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Abstract: LiDAR-based semantic segmentation, particularly for unstructured environments, plays a
crucial role in environment perception and driving decisions for unmanned ground vehicles. Un-
fortunately, chaotic unstructured environments, especially the high-proportion drivable areas and
large-area static obstacles therein, inevitably suffer from the problem of blurred class edges. Existing
published works are prone to inaccurate edge segmentation and have difficulties dealing with the
above challenge. To this end, this paper proposes a real-time edge-guided LiDAR semantic segmenta-
tion network for unstructured environments. First, the main branch is a lightweight architecture that
extracts multi-level point cloud semantic features; Second, the edge segmentation module is designed
to extract high-resolution edge features using cascaded edge attention blocks, and the accuracy of
extracted edge features and the consistency between predicted edge and semantic segmentation
results are ensured by additional supervision; Third, the edge guided fusion module fuses edge
features and main branch features in a multi-scale manner and recalibrates the channel feature using
channel attention, realizing the edge guidance to semantic segmentation and further improving the
segmentation accuracy and adaptability of the model. Experimental results on the SemanticKITTI
dataset, the Rellis-3D dataset, and on our test dataset demonstrate the effectiveness and real-time
performance of the proposed network in different unstructured environments. Especially, the network
has state-of-the-art performance in segmentation of drivable areas and large-area static obstacles in
unstructured environments.

Keywords: LiDAR; unstructured environment; semantic segmentation; edge-guidance

1. Introduction

Scene understanding is crucial to ensure the reliability of autonomous vehicles and
mobile robots in outdoor environments. As the core of scene understanding, semantic
segmentation that provides fine-grained object labels is a challenging problem in computer
vision. Since semantic segmentation can obtain various information such as the category
and shape of objects, it is widely used in mobile robots [1,2], autonomous driving [3,4],
medical diagnosis [5,6], and other fields.

Currently, significant progress has been made in the field of autonomous driving
with existing semantic segmentation methods [3,7,8]. These methods mainly focus on
structured environments, such as the common urban road environment. Due to the limited
variation of scenes and the presence of distinct structured edges between classes, struc-
tured environments are relatively easy to segment accurately. Unstructured environments
mainly include less structured rural environments, off-road environments, and rescue
environments, etc. Most of these scenes are characterized by blurred class edges, irregular
class geometric features, and irregular lighting changes. These characteristics are more
apparent in unstructured drivable areas and static obstacles with large areas, which often
account for more than 75% or even up to 90% of the unstructured environment, making the
existing semantic segmentation methods perform poorly. Therefore, the study of semantic

Remote Sens. 2023, 15, 1093. https://doi.org/10.3390/rs15041093 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15041093
https://doi.org/10.3390/rs15041093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs15041093
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15041093?type=check_update&version=2


Remote Sens. 2023, 15, 1093 2 of 21

segmentation for unstructured environments is important for scene understanding and
subsequent autonomous driving decisions.

Typically, semantic segmentation is performed using images or LiDAR (light detection
and ranging) point clouds. There are already several camera-based methods for segmenting
unstructured environments [9,10]. However, the similarity in colors of the background,
obstacles, and roads in unstructured environments and the instability of the camera under
changing illumination make camera-based methods vulnerable to color and texture features
that are not robust enough [11]. In contrast, LiDAR can acquire geometric features of
the surrounding environment to better distinguish between obstacles and roads, and
thanks to the active illumination sensor, it is not affected by changes in ambient light and
has a strong anti-interference ability. Recently, LiDAR-based semantic segmentation of
unstructured environments has been developed. On the one hand, most methods use
voxel-based [12] or point-based [13] methods for feature extraction, which not only do
not design targeted network structures for the edge blurring problems, resulting in poor
results when segmenting drivable areas and static obstacles with large areas but also do not
guarantee real-time segmentation. On the other hand, some methods are trained only for
certain unstructured environments, such as bush segmentation in agricultural scenes [14],
and are therefore less adaptable.

To address the above issues, we propose a novel real-time edge-guided semantic
segmentation network to simultaneously improve the accuracy and adaptation of semantic
segmentation in unstructured environments, especially for drivable areas and static obsta-
cles with large areas in it. Thanks to the full exploitation of the edge information of the
point clouds, the discrimination ability of pixels near the edges between classes and the
extraction ability of features in an unstructured environment improve greatly, which in
turn promotes a more accurate and robust performance of the proposed method. The main
contributions of this article are as follows:

1. We propose a novel edge-guided network for real-time LiDAR semantic segmentation
in unstructured environments. The network fully exploits edge cues and deeply inte-
grates them with semantic features to solve the problem of inaccurate segmentation
results in unstructured environments due to blurred class edges. Compared with
state-of-the-art point clouds segmentation networks, the proposed network performs
better in the segmentation of unstructured environments, especially in drivable areas
and static obstacles with large areas;

2. We design an edge segmentation module which contains three edge attention blocks.
Different from the published point clouds semantic segmentation methods, this mod-
ule adaptively extracts high-resolution edge semantic features accurately from the
feature maps of the main branch in a supervised manner, which improves the accuracy
of edge segmentation on the one hand, and provides edge guidance for semantic
segmentation of the main branch on the other hand, thus helping to capture edge
features of classes in unstructured environments more effectively;

3. We design an edge guided fusion module to better fuse edge features and semantic
features, and improve the discrimination of pixels around edges between classes.
Different from the traditional feature fusion methods, this module fully exploits the
multi-scale information and recalibrates the importance of different scale features
through a channel-dependent method, effectively utilizing the complementary infor-
mation of edge features and semantic features to further improve the segmentation
accuracy of the model.

2. Related Work

This section mainly reviews the related semantic segmentation methods in three as-
pects, including semantic segmentation of large-scale point clouds, semantic segmentation
of unstructured environments, and edge improved semantic segmentation.
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2.1. Semantic Segmentation of Large-Scale Point Clouds

Semantic segmentation, the task of labeling each pixel of an image with the corre-
sponding category of what is being represented, is the key to scene understanding for
unmanned platforms. Thanks to the richness of public datasets, camera-based semantic seg-
mentation algorithms of urban environments have made great progress; however, cameras
are heavily influenced by the level of illumination, which limits the operating environment
of unmanned platforms. As a result, LiDAR-based semantic segmentation algorithms for
urban environments have also received a wide range of attention from researchers in recent
years. Currently, there are several well-performing methods for the semantic segmentation
task of point clouds in urban environments: point-based methods, voxel-based methods,
and range-based methods.

Point-based methods extract features based primarily on the structure and spatial
topological relationships of the point clouds itself. Some methods such as PointNet [15],
Pointnet++ [16], and KPConv [17], directly use raw point clouds for feature extraction,
but these methods are less effective in dealing with large-scale point clouds due to high
computational costs and limited receptive fields. To expand the receptive field and improve
the inference speed, RandLA-Net [18] proposes a network structure with efficient random
sampling and local feature aggregation, but random sampling may result in the loss of
features in certain regions, which may lead to the deletion of key points in unstructured
road environments and affect the segmentation results.

Voxel-based methods [19–22] retain more complete 3D geometric information by
converting point clouds into 3D voxels. However, due to the sparsity of the point clouds
data, the accuracy of the algorithm depends on the density of the 3D mesh [23], so, it is
difficult to balance between real-time and accuracy given the large number of operations
involved in 3D convolution.

Range-based methods [24–28] map 3D point clouds to 2D images by spherical pro-
jection and extract features from projected images using 2D convolution. This approach
can effectively decrease the amount of data and realize semantic segmentation in real time.
SqueezeSeg [24] and SqueezeSegv2 [25] convert point clouds to 2D images and do feature
extraction and optimization of segmentation results based on SqueezeNet and conditional
random field (CRF) for point clouds. RangeNet++ [26] reduced discretization errors in
the process of back-projection by using accelerated KNN for post-processing; KPRNet [27]
employs a strong backbone and uses KPConv [17] as a segmentation head, achieving
better results. However, since spherical projection maps 3D point clouds to 2D images,
it inevitably results in distortion of physical dimensions and loss of some geometrically
related spatial information.

The above methods achieve good results in point cloud semantic segmentation in
urban environments, but they are not customized for the unstructured environments.

2.2. Semantic Segmentation of Unstructured Environments

Some works use traditional rule-based or threshold-based methods to extract traversable
regions [29,30]. However, these methods rely on artificially designed features or pre-set
thresholds which are poorly adaptable to varied scenarios. Besides, they only focus on
drivable area extraction and do not provide a comprehensive perception of the environment.
Therefore, the segmentation of unstructured environments using deep learning methods is
gradually gaining attention from researchers.

Zhu et al. [12] proposed a network to enhance the road boundary which uses the
RANSAC algorithm to extract the road boundaries of point clouds and fuse them with
the features of the original point clouds to segment the road more effectively. There are
also some methods that only train for specific unstructured environments. For example,
Chen et al. [13] propose an improved RandLA-Net to be used in large-scale unstructured
agricultural environments. Wei et al. [14] propose a new BushNet for effective segmentation
of bush point clouds in the agroforestry scenes. The above methods mainly use point-based
or voxel-based methods in point clouds for semantic segmentation. However, these two
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methods are insensitive to edges. In point-based methods, the downsampling algorithm
causes the point clouds to lose critical edge information, while in voxel-based methods,
different classes of points on either side of the edge may be mixed in a single voxel near
the edge. Both methods also make it difficult to ensure a balance between accuracy and
real-time performance. At the same time, scene-specific feature extraction leads to poor
adaptability of the methods.

2.3. Edge Improved Semantic Segmentation

In the field of 2D image-based scene understanding, edges, as an important part of
images, are useful for improving semantic segmentation performance. Early studies [31,32]
mainly focused on introducing edge information in the post-processing step. However,
they do not fundamentally improve the accuracy of semantic segmentation. Peng et al. [33]
introduced a residual-based edge refinement method to improve the performance of local-
ization around the object edges, which uses edges as an intermediate feature to improve
segmentation accuracy. Moreover, some methods extract edge features separately through
the edge detection branch, and these features are used to guide the task of the main branch.
Yu et al. [34] proposed a discriminative feature network (DFN) containing a border network
to improve the inter-class distinction. Takikawa et al. [35] designed an edge detection
stream, called shape stream, which enables the segmentation model to better capture the
edge information of the object, thus enabling more accurate segmentation of small objects.
Ma et al. [36] proposed a boundary-guided context aggregation method to facilitate the
overall semantic understanding of images. The method enables internal pixels of the same
class to achieve mutual gain, which improves intra-class consistency.

In the field of 3D-point-clouds-based scene understanding, current edge improved
methods are mainly for indoor areas, for example, Gong et al. [37] proposed a boundary
prediction module and used the prediction results to aid in improving the segmentation
performance. Hu et al. [38] proposed JSENet to solve the semantic segmentation and
class-aware semantic edge detection problems in a joint learning manner. Hao et al. [39]
proposed a mixed feature prediction strategy to pretrain a boundary-aware model. These
representative methods are designed for indoor scene semantic segmentation datasets
with more detailed semantic label definitions and more densely connected objects, such as
S3DIS [40] and ScanNet [41] datasets. In these datasets, the point clouds are small-scale,
dense, and evenly distributed. In contrast, in the outdoor scene dataset, the point clouds are
large-scale, sparse, and unevenly distributed. Meanwhile, these point-based methods are
computationally inefficient in large outdoor environments and is not suitable for scenarios
with high real-time requirements such as autonomous driving.

Our work uses an efficient spherical projection method to LiDAR point clouds data and
proposes an edge-guided semantic segmentation network for unstructured environments
inspired by the edge improved methods for 2D images, which alleviates the problems of
unclear class edges in the unstructured environment, and is more adaptable to various
unstructured environments.

3. Methods
3.1. Network Overview

We propose a novel edge-guided network to perform real-time point clouds semantic
segmentation, as shown in Figure 1. The proposed network constitutes three parts: main
branch, edge segmentation module, and edge guided fusion module. The main branch ac-
quires shallow and deep semantic feature maps for subsequent feature fusion. As a contrast,
the edge segmentation module adaptively filters out edge-independent information from
the feature maps at different resolutions in the main branch using a set of residual blocks
and edge attention blocks (EAB). Moreover, the accuracy of the extraction of contextual
information from the pixels around the edge is ensured by the additional supervision of
the edge map. The output of the main branch and the cascaded EABs are simultaneously
fed into the edge guided fusion module through four parallel convolutional layers, and
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the multi-scale contexts are captured. Then, the fused features are fed into the channel
attention module to suppress redundant information and recalibrate channel-wise feature
responses thus obtaining better segmentation results.
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Figure 1. The architecture of our network.

3.2. Data Pre-Processing
3.2.1. Pre-Processing of Input Data

As in RangeNet++ [26], we used the spherical projection method to generate 2D range
images as the input to the network. In the range images, each LiDAR point (x, y, z) is
converted to image coordinates (u, v).

After the projection, we can obtain the range image of size (5, H, W) with five channels,
which are 3D point coordinates (x, y, z), the intensity value i, and the range value r. W and
H are the width and height of the range image, respectively. The original point clouds and
projection result are shown in Figure 2.
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Figure 2. LiDRA projection. (a) Original point clouds with ground truth labels; (b) Projected ground
truth labels.

3.2.2. Pre-Processing of Labels

There are two outputs of the network, ground-truth (GT) semantic labels and GT
binary edge labels. The GT edge labels, which is called edge map, are generated by the
semantic labels. If a pixel has a neighbor with a different label, the pixel is designated as a
border. During the pre-processing of labels, we notice that there are a lot of stripe patterns
on the GT projection image, which is owed to the fact that the points in the point clouds do
not cover all pixels of the image during the spherical projection, which affect the generation
of edge map and thus the guidance of the segmentation results by edge features, as shown
in Figure 3a. Therefore, we inpaint the image to determine the labels of the pixel points in
the missing region, we first collect all pixels in the missing region using the morphological
closing operation [42], and then we iterate each pixel and label it according to the class of
its 8-direction neighboring pixels. Finally, a binary edge map that is not affected by the
stripe patterns is obtained, as shown in Figure 3b,c. The difference between the edge maps
before and after pre-processing is showcased in the enlarged parts of Figure 3a,c. The edges
of terrain, sidewalk, and road are blurred by many stripe patterns in Figure 3a, while the
edges are much clearer in Figure 3c.
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Figure 3. Process of making an edge map. (a) Edge map affected by the stripe patterns; (b) Inpainted
GT semantic labels; (c) Edge map unaffected by the stripe patterns.

3.3. Main Branch

In the main branch, the input of the network is a five-channel range image, where
each pixel in the range image represents a point. Due to the superior spatial reconstruction
capabilities of SalsaNext [28], we use its network structure, including ResContextBlock,
ResBlock, and UpBlock, to acquire semantic information in the main branch, as shown in
Figure 1. ResContextBlock and ResBlock contains a set of dilated convolutions to increase
the receptive fields, whereas 1 × 1 convolution and residual connection are applied to
enable the network to exploit more information from various depths in the receptive field.
In UpBlock, the standard transpose convolution is replaced with a pixel-shuffle layer to
avoid checkerboard artifacts caused by upsampling. Inspired by the idea of MLP from
Point-Net [15] (using a multi-layer perceptron to make the point information redundant
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and thus obtain sufficient geometric information), we added three 1 × 1 convolutions
before ResContextBlock to process the input to map each point to a higher dimensional
space, as shown in Figure 1, which also enables the input to the edge segmentation module
(ESM) to have more complete edge information.

3.4. Edge Segmentation Module

Low-level feature maps close to the input image have higher resolution but less
semantic information than high-level feature maps. However, the latter obtain richer
semantic information and larger receptive fields and can roughly predict most pixels of
larger objects, but the limitation of resolution leads to problems such as blurry edges.
Therefore, it is necessary to fuse high-resolution features from the bottom layer and high-
level features from the top layer in the edge segmentation module (ESM).

The initial input of ESM comes from the low-level feature map of the main branch, as
the high-resolution low-level feature maps provide more complete edge information, and
then the edge features are gradually fused with high-level features.

In ESM, we are more concerned with edge information, which is the shape features.
However, a simple fusion of high-level and low-level features will mix in a lot of useless
information (features that are not conducive to edge extraction). Therefore, we design three
cascaded edge attention blocks (EABs) in ESM, as shown in Figure 4. This module is able
to adaptively select the information relevant to the edges for processing while filtering out
the rest of the useless information.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 22 
 

 

and thus obtain sufficient geometric information), we added three 1 × 1 convolutions be-
fore ResContextBlock to process the input to map each point to a higher dimensional 
space, as shown in Figure 1, which also enables the input to the edge segmentation mod-
ule (ESM) to have more complete edge information. 

3.4. Edge Segmentation Module 
Low-level feature maps close to the input image have higher resolution but less se-

mantic information than high-level feature maps. However, the latter obtain richer seman-
tic information and larger receptive fields and can roughly predict most pixels of larger 
objects, but the limitation of resolution leads to problems such as blurry edges. Therefore, 
it is necessary to fuse high-resolution features from the bottom layer and high-level fea-
tures from the top layer in the edge segmentation module (ESM).  

The initial input of ESM comes from the low-level feature map of the main branch, 
as the high-resolution low-level feature maps provide more complete edge information, 
and then the edge features are gradually fused with high-level features. 

In ESM, we are more concerned with edge information, which is the shape features. 
However, a simple fusion of high-level and low-level features will mix in a lot of useless 
information (features that are not conducive to edge extraction). Therefore, we design 
three cascaded edge attention blocks (EABs) in ESM, as shown in Figure 4. This module 
is able to adaptively select the information relevant to the edges for processing while fil-
tering out the rest of the useless information.  

 
Figure 4. The Edge Attention Block (EAB). 

The output of the ESM has two roles, one for edge segmentation and the other for 
feature fusion with the main branch. For better-supervised edge segmentation, we gener-
ate edge maps from the GT semantic segmentation labels.  

There are three EABs in the edge segmentation module, each EAB considers two in-
puts including the feature map 𝑋 ∈ ℝ × ×  from the main branch and feature map 𝑌 ∈ ℝ × ×  from the previous EAB, where 𝐶  and 𝐶  denote the channel numbers 
of 𝑋  and 𝑌 , respectively, 𝐻𝑖 and 𝑊𝑖 are the height and width of 𝑋 . 𝑋  is processed 
by a 1 × 1 convolution layer and a Pixel-Shuffle layer to produce the upsampled feature 
maps 𝑋 ∈ ℝ / × ×  and 𝑌  is processed by a 1 ×  1 convolution layer to generate the 
new feature maps 𝑌 ∈ ℝ × × , where 𝑖 represents the position of current EABs, 𝐶  is 
the channel numbers of 𝑌 , 𝐻 and 𝑊 are height and width of the feature map, respec-
tively. We concatenate the two new feature maps to get 𝑍  and employ a 1 ×  1 

Figure 4. The Edge Attention Block (EAB).

The output of the ESM has two roles, one for edge segmentation and the other for
feature fusion with the main branch. For better-supervised edge segmentation, we generate
edge maps from the GT semantic segmentation labels.

There are three EABs in the edge segmentation module, each EAB considers two
inputs including the feature map Xa

i ∈ RCa
i ×Hi×Wi from the main branch and feature map

Yb
i ∈ RCb

i ×H×W from the previous EAB, where Ca
i and Cb

i denote the channel numbers of
Xa

i and Yb
i , respectively, Hi and Wi are the height and width of Xa

i . Xa
i is processed by a

1× 1 convolution layer and a Pixel-Shuffle layer to produce the upsampled feature maps
Xi ∈ RCi/2×H×W and Yb

i is processed by a 1× 1 convolution layer to generate the new
feature maps Yi ∈ RCi×H×W , where i represents the position of current EABs, Ci is the
channel numbers of Yi, H and W are height and width of the feature map, respectively. We
concatenate the two new feature maps to get Zi and employ a 1× 1 convolution layer and
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a ReLu function on it to obtain the fusion feature Fi. Then, Fi is squeezed channel-wise to
produce attention map Ai, these operations can be defined as follows:

Zi = Xi ‖ Yi (1)

Fi = δ(Conv1×1(Zi)) (2)

Ai = σ(Conv1×1(Fi)) (3)

where N = H ×W, ‖ denotes the concatenation of feature maps, Conv1×1() is 1× 1 convo-
lution operations, δ and σ are the ReLu function and the Sigmoid function respectively.

Given the attention map Ai, the output of the EAB Y′i is:

Y′i = Yi � Ai ⊕ Xi � (1− Ai) (4)

where � denotes element-wise product operation and ⊕ is the element-wise summation. If
there is useful information in Xi which is missing from Yi to be fused into Y′i , Ai will be
small and 1− Ai will be large, so that the information can be passed over. Therefore, EAB
can both guide the model’s attention to the right place and effectively suppress feature
activation in unrelated areas. At the same time, it enhances the model representation
capability without significantly increasing the model computation and the parameter
number.

3.5. Edge Guided Fusion Module

The problem with the unstructured environment is unclear edges between classes,
which still exists after converting the point clouds to range image. To alleviate this problem,
we propose an edge guided fusion module (EGFM) to improve the discrimination of
pixels around edges between two classes by fusing the edge-guided features from ESM
with the features from the main branch., as shown in Figure 5. EGFM is a multi-scale
fusion module based on channel attention, which can fuse the main branch features with
sufficient semantic information and edge features with significant edge information, both
of which can play a complementary role. During training, the GT edge map is an additional
supervision to the learning process of edge features, and the learned multi-level edge
features and the semantic features from the main branch are fed into EGFM for fusion; the
output of EGFM is the predicted segmentation output.
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The inputs to EGFM are the feature map X of the last layer in the decoder and the
concatenation of Y′1, Y′2, Y′3 from three EABs in the edge segmentation module. The two



Remote Sens. 2023, 15, 1093 9 of 21

inputs are concatenated together and fed into a 1× 1 convolution for fusion to obtain the
feature map F This process is formulated as:

F =
(
Conv1×1

(
X ‖

(
Y′1 ‖ Y′2 ‖ Y′3

)))
(5)

Next, to capture richer multi-scale information, we use a four-branch ASPP to process
the feature maps simultaneously. The first branch uses a 1× 1 convolution layer to extract
features, keeping the receptive field unchanged, while branches 2–4 adopt 3× 3 dilated
convolution with expansion rates of 1, 4, and 8, respectively. S is obtained by concatenating
the outputs of the four branches:

Si = Conv3×3di (F) i = {1, 2, 3} d = {1, 4, 8} (6)

S = Conv1×1(F) ‖ S1 ‖ S2 ‖ S3 (7)

where di represents the dilatation rate, Conv3×3() means the 3× 3 convolution operation.
Then, the attention weights of each channel in the feature map S are learned to

emphasize the channels that contribute more to the segmentation result. The operation is
as follows:

1© Two pooling operations are conducted on the feature map. To aggregate the
spatial features, average pooling and maximum pooling are used to compress the spatial
information, thus two 1× 1× C channel features are obtained;

2© Two channel features are forwarded to a two-layer MLP, and to reduce parameters,
the number of neurons in the first layer is set to C/2. The weights of the two layers are
shared;

3©Merge the two output features. Channel attention map α is formulated as:

α = σ(MLP(AvgPool(S)) + MLP(MaxPool(S)))

In this way, we end up with features S′ that are semantically rich, while the edge
details are well preserved.

S′ = (1 + α)S (8)

3.6. Loss Function

Our network has two outputs, the segmentation labels and the edge labels. For
semantic segmentation, the semantic loss Lseg is calculated by mixing the weighted cross-
entropy loss and Lovász-Softmax loss [28]. The combination of weighted cross-entropy
loss, a loss function designed for multi-classification problems with imbalanced samples,
and Lovász-Softmax loss, a loss function that optimizes the semantic segmentation metric
IOU (intersection over union) directly, results in more accurate network segmentation.

Similarly, for the edge loss, we also use binary weighted cross-entropy loss, written as:

Ledg = −∑
i

wi
[
ye

i log
(

pe
i
)
+

(
1− ye

i
)
log

(
1− pe

i
)]

(9)

where wi is the value of the i-th position in the weight matrix, and ye
i and pe

i are the ground
truth and predicted edge, respectively.

Inspired by Gated-SCNN [35], we expect that the whole network will be penalized
more under the case of edge pixels being misclassified, thereby enhancing the guidance of
the edge for the main branch segmentation, in the meantime, the consistency between the
predicted edge pe

i and predicted semantic label pi,c can be ensured. Therefore, we use the
loss function Latt to describe the segmentation accuracy of the edge area:

Latt = −∑
c

∑
i

1
[
pe

i > t
]
· yi,clog(pi,c) (10)
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where t is the threshold of the positive edge, yi,c and pi,c are the ground truth and predicted
label of the i-th pixel of class c. t is set to 0.75 in our experiments.

Finally, the loss function of the overall network can be expressed as:

Ltotal = Lseg + Ledg + Latt (11)

4. Experiments and Results

In this section, we first describe the dataset used for experiments, as well as the evalu-
ation metrics commonly used in semantic segmentation, and present the implementation
details of the experiments. Our method is then compared with the state-of-the-art methods
in order to validate the effectiveness of the proposed edge-guided network. We also con-
duct ablation experiments for further analysis of the contribution of each module in our
network.

4.1. Dataset and Metric
4.1.1. Dataset

The unstructured environments studied in this paper mainly include less structured
rural environments and off-road environments, so we conducted experiments on two
public datasets (SemanticKITTI dataset [43] including rural environments and RELLIS-3D
dataset [44] for off-road environments) and our test dataset with less structured environments.

The SemanticKITTI dataset is a large-scale point clouds semantic segmentation dataset
which captures numerous rural areas and roadway scenes in the medium-sized city of
Karlsruhe by driving. The LiDAR used in this dataset is the Velodyne HDL-64E. We
selected some rural scenes from the SemanticKITTI dataset as the test set. Experiments
on the SemanticKITTI dataset will not only validate the segmentation performance of our
method in a rural environment, but will also allow us to check its adaptability in different
environments. We map “motorcyclist” to “motorcycle”, map “bicyclist” to “bicycle”, and
map “other-ground” to “parking” based on the similarity of the classes and the balance
between the number of corresponding point clouds.

The RELLIS-3D dataset is a dataset for semantic segmentation in off-road environ-
ments for autonomous driving. The dataset was collected at the Texas A&M University
including the original 13,556 LiDAR scans, 6235 images, and their annotations, of which
the LiDAR scans were divided into 7800/2413/3343 for the training, validation, and test
sets, respectively. The LiDAR model is the 64-channel Ouster OS1.

To further prove the robustness of our method in different unstructured environments,
we collected some unstructured scene data using the vehicle with a Robosense RS-LiDAR-
M1 LiDAR as our test set and perform experiments on it.

4.1.2. Metric

We use the commonly used metrics intersection-over-union (IoU) and mean intersection-
over-union (mIoU) over all classes to evaluate the performance of our method, defined as
follows:

IoU = TP
TP+FP+FN (12)

mIoU = 1
C

C
∑

c=1
IoUc (13)

where TP, FP, and FN represent the number of true positive points, false positive points,
and false negative points, respectively, IoUc denote the IoU of class c, and C indicates the
number of classes.

4.2. Implementation Details

Our method is implemented on the PyTorch platform and run by a single GeForce
RTX 3090 GPU with 24 G memory. The stochastic gradient descent (SGD) optimizer is used
for optimization, and the momentum and weight decay parameters are set to 0.9 and 0.001,
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respectively. The initial learning rate is set to 0.01, and we trained the model for 150 epochs.
Considering the limitation of GPU memory, the batch size is set to a fixed 8. The input size
of the network is set to (5, 64, 2048), and with this width and height setting, the generated
range images are dense while retaining enough information. The GT edge labels are only
used as additional supervision during model training and are not needed during testing,
which facilitates realistic applications. Furthermore, we use the kNN-based post-processing
method described in [26]. The post-processing step of back-projecting the range image
to the point cloud is not involved in the training process, it is only used during the test
process and when calculating the mIoU of our method. In addition, the pre-processing
process is only used to generate accurate edge maps and does not change the range images
or the GT projection images, therefore the calculation of test accuracy is not affected.

4.3. Experimental Results
4.3.1. Experiment on SemanticKITTI Dataset

We compare our method with several state-of-the-art representative methods through
the experiment on SemanticKITTI dataset, as shown in Table 1. The last two rows show
the experimental results of the range-based method SalsaNext and our method, and the
first to third rows show the results of RandLA-Net (point-based method), Cylinder3D
(voxel-based method), and SPVNAS (point-voxel method), respectively. The results contain
the IoU of each class, mIoU, and single frame prediction time (including data preprocessing
time). Since the segmentation results of the drivable area and the static obstacles with large
area in the unstructured environment have a greater impact on driving decisions, all classes
are divided into two parts in the table, one containing road, parking, sidewalk, vegetation,
and terrain, which account for 76.5% of the total point clouds, representing the drivable
area, and the large static obstacles exist in the unstructured environment, and the other
containing the remaining classes.

Table 1. Comparisons with state-of-the-art methods on the SemanticKITTI dataset.
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RandLANet 639 60.99 91.44 42.21 76.50 84.19 73.63 67.74 93.07 65.74 20.64 41.46 48.79 85.55 38.86 58.49 51.63 36.05
Cylinder3D 157 69.57 93.21 41.38 79.63 83.92 63.09 75.44 95.46 75.29 53.01 44.96 73.35 90.68 60.96 67.57 65.43 49.71

SPVNAS 173 69.05 91.77 43.52 74.95 85.61 63.75 82.42 96.09 81.69 40.31 62.87 65.29 88.91 56.76 61.54 60.87 48.46

SalsaNext 25 65.67 93.28 38.93 79.22 83.85 69.67 66.61 91.92 79.67 37.49 45.57 66.73 85.2 48.43 60.31 56.62 47.24
ours 35 68.02 94.41 44.96 80.97 85.67 70.04 88.67 92.12 80.44 44.53 39.5 60.74 86.12 51.36 63.29 60.78 44.72

The bolded parts indicate that the method has the best real-time performance or segmentation accuracy in the
corresponding columns.

As shown in Table 1, our model achieves 68.02% mIoU, a 2.35% improvement over the
current state-of-the-art range-based method, SalsaNext, while ensuring a real-time network
performance of 35 ms per frame. Our network outperforms SalsaNext in segmentation
accuracy for both drivable areas and large static obstacles thanks to the guidance of the
extracted edge features. For a comprehensive evaluation, we also compared our method
with three other state-of-the-art methods. Our method outperforms RandLANet in both
accuracy and real-time performance because our network preserves those key points lost
in RandLANet and avoids the complex pre-processing in RandLANet. Cylinder3D and
SPVNAS provide very good results in terms of segmentation accuracy since they are
voxel-based and fusion-based methods, which can retain accurate spatial information
very well. However, their higher mIoU mainly benefits from those obstacles that are
uncommon in unstructured environments with a relatively small percentage (less than
23.5% in total) but rich in categories, such as car, bike, motor, pole, and traffic-sign, etc. In
addition, these methods are computationally intensive and do not balance the trade-off
between segmentation accuracy and real-time performance well, making them unsuitable
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for autonomous driving tasks. In contrast, our method provides competitive segmentation
accuracy while maintaining the real-time performance of the network. In particular, thanks
to the ESM module’s ability to retain high-resolution features, which provide more complete
edge information, our model has a noticeable advantage in segmenting classes that rely
on high-resolution edge features. While segmenting drivable areas such as road, parking,
and sidewalk, and large static obstacles such as vegetation, which account for 76.5% of the
overall point clouds, our segmentation results remains the best even when compared to
those of Cylinder3D and SPVNAS.

We selected some samples from our experimental results and show the results of our
model compared to other methods in Figure 6, in addition, the corresponding GT edge
maps and predicted edge maps are provided in Figure A2 of Appendix B to showcase
the result of the edge segmentation modules. The first row is the visualization of the
ground truth of the three scenes, the last row is our predictions, and the other rows are
the predictions of other networks. We use the red circles to mark challenging regions that
are prone to mis-segmentation. In the first scene, our method can segment the edge of
the sidewalk accurately, but SalsaNext does not identify this part of the feature due to a
partial loss of features in the upsampling process. SPVNAS misclassifies the sidewalk,
and Cylinder3D identification of the feature the edge segmentation was poor. In the
second scene, our method outperforms the other methods in distinguishing between
vegetation and terrain, because our edge-guided module uses edge features to optimize the
segmentation inaccuracy caused by blurred class-to-class edges. Our method also achieves
better segmentation for the building in the third scene compared to the other methods.

4.3.2. Experiment on RELLIS-3D Dataset

To verify the robustness of our method, we also compare it to baseline on the full test
set in Appendix A.

To further evaluate the effectiveness of the proposed method in an unstructured
environment, we conducted experiments on the challenging off-road RELLIS-3D dataset.
The results of our method compared to those of state-of-the-art methods are presented in
Table 2. We group grass, tree, bush, mud, rubble, and concrete, which account for 96.8% of
the total point clouds, into drivable areas and large static obstacles.

Table 2. Comparisons with state-of-the-art methods on the RELLIS-3D dataset.
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RandLANet 633 38.61 62.11 76.72 69.82 8.46 1.72 72.83 6.29 42.78 0 34.75 82.89 10.23 54.25 17.63
Cylinder3D 149 45.61 64.92 76.51 71.77 10.62 2.28 80.42 5.49 63.78 0 50.31 87.03 11.81 80.53 33.04
SPVNAS 168 42.68 64.12 76.06 71.51 8.54 5.23 70.01 15.05 54.43 0 48.57 85.79 10.99 64.81 22.44

SalsaNext 25 42.52 65.34 79.64 73.59 11.58 6.61 77.87 22.17 44.26 0 26.62 84.41 13.53 63.69 26.02
ours 35 43.88 66.14 79.73 73.93 12.92 6.78 77.15 22.42 48.9 0 27.9 84.32 13.27 77.23 23.67

The bolded parts indicate that the method has the best real-time performance or segmentation accuracy in the
corresponding columns.

As shown in Table 2, our method achieves 43.88% mIoU, again the highest among range-
based methods, with a 1.36% improvement compared to SalsaNext and guarantee real-time
performance. When compared with other methods, our method outperforms RandLANet
and SPVNAS in terms of accuracy and real-time performance. Cylinder3D achieves the best
mIoU due to its cylindrical voxels that maintain the inherent properties of the point clouds,
thus are more adaptable to the sparse-featured off-road scenes. However, its higher mIoU still
benefits mainly from those obstacles that account for a very small proportion (less than 3.2%
in total) but category-rich in the unstructured environment. In terms of real time, its inference
time is 4.5 times that of our model. In particular, our method achieves the highest IoU when
segmenting those classes that play a dominant role in the environment, such as grass and mud,
which are drivable areas, with 1.22% and 2.3% improvement over Cylinder3D, respectively,
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and tree, bush, and rubble, which are large static obstacles, with 3.22%, 2.16%, and 4.5%. A
sample selection of segmentation results is shown in Figure 7, in addition, the corresponding
GT edge maps and predicted edge maps are provided in Figure A3 of Appendix B to showcase
the result of the edge segmentation module.
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4.3.3. Experiment on Our Real Vehicle Test Dataset

To demonstrate the robustness of our method in different unstructured environments,
we also conducted experiments on an unstructured test set of our own collected data.
Figure 8 shows the visualization results of our method and other different state-of-the-art
methods. We select two scenes, the first one having relatively regular drivable areas and
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static obstacles, and the second one with more blurred class edges and more irregular
geometric features of the classes compared to the first one. The first row of the figure
shows the camera images, the first and third columns show the prediction results of the
model trained with SemanticKITTI dataset, and the second and fourth columns show
the prediction results of the model trained with Rellis-3D dataset. As can be seen, our
network can segment the edges between classes more clearly and has better segmentation
performance of drivable areas and static obstacles with large areas.
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4.4. Ablation Study

An ablation study is performed on the RELLIS-3D dataset to evaluate the effectiveness
for each module of our method. All training and testing environments were kept the
same for each ablation experiment. We designed our ablation experiments by replacing or
removing two key modules of the network. As shown in Table 3, (1) the baseline network
only uses the main branch of our network; (2) we replace the EGFM with direct channel
concatenation followed by a common 1× 1 convolutional layer for feature fusion; (3) we
remove the ESM as well as the supervision of GT edge map and use the low-level features
of the main branch as the second input to EGFM instead; (4) we remove the three 1 × 1
convolutions in main branch from our method.
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Table 3. Quantitative evaluation of ablation studies on the RELLIS-3D dataset.

Module
Time (ms) mIoU (%) FLOPs (G) Parameters (M)

Baseline ESM EGFM

X 25 42.52 121.01 6.69
X X 29 43.28 132.16 6.74
X X 33 42.73 138.75 6.76

X X X 35 43.88 145.91 6.79
X * X X 34 43.81 145.26 6.78

* w/o three 1 × 1 convolutions in main branch.

Quantitative evaluation results in Table 3 shows that both modules have an advantage
over the baseline performance because

• Using only ESM improves mIoU by 0.76% with 11.15 GFLOPs and 0.05 M parameters
increasement compared to baseline;

• Using only EGFM improves mIoU by 0.21% with 17.75 GFLOPs and 0.07 M param-
eters increasement compared to baseline. Compared with only using the ESM, the
performance improvement is not obvious. This is because the EGFM is based on the
ESM and after the ESM is removed, the EGFM cannot fuse the edge features well;

• When combing the ESM and EGFM (our method), the mIoU is improved by 1.36%
with 24.90 GFLOPs and 0.10 M parameters, an increase compared to the baseline, and
performs much better than adding just one module alone as described above;

• When removing the three 1 × 1 convolutions from our method, the mIoU drop by
0.07%, but the FLOPs and parameters show only a minor decrease;

• The ablation experiments demonstrate the effectiveness of our designed modules and
the effectiveness of using edge features to enhance semantic segmentation accuracy.

To further explore the role of the attention module in our proposed network, we
investigate the effectiveness of the edge attention block (EAB) in ESM and the channel
attention (CA) in EGFM. Specifically, for ESM without EAB, we replace the EAB with a 1× 1
convolutional layer, for EGFM without CA, we remove CA straight away. Corresponding
results are shown in Table 4.

Table 4. Results of the effect of attention module on segmentation performance.

Baseline ESM Type EGFM Type mIoU (%)

X w/o EAB w/o CA 43.26
X w/o EAB w/CA 43.43
X w/EAB w/o CA 43.67
X w/EAB w/CA 43.88

• With the removal of EAB and CA, the mIoU of our model decreased by 0.62% but
is still 0.74% higher than the baseline, which proves the effectiveness of our overall
edge-guided framework;

• By deleting only EAB, the mIoU of our model decreased by 0.45%, and after deleting
only CA, the mIoU decreased by 0.21%, which indicates that EAB has a greater impact
on the overall model than CA. We argue that the reason for this phenomenon lies in
that, the absence of three cascading EABs can make the fused features contain too
much unnecessary information, thus negatively affecting the response of CA, while
CA does not affect the preceding EABs as it calibrates the fused features.

5. Discussion

Currently, semantic segmentation for unstructured environments is gradually re-
ceiving attention from researchers. We propose an edge-guided point clouds semantic
segmentation network which can alleviate the problems of blurred class edges, thus im-
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proving the accuracy and adaptability of semantic segmentation for different unstructured
environments. Extensive experimental results show that, our method outperforms other
methods when segmenting drivable areas and large-area static obstacles that occupy a
high proportion of the unstructured environment. This is because, on the one hand, our
method is able to preserve high-resolution edge features and provide more complete edge
detail information, and on the other hand, the additional supervision ensures consistency
between the edge prediction results and the semantic segmentation results. Experiments
have demonstrated the potentials of applying our method on semantic segmentation of the
unstructured environments.

However, despite this, there are still areas where our work can be improved. The
IoU of our method is not the best when it comes to segmenting some objects with richer
3D geometric information, such as car, person, trunk, and traffic-sign. It is because the
range-based method loses some of the 3D spatial information. As shown in Figure 9,
our method mis-segments the person and the trunk of the tree. Although these classes
occupy a small proportion of the whole unstructured scene, it is sometimes crucial for
scene understanding to segment them accurately. Therefore, our future work will focus on
further optimizing the segmentation accuracy of these objects.
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6. Conclusions

We propose a novel real-time LiDAR semantic segmentation network based on edge
guidance for unstructured environments. The proposed method improves the overall seg-
mentation performance by mining edge features through a supervised edge segmentation
module in a multi-task learning manner. By designing the edge segmentation module (ESM)
and the edge guided fusion module (EGFM), our network considers both edge information
and semantic information. The ESM retains high-resolution features and provides more
complete edge information for EGFM, while ensuring the consistency of edge prediction
results and semantic segmentation results in a supervised manner. The EGFM module fuses
the main branch features and edge features from ESM in a multi-scale manner. It improves
the prediction accuracy of the model by mining the multi-scale features while emphasiz-
ing the channels that contribute to the segmentation results. Extensive experiments on
SemanticKITTI dataset and RELLIS-3D dataset demonstrate the effectiveness and real-time
performance of our method. In addition, our method achieves state-of-the-art results in
segmenting drivable areas and large-area static obstacles that are particularly important
for autonomous driving in unstructured environments. Also, the good performance of our
method in our unstructured environment test dataset reflects its robustness. Furthermore,
ablation experiments demonstrate the validity and reliability of each component of our
proposed network.



Remote Sens. 2023, 15, 1093 18 of 21

Author Contributions: Conceptualization, X.L. and X.Y.; methodology, X.Y.; software, X.Y.; valida-
tion, X.Y. and P.N.; formal analysis, X.L. and Q.X.; investigation, X.Y.; resources, X.Y.; data curation,
X.Y. P.N. and D.K.; writing—original draft preparation, X.Y.; writing—review and editing, X.L. X.Y.
P.N. and D.K.; supervision, X.L. project administration, X.L. and Q.X.; funding acquisition, X.L. and
Q.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key R & D Program of China, grant number
2019YFC1511505, the National Natural Science Foundation of China, grant number 61973079 and the
Primary Research & Development Plan of Jiangsu Province, grant number BE2022053-5.

Data Availability Statement: The SemanticKITTI Dataset used in this study is available at http:
//semantic-kitti.org/dataset.html (accessed on 13 May 2021); The RELLIS-3D Dataset used in this
study is available at https://github.com/unmannedlab/RELLIS-3D (accessed on 8 January 2022).

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

As shown in Table A1, our approach still achieves better results than baseline when
using the full test dataset, which further verify the robustness of our method. In Figure A1,
which is a sample of structured scenes, our method shows better segmentation accuracy
than baseline on some fences and parts of sidewalks.

Table A1. Comparison with baseline on the full test dataset.
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ours 35 68.59 95.20 58.51 82.14 82.31 66.83 87.26 84.54 70.14 48.68 47.20 61.49 82.15 60.37 59.72 59.44 51.49

The bolded parts indicate that the method has the best real-time performance or segmentation accuracy in the
corresponding columns.
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