 0.74 0.70 0.18 0.17 0.26 0.30 0.82 0.83 12.3 11.2

Cells with (-) are missing data due to gaps or bad quality measurement data. (A) means ABI and
(M) means MODIS.
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3.2.4. ROC Curves of ABI/GOES and MODIS/AQUA for Mw ≥ 4

A ROC curve is a plot illustrating the performance of a binary classifier system as a
function of the threshold. The probability of a false alarm (FPR) is on the x-axis, while the
probability of detection (TPR) is on the y-axis. It can be used to find the optimum threshold
that minimizes the distance between the perfect classifier (Pfa, Pdet) = (0,1) and the ROC.

From Figure 7, it can be noticed that the four ROC curves calculated from ABI/GOES
and MODIS/AQUA data using the STD and IQT methods are very similar and have almost
the same shape. With C = 0.1, the TPR = 1, and the FPR = 1, while with C = 3, the TPR = 0,
and the FPR = 0.
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When C = 0.7, the shortest distance from the ROC to the point (0,1) is achieved, ranging
between 0.3 and 0.36 depending on the data used and method; as a result, the optimum C
for earthquake prediction is 0.7.

4. Discussion: Correlation between LST and Earthquakes for Strong Earthquakes
(Mw> 6)

The proposed approach correlates earthquake occurrence and previous LST anomalies.
As can be seen, each method (STD and IQT) leads to a minor different LST anomaly,
despite using the same data source. The current research used nighttime ABI/GOES
and MODIS/AQUA LST data. During the nighttime, small but detectable, positive LST
anomalies around 1 to 4 ◦C were observed before the earthquakes. A negative LST anomaly
is expected during 1 to 3 days after the earthquake.

For the studied earthquakes, LST generally increases along the fault zone of the
epicenter region, and the location of LST anomalies is within the SR of each studied
epicenter. Table 7 summarizes the LST anomalies for the six strongest earthquakes during
2020, with small LST anomalies from 0.4 to 2.4 ◦C occurring from 1 to 6 days before the
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earthquakes. Still, earthquake prediction is very complex and debatable since the observed
changes are tiny, even around the epicenter and surrounding regions.

Table 7. Measured LST Anomalies (◦C) from GOES and AQUA Mw > 6 Studied Earthquakes In 2020.

C/ID ID6704 ID3436 ID5086 ID334 ID9629 ID977

Satellite A G A G A G A A G A

0.7-STD - 0.56 2.4 0.73 - 1.04 0.85 - 0.27 1.05

0.7-IQT - 0.42 2.11 0.64 - 0.94 0.35 - - 0.67

Days
before - 6 1 1 - 3 5 - 2 4

Cells with (-) are missing data due to gaps or bad quality measurement data. (A) means AQUA, and (G) means GOES.

The Oaxaca earthquake, Mexico (ID6704), was the strongest land earthquake in 2020.
It occurred on 23 June 2020, with an Mw = 7.4 at a depth = 20 km in a forested area. A
slight positive anomaly of just 0.6 ◦C was detected 6 days prior to the seismic event. The
LST increased up to a maximum of 24.4 ◦C, then decreased gradually to 23 ◦C the day
after the earthquake. The Portland earthquake, USA (ID3436) occurred on 15 May 2020,
with Mw = 6.5 at a depth =10 km in a shrubland area. The calculated SR is 626 km. A
positive LST anomaly of approximately 2 ◦C was detected 3 days before the seismic event,
with a maximum recorded LST of 18.3 ◦C one day before the earthquake. The LST then
cooled down to 15.6 ◦C 1 day after. The same observation was detected in the San Jose
earthquake, USA (ID5086). However, a positive LST anomaly was observed only one day
before the seismic shock with a maximum LST equal to 4 ◦C, and it decreased progressively
to 2.5 ◦C the day after the earthquake. Regarding the Chile (ID9629) earthquake, a small
prior positive anomaly equal to 0.3 ◦C was detected 2 days before the earthquake.

In the MODIS/AQUA LST night, positive anomalies around 1 ◦C were detected 4
and 5 days before the Anadyr, Russia (ID344) and Ankara, Turkey (ID977) earthquakes.
The maximum LST recorded were −31.8 ◦C and −4.1 ◦C, respectively, then the LST cooled
down steadily to −38 ◦C and −5.3 ◦C, respectively, the day after the main earthquake.

The anomalies are small, within the range of 0~2 ◦C. In addition, other examples are
in the background (not shown on paper because we do not have enough space) that have
been associated with high LST anomalies (>2 ◦C).

Many researchers have observed abnormal changes in LST anomalies before strong
earthquakes, which can be considered potential earthquake precursors. However, many
studies argue that the changes in these parameters are not related to earthquake activities,
since even stronger LST anomalies also appear in the absence of earthquakes.

The relationship between longtime LST data series and dates of earthquakes required
more investigations to determine whether the anomalies were related to the earthquake.
Our results confirm that the STD and IQT methods with proper selection of the C parameter
(Copt = 0.7), the proper spatial filtering, and the temporal detrending are capable of
detecting LST anomalies linked to the occurrence of earthquakes with a probability of
detection (Pdet) = 0.67–0.81 and probability of false alarm (Pfa) = 0.16–0.24 depending
on the method and sensor. This performance can be improved by repeating the test on
consecutive days.

5. Conclusions

This study analyzed the LST anomalies for 1350 earthquakes that occurred in 2020
using time series data of ABI/GOES [47] and MODIS/AQUA. To gain a wider perspective,
this period could be extended to a few years to enhance the quality of correlation and to
cover global extents with more different land covers and regions. Only three earthquakes
with Mw > 6 have been visualized because they clearly show the correlation. The pre-
processing of this massive volume of data was accomplished efficiently using the SAT-ETL-
Integrator [26] and SAT-Hadoop-Processor software [27].
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LST anomalies were identified using the IQT and STD methods. However, the effi-
ciency of integrating the above-mentioned methods to detect anomalies in LST variations in
the strong earthquakes studied has been presented. This has been illustrated by the San Jose,
Chile, and Ankara earthquakes (Figure 4). As a result, the detected LST anomalies can be
trusted as a precursor for earthquake events. The IQT and STD methods were applied with
different threshold coefficients, and the CM and the ROC curves were generated for each C
to select the optimum threshold, concluding that Copt = 0.7. However, it is acknowledged
that some anomalies noticed near the earthquake may not be related to the earthquake but
may be masked by vegetation cover, topography effects, or other climatological conditions.

The results of the pre-earthquake LST anomalies detected before strong and moderate
earthquakes (Mw ≥ 4) studied in this work may be used in the future in conjunction with
other proxies for short-term earthquake risk prediction. In addition, we can reuse the same
model for other parameters, notably ionospheric scintillation parameters [48,49].

At the time of writing the original manuscript, a sequence of earthquakes occurred
between 12 and 19 September 2021, in La Palma Island (Canary Islands), preceding the
volcanic eruption on 19 September. As illustrated in Figure 8a, b, there were hundreds of
small earthquakes with Mw ≤ 3, located primarily in the southwest part, that progressively
shifted towards the east after the volcano eruption. The analysis of AQUA/MODIS and
TERRA/MODIS nighttime, high-quality, cloud-free conditions data showed an increase of
the LST of up to ~7 ◦C from 2 September to 11 September, in the partially active part of the
island (see Figure 9a). On 12 September, after the earthquakes started, the LST suddenly
dropped by 4 ◦C (see Figure 9b). The rest of the time series uses data not corrupted (lava,
clouds, etc.), and the LST remains approximately constant. These results illustrate the
power of LEO satellites for measuring and detecting the LST anomalies on islands or
small land bodies because of the higher spatial resolution of MODIS (1 km) compared to
GEO satellites.
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Figure 8. (a) Temporal and spatial evolution of the earthquakes preceding (blue color) the volcanic
eruption that occurred on 19 September at La Palma Island [43]. (b) Temporal evolution of the number
and magnitude of the earthquakes registered at La Palma Island [50].

Other factors can produce thermal anomalies, e.g., human activities, but LST anomalies
induced by earthquakes are larger in magnitude and impact vast areas (ten to a hundred
kilometers). As a result, the percentage of false alarms due to these other sources is low
and does not affect the result. Future work will address vegetation, climatological, human
activities, and topographic effects to minimize the probability of false alarms and missed
detections, and enlarge the data record’s temporal length.
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Figure 9. (a) The area under study for the MODIS LST analysis. (b) LST time series analysis for pixels 
in the region indicated in Figure 9b. MODIS data was downloaded from [51]. 
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