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Abstract: High-quality remote sensing images play important roles in the development of ecological
indicators’ mapping, urban-rural management, urban planning, and other fields. Compared with
natural images, remote sensing images have more abundant land cover along with lower spatial
resolutions. Given the embedded longitude and latitude information of remote sensing images,
reference (Ref) images with similar scenes could be more accessible. However, existing traditional
super-resolution (SR) approaches always depend on increases in network depth to improve perfor-
mance, which limits the acquisition and application of high-quality remote sensing images. In this
paper, we proposed a novel, reference-image-based, super-resolution method with feature compres-
sion module (FCSR) for remote sensing images to alleviate the above issue while effectively utilizing
high-resolution (HR) information from Ref images. Specifically, we exploited a feature compression
branch (FCB) to extract relevant features in feature detail matching with large measurements. This
branch employed a feature compression module (FCM) to extract features from low-resolution (LR)
and Ref images, which enabled texture transfer from different perspectives. To decrease the impact of
environmental factors such as resolution, brightness and ambiguity disparities between the LR and
Ref images, we designed a feature extraction encoder (FEE) to ensure accuracy in feature extraction
in the feature acquisition branch. The experimental results demonstrate that the proposed FCSR
achieves significant performance and visual quality compared to state-of-the-art SR methods. Explic-
itly, when compared with the best method, the average peak signal-to-noise ratio (PSNR) index on the
three test sets is improved by 1.0877%, 0.8161%, 1.0296% , respectively, and the structural similarity
(SSIM) index on four test sets is improved by 1.4764%, 1.4467%, 0.0882%, and 1.8371%, respectively.
Simultaneously, FCSR obtains satisfactory visual details following qualitative evaluation.

Keywords: remote sensing image; reference-based super-resolution; convolutional neural network

1. Introduction

As modern space satellite technology has developed by leaps and bounds in recent
decades, the application of remote sensing images has multiplied in military and civilian
fields, including in environmental monitoring and assessment [1,2], resource distribution
applications [3,4], military reconnaissance and analysis, and other fields. High-quality
remote sensing images [5] are widely employed in ecological indicators’ mapping, ur-
ban–rural management, water resource management, hydrologic models, wastewater
treatment, water pollution, and urban planning.

In general, the resolution of remote sensing image increases with the expansion of
information content in the image, which leads to a high-quality remote sensing image [6].
However, the spatial resolution and clarity of remote sensing images are inherently low due
to the limits of the imaging equipment, image transmission mode, and large satellite detec-
tion distance. In view of the high research costs and long development cycle required to
improve imaging hardware, it is increasingly vital to apply super-resolution reconstruction
algorithms to obtain high-quality remote sensing images.
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Image super-resolution aims to reconstruct a high-resolution (HR) image from a
relative low-resolution (LR) image, which utilizes the software algorithm to improve the
image resolution and avoid the hardware restrictions [7]. At present, SR is widely employed
in the reconstruction of natural images. Remote sensing images contain rich land cover,
leading to the distribution of textural details and high-frequency information that differs
from those of natural images. Thus, it is difficult to directly apply the existing SR methods
for natural images to remote sensing images. Remote sensing images are composed of
complex scenes in which objects undergo extensive changes, and there are multiple objects
of different sizes intertwined in one scene, resulting in weak correlations, that is, image
context features between pixels and surrounding pixels in the images. These are weak,
which has an adverse impact on image quality in the super-resolution reconstruction of
remote sensing images [8].

Generally, SR methods enhance the quality of reconstructed images by augmenting
the designed network depth. Reference-based image super-resolution (RefSR) introduces
an additional reference image, transfers the image details to a low-resolution image, and ac-
complishes image reconstruction with supplementary information, which is separate from
the main network [9]. Meanwhile, the inherent longitude and latitude information of
remote sensing images also makes it more expedient to obtain a reference image with the
same coordinates as the LR image.

To address the aforementioned problem, we proposed a remote sensing image super-
resolution method based on the reference image. By extracting the reference image texture
information, along with the feature matching and exchange between the LR and Ref images,
more multi-level feature information is provided for remote sensing image super-resolution.
The major contributions of this paper are as follows:

(1) We proposed a novel super-resolution method FCSR to enrich the context features of
remote sensing images from multiple perspectives. The network improves the lack of
context features for remote sensing images in three aspects and achieves significant
results for the SR task for remote sensing images;

(2) In FCSR, we designed a novel feature compression branch. The branch was employed
for the sparse feature processing of LR and Ref images to remove redundant image
information. The remaining features were extracted, matched, and exchanged via the
texture-swapping branch to supplement the context features that the remote sensing
images lack;

(3) We proposed and exploited the use of FEE to develop a texture-swapping branch. FEE
is a portion of the encoder in the multi-level self-encoder. The encoding module can
extract ample multi-level features in the LR ↑–Re f ↓↑ image pairs, improve the extent
of matching between the LR remote sensing image and the corresponding Ref image,
and effectively increase the resemble features contained in the image. In addition, FEE
lays a solid foundation for the subsequent feature exchange in the texture-swapping
branch.

The remaining sections of this paper are organized as follows: Section 2 introduces
the related work. Section 3 details the proposed network. Section 4 demonstrates the
outcomes of the ablation experiments and compares these with several SR algorithms.
Section 5 illustrates the ablation study, and Section 6 summarizes the entire study and
outlines potential future study directions.

2. Related Work
2.1. Image Super-Resolution

In recent years, a great deal of researches were conducted on super-resolution recon-
struction. The existing SR algorithms [10] can generally be divided into three categories:
super-resolution based on interpolation, super-resolution based on reconstruction, and
super-resolution based on learning. The early super-resolution methods utilizing interpola-
tion include bicubic linear interpolation [11], but their ability to process image edges and
details is poor, and it is easy to produce sawtooth oscillation. A super-resolution method
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based on reconstruction makes the most of the prior image knowledge to obtain a relatively
good reconstruction effect, such as the convex set projection method [12], but it is difficult
to obtain sufficiently accurate prior information.The learning-based method does not need
to use the prior image knowledge. This establishes the relationship between the LR im-
age and its corresponding HR image through training and learning. The learning-based
method can better extract the high-frequency image information than the method, based
on neighborhood embedding [13], the method based on sparse representation [14], and the
method based on deep learning [7]. However, the first two methods mostly use the shallow
image features for SR reconstruction, and focusing only on these features greatly limits the
reconstruction effect.

With the rapid progression and development of the computing power of big data
and the graphics processing unit (GPU), the convolutional neural network (CNN) has
become the leading method in the field of image processing [15]. The CNN-based method
shows strong competency in automatically premising deep features from data, which
provides a very practical method for improving image resolution. The basic principle
of the SR reconstruction method based on CNN is to use a dataset including HR images
and comparative LR images to train a model. The model takes an LR image as input and
outputs SR images.The SRCNN [7] algorithm proposed by Dong et al. firstly applied CNN
to SR reconstruction, which learned the mapping relationship between LR and HR by
constructing three convolution layers, but the network receptive field was relatively small,
and the extracted features were very local, so the global distribution of the image cannot be
recovered. The VDSR [16] algorithm proposed by Kim et al. employed the deep ResNet [17]
network in image super-resolution reconstruction. Although the network had a certain
depth, it did not take full advantage of the feature information contained in the LR image.

The generative adversarial network (GAN) [18] is also utilized for the super-resolution
reconstruction of images. Ledig et al. proposed an SRGAN [19] with perceptual loss and a
generative adversarial network, which can form more natural textures on a single image
SR. Although the blurred and over-smooth image details can be somewhat reduced, the re-
construction results were not very realistic and produced unpleasing artifacts. Wang et al.
introduced the residual dense block (RRDB) and proposed an ESRGAN [20] network based
on SRGAN, which engendered more realistic and natural textures and improved visual
quality. Ma et al. proposed a super-resolution method SPSR [21] to preserve the structure,
which utilized a gradient map to reveal the sharpening degree of each local area to guide
image reconstruction, so as to form well-perceived texture details. Although the generative
adversarial network can engender better image details, it is difficult to stably achieve Nash
equilibrium, which affects the effectiveness of training and convergence.

2.2. Image Super-Resolution for Remote Sensing Images

SR technology can provide richer spatial details to aerial remote sensing images by
improving the resolution of input LR images. However, remote sensing images differ from
natural images. The texture features of the image are represented by pixels in different
spatial positions and their surrounding surface structures, which change slowly or periodi-
cally, reflecting the spatial distribution information of land cover on the image. Moreover,
the objects contained in remote sensing image are often coupled with the surrounding
environment, and the image scale span is relatively large [22].

By extracting features from multiple scales, Xu et al. proposed a deep memory
connection network DMCN [23], which established local and global memory connections
and combined image details with environmental information. Ma et al. proposed another
CNN super-resolution network structure, WTCRR [24], which included wavelet transform,
local residual, and global residual connection. This network combined frequency domain
information to solve the super-resolution issues in remote sensing images. The existing
super-resolution reconstruction methods for remote sensing images are faced with the
following main dilemmas: the distance between the remote sensing satellite camera and
the target object is far, the remote sensing image is wide, the scale of the target object
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in the images greatly changes, and remote sensing images contain more land cover than
ordinary, natural images. The existing super-resolution reconstruction methods for natural
images are not ideal for direct application to the super-resolution reconstruction of remote
sensing images.

2.3. Reference-Based Image Super-Resolution

Reference-based image super-resolution (RefSR) provides additional information from
the reference image to shrink the discomfort in image super-resolution, and achieved good
results when reconstructing high-frequency details [25]. In the RefSR task, textural details
are transferred to the LR image according to the Ref image, providing more shallow features
for image super-resolution reconstruction.

Landmark [26] globally matched the blocks between LR features and the downsampled
Ref features, but there is a problem of mismatch between blocks due to the visual gap and
large resolution deviation (8x) between the high-resolution reference image and the LR
image. Zheng et al. proposed a method called CrossNet [27] which employed an optical
flow to transfer high-frequency details of a high-resolution Ref image to an LR image. Cross-
scale warping and fusion decoder were applied, but the optical flow is limited in its ability
to match long-distance correspondences, which may lead to redundant texture information,
resulting in serious degradations in performance. Zhang et al. proposed the SRNTT [28]
method, which applied patch-matching between features premised from LR and Ref
images, using VGG19 [29] to exchange similar texture features. Dong et al. proposed a
gradient-assisted feature alignment method, RRSGAN [30], which transferred the textural
information in the reference features to the reconstructed super-resolution image.

At present, there are three main challenges in the application of super-resolution
Ref images to remote sensing images: (i) there are potential differences in resolution,
brightness and contrast, and diversities in the ambiguity between LR and Ref images at
the same coordinate position, as determined by the longitude and latitude information
of input image, which have a potential effect on the SR procedure; (ii) compared with
natural images, the richer ground feature information and larger scale span in remote
sensing images make the correlation between adjacent pixels, that is, context features,
more deficient, which increases the difficulties in feature matching between LR and Ref
images according to the corresponding relationship; (iii) the pretrained model of VGG19,
a commonly used feature extraction module, is trained by natural images, and there is a
problem of mismatch when extracting features from remote sensing images, which further
affects the acquisition of resemble features between LR and Ref images. Focusing on these
three obstacles, this paper studies the reference-based super-resolution reconstruction for
remote sensing images.

3. Methodology

As mentioned above, the direct application of the SR method based on the Ref image
to remote sensing images is confronted with three issues. The first is the resolution
gap between LR and Ref images. The second is the diversity in brightness, contrast, and
ambiguity, the lack of context features caused by abundant land cover, and the wide-scale
span of remote sensing images. The last issue is the incompatibility of remote sensing
image features with the VGG19 pretrained with natural images. To conquer these foregoing
problems to some extent, we propose a reference-based super-resolution method with a
feature compression module (FCSR) for remote sensing images.

As shown in Figure 1, the designed network structure is divided into three parts:
content extractor, similar feature acquisition, and texture transfer. The content extractor
preliminarily extracted the input image information. Similar feature acquisition fulfilled
the feature matching between the Ref image and the LR input image. Texture transfer
concatenated the reference image information to the LR image to obtain an HR image.
Moreover, LR represents a low-resolution image, while LR ↑ stands for a ×4 bicubic-
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upsampled low-resolution image, and Re f ↓↑ denotes a high-resolution reference image,
which is downsampled and then upsampled.

Figure 1. Overall framework of our FCSR method. This consists of three components: content
extractor, similar feature acquisition, and texture transfer. Similar feature acquisition provided
supplementary information according to the feature premise, and the matching and exchange between
the LR and Ref image occurred to ensure texture transfer and reconstruct SR images.

In terms of similar feature acquisition, we creatively introduce a feature compression
branch (FCB) to effectively extract crucial features. Particularly, FCB was designed to
utilize a single-value decomposition (SVD) [31] algorithm to derive sparse features of
LR ↑ and Re f ↓↑ and match the image feature counterparts. The branch adopted a
feature compression module (FCM) to separate features from LR and Ref image textures,
furnishing texture transfer with plentiful and useful information from different perspectives.
The FCM compressed the features of LR ↑–Re f ↓↑ image pairs and removed the redundant
information in the images. This also notes the texture detail counterparts in the image
pairs and balances the implicit matching relationship with LR ↑–Re f ↓↑ image pairs, which
were not processed by FCM, via the texture swapping branch, in compliance with the
resemblance between content and appearance. Furthermore, it embedded similar texture
features in the texture transfer section.

To reduce the influence of the resolution gap, brightness, and ambiguity disparity
between LR and Ref images, we designed a novel feature extraction encoder (FEE) in FCM
to ensure precision in feature extraction using the feature compression branch. FEE is the
coding segment of a multi-level self-encoder and can provide rich multi-level features in
LR ↑ and Re f ↓↑ image pairs. The multi-level self-encoder is composed of an encoder and
a decoder. Remote sensing images in the training set were used to pretrain the multi-level
self-encoder. FEE is a portion of the encoder in the multi-level self-encoder, which ensures
the extraction of similar features between the LR remote sensing image and the Ref image
to a certain extent, to more practically complete the feature matching of image pairs and
the subsequent feature exchange. In the two branches of similar feature acquisition, FEE
is used to replace VGG19 , which is often used in SR procedures and is pretrained using
natural images, which is conducive to extracting abundant multi-level features in remote
sensing images.

Sections 3.1 and 3.2 introduce FCB and FEE modules separately and in detail, and
Section 3.3 presents the loss function.
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3.1. Feature Compression Branch (FCB)

The collected remote sensing images intrinsically possess a low resolution and lack
high-frequency information, and the image scale span is large, leading to fewer context
features being obtained. Therefore, it is difficult to reconstruct accurate, high-frequency
details of real ground cognition in remote sensing images to supply more accurate informa-
tion. In the course of reconstructing high-quality remote sensing images, it is more rational
to precisely offer content that resembles the details of LR remote sensing images than to
generate image textures. We proposed a FCB that could provide textural information for
texture transfers. The FCB is made up of two sections, as depicted in Figure 2b. The first
segment, FCM, adaptively adjusts the variable parameter size in the SVD module through
which the image passes subject to the cosine similarity of the LR ↑–Re f ↓↑ image pairs,
providing supplementary information for feature matching of the reconstructed image.
The second component is the texture-swapping branch. Figure 2a indicates that the LR
remote sensing image and the Ref image obtain access to three feature levels of different
scales after passing through the FEE modules, namely, Level 1 features, Level 2 features,
and Level 3 features. These features were swapped in line with the corresponding levels to
complete the matching and exchange of image pairs’ feature information; then, the three
obtained feature levels are offered three different positions in the texture transfer section.

Figure 2. The architecture of the proposed modules. (a) texture swapping branch; (b) feature
compression branch (FCB). The FCB is composed of a feature compression module (FCM) and texture
swapping branch. FCM employs SVD to adaptively offer complementary information between the
LR and Ref images. The texture swapping branch furnishes multi-level features, which are displayed
as Level 1 features, Level 2 features, and Level 3 features.

The SVD employed in the FCM denotes the product of some simple matrices decom-
posed from a complex matrix, while retaining momentous characteristics. An arbitrary
m × n matrix A can be decomposed into the product of three matrices, which can be
expressed as

A = UΣVT (1)

Σ =| diag(σ1, σ2, · · ·, σl), 0 |∈ Rm×n (2)
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where U and V are column orthonormal matrices, and their column vectors are unit vectors
that are orthogonal to each other, satisfying VTV = I , UTU = I ; where, I is the unit
matrix. Σ is a diagonal matrix, and the values on the main diagonal σi are all nonnegative
values. The singular value of matrix A is given by placing these values in descending
order, from large to small. In particular, σ1 ≥ σ2 ≥ · · · ≥ σl ≥ 0, l = (m, n)min. In the SVD
procedure, the substantial characteristics of matrix A are compressed and decomposed
into each matrix. As the scale of singular values rapidly decays and coincides with the
compressed representation information of the resolved vector fragments, the sum of the first
10% or even 1% of singular values accounts for more than 99% of the total singular values;
that is, the largest k singular values and the corresponding U,V matrix column vectors can
approximately represent the matrix A. For a color image, the R matrix, G matrix, and B
matrix, representing three channels, are decomposed into singular values, and k specified
eigenvalues are selected to reconstruct different channel matrices after compression by
using u1σ1vT

1 + u2σ2vT
2 + · · ·+ ukσkvT

k ; then, the three single channel matrices processed
by SVD are combined to obtain the image compression features.

According to the SVD characteristics, which can compress color images while main-
taining dominant information, disposing of sparse features and removing redundant
information, we proposed an adaptive FCM that can provide more complementary infor-
mation about congruous LR ↑ and Re f ↓↑ features for the feature exchange component
of the proffered network. First, we calculated the cosine similarity of LR ↑ and Re f ↓↑,
which determines the correlation between the two images. The proportion of a singular
value qualified for SVD procedure was adaptively selected to conform with the cosine
similarity. Specifically, when the cosine similarity was less than or equal to λc, the ratio of
singular values taken was set to a; when cosine similarity was greater than λc, the ratio
of singular values was set to b to reasonably diminish mismatched feature interference.
On the strength of this pre-experiment, we confirm that the values of λc, a, b are 0.88, 0.1,
and 0.2. Then, we employed the texture swapping branch to obtain the feature information
that is concatenated to the texture transfer section.

3.2. Feature Extraction Encoder

With regard to the reference-based super-resolution task for remote sensing images,
the rational matching of comparative slices between LR remote sensing images and Ref
images is important. Nevertheless, there are deviations in brightness, chromaticity, contrast,
and resolution between the LR and the Ref images. Despite the fact that the content texture
has analogical fragments in the two corresponding images, different representations are
given in the images due to scale. To moderate the differences in resolution between the two
images, a feature extraction encoder was proposed to extract adequately similar features
for the LR and Ref images. Pre-upsampling LR images can effectively reduce the diversities
in resolution between the two images and emphasize the multi-scale features of images
that are indispensable for texture matching.

Given an LR image ILR and a Ref image IRe f , ILR↑ denotes an upsampling LR image
that has the same resolution as the Ref image. IRe f ↓↑ designates a downsampled then
upsampled Ref image. Compared with LR ↑–Re f ↓↑, ILR↑–IRe f ↓↑ emphasizes intrinsic
image information. The encoder designed in this paper was utilized to extract multi-
level features of ILR↑ and IRe f ↓↑. Specifically, FEE was exerted to extract features of three
scales. By combining U-Net [32] with residual theory, we obtained complementary textural
information, assuring that the features obtained by the encoder were restored as much as
possible when pretraining the multi-level self-encoder, thus greatly curtailing the disparities
in resolution between LR ↑–Re f ↓↑ image pairs. Concerning the deviations in luminosity,
chromaticity, and saturation, we strengthened the generalization ability of the multi-level
self-encoder using the data augmentation of different transformations for the training set
images. Meanwhile, FEE more accurately analyze the correlative relationship between ILR↑
and IRe f ↓↑, the same FEE was utilized to extract the features of the ILR↑ and IRe f ↓↑ images
after they passed through the FCM.
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Considering the weak correlation between adjacent pixels in the remote sensing
image, we designed a multi-level self-encoder. The FEE in the encoder module captures
more context information from different scales, as revealed in Figure 3. The multi-level
self-encoder was split into an encoder and decoder. The encoder module was exerted
to extract the multi-level features of remote sensing images, and the decoder module
reconstructed the multi-level features extracted by the encoder module to recover as much
of the input remote sensing image information as possible. FEE employed Res-Blocks as
a coding module to extract three levels of different scale features from remote sensing
images. The structure of the Res-blocks is shown in Figure 3. Table 1 displays the network
parameter setting details of FEE. The convolution hierarchy can effectively extract image
features, while skip connection is introduced to diminish the vanishing gradient problem.
This can also prevent over-fitting and improve the precision of the trained model.

Table 1. Detailed network parameter settings of FEE, where H and W imply the height and width of
the feature map, while C denotes the channel number. In this table, Res-block-1 and Res-block-2 are
parts of Res-blocks. FEE is composed of 3 Res-blocks, 4 Res-blocks, and 6 Res-blocks.

Structure Component Layer Input Output

Res-block-1

Conv3×3 C× H ×W 2C× H ×W
Relu 2C× H ×W 2C× H ×W
Conv 2C× H ×W 2C× H ×W
Relu 2C× H ×W 2C× H ×W

Res-block-2

Conv3×3 C× H ×W C× H ×W
Relu C× H ×W C× H ×W
Conv C× H ×W C× H ×W
Relu C× H ×W C× H ×W

3 Res-blocks
Res-block-1 C× H ×W 2C× H ×W

Res-block-2 × 2 2C× H ×W 2C× H ×W
Maxpool 2C× H ×W 2C× H/2×W/2

4 Res-blocks
Res-block-1 2C× H/2×W/2 4C× H/2×W/2

Res-block-2 × 3 4C× H/2×W/2 4C× H/2×W/2
Maxpool 4C× H/2×W/2 4C× H/4×W/4

6 Res-blocks
Res-block-1 4C× H/4×W/4 8C× H/4×W/4

Res-block-2 × 5 8C× H/4×W/4 8C× H/4×W/4
Maxpool 8C× H/4×W/4 8C× H/8×W/8

Furthermore, in the decoder module, the feature information procured by the encoder
module was introduced by skip connection. Meanwhile, the features disposed by the
upsampling and convolution modules were concatenated between channels, which relieves
the spatial information loss caused by the downsampling procedure and maintains the
obliterated information of different layers in the coding section. Remote sensing images in
the training set were utilized to pretrain the multi-level self-encoder, the convergence of
the model was accelerated, and the generalization ability of the model was strengthened
through transfer learning.

Considering the complex surface information of remote sensing images, it is very
important to increase the receptive field in the middle of the module to obtain relatively
detailed information. Exerting the pooling layer enlarges the receptive field of the corre-
sponding feature layer. When extracting features, we used FEE to extract three levels of
remote sensing image features.
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Figure 3. The structure of a multi-level self-encoder. FEE is the coding portion of the multi-level
self-encoder. When pretrained with remote sensing images, FEE is prone to extracting appropriately
similar features from the LR and Ref images.

3.3. Loss Function

To sustain the spatial structure of LR images, improve the visual quality of SR images,
and make the most of the texture information of Ref images, the loss function of network
in this paper combines reconstruction loss, perception loss, and adversarial loss. During
training, our purpose was to: (i) preserve the spatial structure and semantic information
of LR images; (ii) exploit more texture information from Ref images; (iii) synthesize high-
quality real SR images. To this end, the total loss calculated using the hyperparameters
λrec, λper and λadv is described as follows:

L = λrecLrec + λperLper + λadvLadv (3)

Reconstruction loss. To better preserve the spatial structure of LR images and make
ISR closer to IHR, we adopted the `1 norm, which is defined as follows:

Lrec =‖ IHR − ISR ‖1 (4)

Perceptual loss. For better visual quality, we adopted the perceptual loss, which is
defined as follows:

Lper =
1
V

C

∑
i=1
‖ φi(IHR)− φi(ISR) ‖F (5)

where V and C , respectively, represent the volume and channel number of the feature
graph, ‖ · ‖F represents the Frobenius norm, and φi represents the ith channel of the feature
graph extracted from the hidden layer of the feature extraction model.

Adversarial loss. In order to further generate images with natural details and good
visual effects, we adopted WGAN-GP [33], which improves WGAN using the penalization
of gradient norm, and thus obtains more stable results. As the Wasserstein distance in
WGAN is based on the `1 norm, we used the `1 norm as reconstruction loss. A consistent
goal will facilitate the optimization process, which is defined as follows:

LD = Ex̃∼Pg [D(x̃)]−Ex∼Pr [D(x)] + λEx̂∼Px̂

[
(‖ ∇x̂D(x̂) ‖2 −1)2

]
(6)

Ladv = −Ex̃∼Pg [D(x̃)] (7)

where D is the set of 1-Lipschitz functions; Pr and Pg are the model distribution and actual
distribution, respectively.
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4. Experiment

In this section, we first describe three aspects of the datasets and implementation
details: data source, data augmentation method, and training parameters. Secondly, we
compare the SR visual effect and evaluation index, both qualitatively and quantitatively.
Extensive experiments validate the effectiveness of the proposed method in remote sensing
image datasets.

4.1. Dataset and Implementation Details

Training Dataset. To train our FCSR network, we selected RRSSRD [30] as the training
set, which consists of 4047 pairs of HR-Ref images with RGB bands, including common
remote sensing scenes such as airports, farmlands, and ports. HR images were chosen from
WorldView-2 and GaoFen-2 datasets, while Ref images were searched in Google Earth, in
compliance with the horizontal and vertical coordinates of remote sensing images. HR and
Ref images were 480 × 480 pixels in size, while LR images had a size of 120 × 120. In this
paper, the HR image was downsampled four times to obtain the corresponding LR image.
Figure 4 displays an example training set, including HR-Ref image pairs.

HR

Ref

HR

Ref

Figure 4. Examples of RRSSRD training set. The first and third rows represent HR images while the
second and fourth rows represent Ref images. Specifically, HR images in the first row correspond
to Ref images in the second row, and HR images in the third row correspond to Ref images in the
fourth row.

Testing Dataset. RRSSRD contained four test datasets, each consisting of 40 pairs of
HR-Ref images. The first two test sets depict Xiamen city with different spatial resolutions
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in different periods, and the last two datasets are Jinan city with different spatial resolutions
in different periods. The Ref images in the test set were also collected from Google Earth.

Implementation Details. A total of 135 image pairs in the aforementioned RRSSRD
were randomly selected as the validation dataset, and the rest were used for training at a×4
scaling factor. Actually, the first three feature maps extracted from a pretrained FEE were
utilized as the basis of feature exchange. To improve the matching efficiency, only the third
layer was matched, and then the corresponding relationship was directly mapped to the
first layer and the second layer, so that all layers used the same corresponding relationship.
The parameter setting during the training process was displayed in Table 2. The training
model adopted an ADAM optimizer [34] with β1 = 0.9, β2 = 0.999 and ε = 1× 10−8. We
set the learning rate and the batch size to 1× 10−4 and 6. For the loss hyperparameters, we
set λrec, λper, and λadv to 1, 1× 10−4 and 1× 10−6. At first, only five epochs were pretrained;
then, 100 epochs were trained. To reinforce the generalization facility of the model, we
regularized the train set by random horizontal and vertical flipping, followed by random
rotations by 90°, 180°, and 270°.

Table 2. Parameter setting during the training process.

Parameters Setting

Batch size 6
Training epoch number 100
Optimization method Adam [35], β1 = 0.9, β2 = 0.999, ε = 1× 10−8

Loss hyperparameters λrec = 1, λper = 1× 10−4, λadv = 1× 10−6

4.2. Qualitative Evaluation

In this section, we used the proposed method and nine comparison methods to
reconstruct the remote sensing reference images on four test sets. The nine comparison
methods were Bicubic [35], SRResNet [19], MDSR [36], WDSR [15], ESRGAN [20],SPSR [21],
CrossNet [27], SRNTT [28], and RRSGAN [30]. Among them, Bicubic, SRResNet, MDSR,
WDSR, ESRGAN, and SPSR are image super-resolution reconstruction methods without
reference images, and the remaining three are RefSR methods. To obtain a fair comparison,
all models were trained on RRSSRD, and all the result graphs were scaled to the same
proportion for convenient comparison.

Figure 5 presents a visual comparison of our proposed model and other SISR methods
and RefSR methods, focusing on two remote sensing images. The results of Bicubic
interpolation lack details that are beneficial to image reconstruction. CNN-based SR
methods, such as SRResNet, MDSR and WDSR, can reconstruct some texture details
of remote sensing images, but there is still the problem of blurred contours due to the
shortage of optimized objective functions. GAN-based SR methods, such as ESRGAN and
SPSR, have better visual details, but produce artifacts, resulting in poor reconstruction
results. Due to the inherent properties of the patch matching method, there are blocky
artifacts in the SR results of SRNTT. Compared with other SR methods, our FCSR method
can transfer more accurate HR textures from the reference image, recover more texture
details, avoid introducing artifacts as much as possible, and make the remote sensing
image reconstruction results more natural and true. For instance, in the first example in
Figure 5, SRRestNet, WDSR, and MDSR present blurry details of the building, while the
SPSR results produce obvious distortions. Meanwhile, our proposed FCSR reconstructs
more natural details.
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HR Ref BICUBIC SRResNet

MDSR WDSR ESRGAN SPSR

CrossNet SRNTT RRSGAN FCSR(Ours)

HR Ref BICUBIC SRResNet

MDSR WDSR ESRGAN SPSR

CrossNet SRNTT RRSGAN FCSR(Ours)

Figure 5. Visual comparison of some typical SR methods and our model of ×4 factor on the first test
set. The results of comparison methods originate from [30]. We enlarge the image details inside the
light red rectangle and show in the red rectangle in the upper right corner.
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4.3. Quantitative Evaluation

In addition to qualitative analysis, we use two objective evaluation indexes, peak
signal-to-noise ratio (PSNR) [37] and structural similarity (SSIM) [38], which are commonly
used in image processing to evaluate the image reconstruction effect. PSNR was calculated
based on the error between corresponding pixels in the image. The larger the calculated
value, the lower the rate of distortion and the better the restoration effect. SSIM mea-
sured image similarity from three aspects: brightness, contrast, and structure. The value
range was 0–1. Similarly, a larger SSIM value means less distortion and a better image
restoration effect.

Table 3 shows the quantitative comparison results for the images of nine comparison
methods, as shown in Figure 5, and the images of our proposed method. Red represents the
best result and blue represents the second-best result. The table shows that WDSR achieved
the best results in terms of PSNR and SSIM indicators during the comparison of six SR
methods. The method in this paper achieved the best results in four test sets, and is more
advantageous than the latest SR method and Ref-SR method, even when comparing these
methods in an attempt to obtain better visual quality with adversarial loss. Compared with
the optimal value of the comparison methods, the proposed method in this paper has an
average PSNR value of 1.0877% and an average SSIM value that is 1.4764% higher in the
first test set; an average PSNR value of 0.8161% and an average SSIM value that is 1.4467%
higher in the second test set; an average SSIM value that is 0.0882% higher in the third test
set; an average PSNR value of 1.0296%; and an average SSIM value that is 1.8371% higher
in the fourth test set. The quantitative results show that our FCSR method is superior to
other super-resolution methods. The visualization results for the average PSNR and SSIM
values are depicted in Figure 6. The PSNR and SSIM of FCSR on the test sets are superior
to the others, demonstrating the effectiveness of our method.

(a) (b)

(c) (d)

Figure 6. Visualization results of average PSNR and SSIM values for diverse SR methods of ×4 factor.
(a) PSNR and SSIM on 1st test set; (b) PSNR and SSIM on 2nd test set; (c) PSNR and SSIM on 3rd test
set; (d) PSNR and SSIM on 4th test set.
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Table 3. Average PSNR and SSIM results of various SR methods of ×4 factor on the four test sets. Red
index denotes the best performance. Blue index suggests suboptimal performance. The results of
these comparison methods originate from [30].

Dataset Metrics BICUBIC SRResNet MDSR WDSR ESRGAN

1st
testset

PSNR 29.4836 31.5690 31.5913 31.6308 26.2821
SSIM 0.7908 0.8448 0.8448 0.8456 0.7788

2nd
testset

PSNR 29.4625 30.9378 30.9672 31.0029 27.2674
SSIM 0.7636 0.8146 0.8148 0.8158 0.7549

3rd
testset

PSNR 27.7488 29.2300 29.2853 29.3005 25.5791
SSIM 0.7275 0.7275 0.7822 0.7827 0.7112

4th
testset

PSNR 30.0147 31.2072 31.3084 31.2988 27.6430
SSIM 0.7546 0.7981 0.8015 0.8003 0.7456

Dataset Metrics SPSR CrossNet SRNTT RRSGAN Ours

1st
testset

PSNR 27.0478 31.6646 30.4134 30.7872 32.0128
SSIM 0.7435 0.8475 0.8054 0.8141 0.8602

2nd
testset

PSNR 27.0927 31.0160 30.1791 30.0951 31.2712
SSIM 0.7066 0.8175 0.7846 0.7816 0.8295

3rd
testset

PSNR 25.7461 29.4988 28.4779 28.4161 29.4156
SSIM 0.6800 0.7926 0.7473 0.7464 0.7933

4th
testset

PSNR 26.9183 31.1849 30.5349 30.1492 31.6341
SSIM 0.6897 0.7975 0.7725 0.7576 0.8165

5. Discussion

In this section, we verified the necessity of the key parts of the network proposed in
this paper, namely, FCB and FEE, by conducting ablation experiments on different models.
Meanwhile, the limitations of FCSR were analyzed.

5.1. Effectiveness of FCB

To verify the key role that FCB plays in feature matching and exchange between LR
and Ref images, FCB was added without varying the structure of other parts of SRNTT.
The results in the first and second columns of Table 4 separately show the average PSNR
and SSIM values of SRNTT and SRNTT+FCB reconstruction results on four identical test
sets. Compared with SRNTT, SRNTT+FCB increased the PSNR and SSIM values by 1.53 dB
and 6.5553%, respectively, on the first test set, 1.03 dB and 5.5950%, respectively, on the
second test set, 0.90 dB and 6.1888% on the third test set, and 0.98 dB and 5.4236% on the
fourth test set. As shown in Figure 7, the generated image quality with FCB is preferable
regrading feature details and hue.

Table 4. Average PSNR and SSIM results for four different models of ×4 factor on four test sets.

Dataset Metrics SRNTT SRNTT+FCB FCGSR OURS

1st
testset

PSNR 30.4134 31.9430 31.8417 32.0128
SSIM 0.8054 0.8619 0.8537 0.8602

2nd
testset

PSNR 30.1791 31.2002 31.1857 31.2712
SSIM 0.7846 0.8311 0.8249 0.8295

3rd
testset

PSNR 28.4779 29.3764 29.3733 29.4156
SSIM 0.7473 0.7966 0.7910 0.7933

4th
testset

PSNR 30.5349 31.5113 31.5734 31.6341
SSIM 0.7725 0.8168 0.8140 0.8165
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HR Ref SRNTT SRNTT+FCB

Figure 7. Visual comparison between SRNTT and SRNTT+FCB of ×4 factor on diverse test sets. We
enlarge the image details inside the light red rectangle and show in the red rectangle in the upper
right corner.

5.2. Effectiveness of FEE

To demonstrate the effectiveness of FEE in feature extraction from LR and Ref images,
on the condition of keeping the structure of other parts of the FCSR constant, the FEE used
for feature extraction was replaced by VGG19. Thus, FCB became FCG. We named the new
network FCGSR. The results in the third and fourth columns in Table 4 show the average
PSNR and SSIM values of the reconstruction results of FCGSR and FCSR in this paper
when tested on four identical test sets. Specifically, compared with the FCGSR, the FCSR
increases the PSNR and SSIM values by 0.17 dB and 0.7556% on the first test set, 0.09 dB
and 0.5546% on the second test set, 0.04 dB and 0.2899% on the third test set, and 0.06 dB
and 0.3062% on the fourth test set. As presented in Figure 8, the reconstruction results are
superior regarding texture details.

5.3. Hyperparameter Tuning of SVD Coefficients

We carried out ablation experiments to understand the impact of the different SVD
coefficients described in Section 3.1 Feature Compression Branch. We used the same
training strategy and network parameters that were introduced in Table 4 while adjusting
the values of SVD coefficients λc, a, and b. To verify that the setting of the SVD coefficients is
appropriate, as a singular values ratio larger than 0.2 is a waste of the source, we experiment
with seven sets of parameters. As shown in Table 2, we first explored the effect of adjusting
only the ratio of singular values taken at a and b with a consistent λc in the four lines.
Compared to the performance of these four methods presented in Table 5, the proposed
method shows an obvious improvement, with a PSNR of 0.094 dB on average for the four
test sets compared to the suboptimal setting. When setting the cosine similarity criterion,
we utilized three values: 0.75, 0.80, and 0.85. Quantitative comparisons show that FCSR is
superior to the three methods, with a PSNR improvement of 0.025 dB, on average, for the
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four test sets compared to the suboptimal setting. To achieve the best performance, we set
the weight hyperparameters for λc, a, and b as 0.88, 0.1, and 0.2, respectively.

HR Ref FCGSR FCSR(Ours)

Figure 8. Visual comparison between FCGSR and our FCSR method of ×4 factor on various test sets.
We enlarge the image details inside the light red rectangle and show in the red rectangle in the upper
right corner.

Table 5. Results of average PSNR and SSIM results of different SVD coefficients on four test sets. Red
index denotes the best performance. Blue index suggests the suboptimal performance for adjusting a
and b. Purple index suggests the suboptimal performance for adjusting λc.

Dataset 1st Testset 2nd Testset 3rd Testset 4th Testset

Metrics PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

λc/a/b = 0.88/0.01/0.1 31.8229/0.8571 31.1912/0.8282 29.3322/0.7917 31.5789/0.8155
λc/a/b = 0.88/0.01/0.2 31.8440/0.8570 31.1986/0.8275 29.3231/0.7919 31.5519/0.8150
λc/a/b = 0.88/0.05/0.1 31.8230/0.8567 31.1765/0.8271 29.3092/0.7909 31.5520/0.8140
λc/a/b = 0.88/0.05/0.2 31.8499/0.8570 31.1913/0.8274 29.3198/0.7908 31.5661/0.8147
λc/a/b = 0.75/0.01/0.2 31.8340/0.8574 31.1793/0.8277 29.3165/0.7914 31.5441/0.8148
λc/a/b = 0.80/0.01/0.2 31.8714/0.8573 31.2032/0.8275 29.3413/0.7914 31.5945/0.8151
λc/a/b = 0.85/0.01/0.2 31.9446/0.8596 31.2490/0.8289 29.3758/0.7928 31.6299/0.8162
λc/a/b = 0.88/0.01/0.2 32.0128/0.8602 31.2712/0.8295 29.4156/0.7933 31.6341/0.8165

5.4. Hyperparameter Tuning of Loss Weight

We conducted ablation experiments to prove the impact of different loss terms.
The same training strategy and network parameters that were introduced in Table 2 were
reserved in the following experiments, except for the different loss weights. To determine
a suitable setting for the loss weights, based on the commonly used loss weights in the
SR methods, we implemented three sets of hyperparameters. Following the setting of
different loss weights in [28], we set λrec to 1. First, we experimented with the effect of only
using reconstruction loss Lrec, when λper and λadv were set to 0. The following experiments
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adjusted λper and λadv to 1× 10−2. As shown in Table 6, the highest PSRN and SSIM values
can be obtained only using reconstruction loss compared with other loss weight settings.
However, the reconstruction loss function often leads to overly smoothed results and is
weak in reconstructing natural texture details. The introduction of the perceptual loss
Lper and adversarial loss Ladv can greatly improve the visual quality of reconstruction,
which has been verified in Figure 9. With perceptual loss Lper and adversarial loss Ladv,
our proposed method recovers more details than FCSR-rec, which implies only using
reconstruction loss when training FCSR.

Meanwhile, excessive adversarial loss and perceptual loss weights can reduce the
performance of the SR results. As shown in Table 6, our method improves PSNR with
1.710 dB on average for the four test sets compared to only increasing λadv. Additionally,
the improvement of PSNR on average for the four test sets over only increasing λper
is 0.110 dB. In such a situation, the reconstruction loss can provide clearer guidance of
texture transfer than the adversarial loss and the perceptual loss. To balance the image
reconstruction effect and image quality, we set the weight hyperparameters for λrec, λper,
and λadv to 1, 1× 10−4 and 1× 10−6, respectively.

Table 6. Results of average PSNR and SSIM results of different SVD coefficients on four test sets. Red
index denotes the best performance. Blue index suggests the suboptimal performance.

Dataset 1st Testset 2nd Testset 3rd Testset 4th Testset

Metrics PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

λrec/λper/λadv =

0/1× 10−4/1× 10−6 32.3521/0.8728 31.6412/0.8435 29.6680/0.8079 31.9233/0.8203

λrec/λper/λadv =

1/1× 10−2/1× 10−6 29.9233/0.8181 29.5439/0.7893 28.0692/0.7550 29.9578/0.7807

λrec/λper/λadv =

1/1× 10−4/1× 10−2 31.8264/0.8564 31.1891/0.8272 29.3165/0.7913 31.5567/0.8151

λrec/λper/λadv =

1/1× 10−4/1× 10−6 32.0128/0.8602 31.2712/0.8295 29.4156/0.7933 31.6341/0.8165

5.5. Model Efficiency

As depicted in Table 7, we reported the values of the model parameters and the
computational complexity of eight different image super-resolution methods. The model
parameter values of the proposed method is smaller than those of RefSR methods such
as CrossNet and RRSGAN. Meanwhile, model parameters are even lower than DBPN,
ESRGAN, and SPSR, which do not utilize reference images. The video memory footprint,
to some extent, can reduce the time of program initialization. Additionally, a lower number
of network parameters prevent overfitting during the training process. However, models
with more parameters have a better memory. In other words, our proposed model has a
limited learning ability, which increases the difficulty of training to a certain extent. Due
to the continuous accumulation of feature maps and the growth in memory access costs,
the computational complexity of the proposed method is large. There is no doubt that this
vast computational complexity leads to a longer training time. In future studies, we will
further optimize the training efficiency of our proposed model.
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HR Ref FCSR-rec FCSR(Ours)

Figure 9. Visual comparison between FCSR-rec and the proposed method of ×4 factor on diverse test
sets. FCSR-rec denotes only using reconstruction loss when training FCSR. We enlarge the image
details inside the light red rectangle and show in the red rectangle in the upper right corner.

Table 7. Comparison of model parameters, computational complexity, and training time. SRResNet,
DBPN, ESRGAN, and SPSR are super-resolution image reconstruction methods without reference
images. CrossNet, SRNTT, RRSGAN, and FCSR are RefSR methods. Partial results of comparison
methods originate from [30].

Method Param (M) Computational Complexity (GMac)

SRResNet 1.52 23.13
DBPN 15.35 132.39

ESRGAN 16.70 129.21
SPSR 24.80 377.71

CrossNet 33.60 92.89
SRNTT 4.20 1182.72

RRSGAN 7.47 332.48
FCSR (Ours) 6.00 1380.35

5.6. Limitations

Using an abundance of qualitative and quantitative experiments, it was adequately
confirmed that our proposed FCSR has the best subjective and objective results in test sets;
nonetheless, this method still has limitations. When the quality of the remote sensing image
is lower and the image cannot be magnified more than four times, this method does not
propose corresponding solutions, and more researches need to be conducted. Meanwhile,
this method requires a remote sensing image in the same longitude and latitude position in
different time frames, which can be used as an HR and Ref image. This means that datasets
have strict requirements, and promotes the feature extraction of remote sensing image
pairs, making the method more broadly applicable.
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6. Conclusions

Due to the large-scale variability, the complexity of scenes, and the fine structures of
objects, we propose a new, reference-based, super-resolution reconstruction method named
FCSR for remote sensing images, focusing on three aspects. First, this method takes full
advantage of the internal longitude and latitude information of remote sensing images,
which can adequately accomplish feature extraction, matching and exchanging between
the LR and Ref images. Synchronously, this information is attached to a subsequent texture
transfer module, furnishing information replenishment for the LR image and providing
a new method for the super-resolution reconstruction of remote sensing images. Second,
the designed FCB introduces the SVD algorithm in machine learning to remote sensing
image compression, performs sparse feature processing on LR images and corresponding
Ref images, and screens out redundant information in the images; thus, the remaining
information complements the context features that are lacking in remote sensing images
via feature extraction, matching, and exchange modules. Third, because the VGG19 trained
by natural images is not suitable for the feature extraction of remote sensing images, FEE
was designed to obtain the multi-level features of remote sensing image pairs, improve the
extent of matching between the LR remote sensing image and the corresponding Ref image,
and effectively intensify the parallel features contained in image pairs. When subject to
qualitative and quantitative analysis, the proposed FCSR shows the strong competitiveness
in the super-resolution reconstruction of remote sensing images. The high-quality remote
sensing images derived by FCSR can be further applied in the fields of ecological indicators
mapping, urban-rural management, water resource management, hydrological models,
wastewater treatment, water pollution, and urban planning. In future studies, we will
explore the following obstacles. First, we will optimize the training efficiency of our
proposed model. Second, we will exploit a new method to match reference images that
have temporal, scale, and angle differences compared to HR images. Third, we will attempt
to introduce RefSR to broadband images to increase the availability of the proposed method.
Last but not least, we will apply the proposed method to low-resolution remote sensing
images to meet the needs of more subsequent tasks.
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Abbreviations

The following abbreviations are used in this paper:
SR Super-resolution
LR Low-resolution
HR High-resolution
Ref Reference
RefSR Reference-based super-resolution
PSNR Peak signal-to-noise ratio
SSIM Structural similarity
CNN Convolutional neural network
FCB Feature compression branch
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FCM Feature compression module
FEE Feature extraction encoder
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