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Abstract: To improve ship safety and increase ship concealment, we introduce a nonconvex regular-
ization with a Cauchy-based penalty for discussing the influence of ship parameters and speckle noise
in numerically simulated SAR images. First, the Kelvin wake geometry was modeled based on the
classic theory of ship wave generation. Second, the scattering echo of the Kelvin wake was calculated
using the two-scale method (TSM). Then, using the range-Doppler algorithm (RDA), the scattering
echo data obtained by the TSM were processed to obtain the Kelvin wake in SAR images. Finally,
the wake was reconstructed in the Radon domain using the Cauchy proximal splitting based on the
forward–backward algorithm. The simulation results showed that Kelvin wakes were more easily
detected in HH polarization with a large pitch angle and X-band, based on which the influence of ship
parameters and speckle noise on the detection of ship wake in numerically simulated SAR images
was discussed at different wind speeds. The research conclusions are of value to the development of
ship wake stealth technology and the improvement of ship safety.

Keywords: two-scale method (TSM); SAR; ship wake detection; ship wake stealth

1. Introduction

The wakes generated by ships sailing in the ocean vary. According to its physical
effects, the wake properties can be studied from the aspects of acoustics, electromagnetism,
and optics, which can be referred to simply as acoustic wakes, magnetic wakes, and optical
wakes. Due to the wide range and long duration of ship wakes, the wake is more likely to
reveal the ship’s position than the ship itself and can even allow extraction of the ship’s
information. Therefore, it is important to study which parameter conditions make the
wake more easily detected for target detection, ship stealth technology, etc. There has been
significant research in the past decade into remote-sensing applications [1–3]. However,
there have been few studies on realizing wake stealth through hull parameters (ship speed
and azimuth angle). Based on this, this paper simulated Kelvin wake in synthetic aperture
radar (SAR) images and detected them to evaluate the effect of ship speed and azimuth
angle on the wake’s physical field.

Under different conditions, the wake characteristics generated by moving ships
can be divided into surface waves, turbulent wakes, and internal waves. The internal
waves generated by ships can be further divided into two subcategories [4,5]: short
waves, which are shown as narrow V-shaped wakes in SAR images, and long waves,
which form the classic Kelvin wake [6]. Kelvin wakes usually show conspicuous texture
features in SAR images, with electromagnetic (EM) scattering characteristics and imaging
characteristics that vary with the specific conditions, so these wakes provide a notable
way to detect ship targets. In addition, there is no accurate and reliable modeling
spectrum for the turbulent wake and internal wave wake, while the Kelvin wake has
a relatively reliable mathematical model; therefore, only the Kelvin wake (shown in
Figure 1) was studied in this paper.
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Figure 1. Kelvin wake. (a) Kelvin wake realistic view, the red arrows indicated the kelvin wake. (b) 

Kelvin wake model simulated. 
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garded ship wake detection as an inverse problem. In addition, Karakus [20] also used 
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Some of the abovementioned studies simulated only the ship wakes in SAR images 

and did not detect the ship’s wake. Some studies discussed only the effect of the sea state 
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Figure 1. Kelvin wake. (a) Kelvin wake realistic view, the red arrows indicated the kelvin wake.
(b) Kelvin wake model simulated.

Ship wake detection is first studied based on real SAR data or images. Because the
ship wake has a linearity characteristic, the detection methods usually use a linearity
characteristics extraction method, such as Radon transform or Hough transform. Both
methods transform linearity characteristics in the image domain into point characteristics in
the Hough domain or Radon domain for detection. Radon transform is an integral operation
along any direction in the image domain to transform a line into a local extremum in the
Radon domain. Renga A. [7] presented a dataset of wake ships and several state-of-the-art
object detectors based on convolutional neural networks are tested with different backbones.
Ding et al. [8] investigated the multi-ship and multi-scale wake detection in real SAR images
based on the specific windows search. Rey et al. [9] studied the detectability of peaks in
the Radon domain by combining Radon transform and Wiener filtering. Biondi [10,11]
first preprocessed SAR images with low-rank plus sparse decomposition and then used
local Radon transform to detect vessels. Graziano [12] used the constant false alarm rate
(CFAR) to filter out the nonpeak points of the ship wake. Jiaqiu Ai et al. [13] proposed a
novel ship wake CFAR detection algorithm based on SCR enhancement and normalized
Hough transform. Zhao Xu et al. [14] focused on faint turbulent wake detection in real
SAR images.

However, it is difficult to obtain the real SAR data of ship wakes, as the cost is high and
the methods are limited. The published real SAR data (such as Italy’s COSMO-SkyMed,
Germany’s TerraSAR-X, and Britain’s NovaSAR) do not clearly convey the sea state and
target motion parameters. In contrast, numerical simulation methods can simulate the
SAR images of ship wakes with arbitrary parameters according to requirements. Therefore,
simulating the ship wake model and its SAR image simulation has also attracted the
interest of many scholars. Henning et al. [15] simulated the Kelvin wake in SAR images
and compared them with real SAR data from SEASAT and Sir-SAR. Tunaley et al. [16]
simulated the SAR images of ship wakes with L-band and compared them with real
SAR data from SEASAT. Oumansour et al. [17] investigated the visibility of simulated
Kelvin wake in SAR images with the X-band and L-band. Zilman et al. [18] simulated the
Kelvin wake in SAR images with wind speeds between 4 and 14 m/s and used discrete
Radon transform to detect the ship’s Kelvin wake in SAR images. Karakus et al. [19]
regarded ship wake detection as an inverse problem. In addition, Karakus [20] also used
nonconvex regularization with Cauchy-based penalty to solve ship wake detection for
maritime applications.

Some of the abovementioned studies simulated only the ship wakes in SAR images
and did not detect the ship’s wake. Some studies discussed only the effect of the sea state
on the detection of the ship wake in SAR images and did not discuss the influence of the
ship’s parameters, such as the ship’s speed and azimuth angle. Based on this, the effect
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of the ship’s parameters on the detection of Kelvin wake in the numerically simulated
SAR images was considered in this paper, further using the detected result to evaluate the
effect of ship speed and azimuth angle on the wake’s physical field. First, the Kelvin wake
geometry was modeled based on the classic theory of ship wave generation [21]. Then, the
scattering echo of the Kelvin wake was calculated using the two-scale method (TSM). The
SAR images of the Kelvin wake were simulated using the range-Doppler algorithm (RDA).
Finally, the wake was reconstructed in the Radon domain using Cauchy proximal splitting
(CPS) based on the forward–backward (FB) algorithm. The flow diagram that simulates the
Kelvin wake detection in SAR images is shown in Figure 2. In addition, speckle-free SAR
images of the ship’s Kelvin wake were combined with gamma noise sequences to simulate
the influence of actual jammers on ship Kelvin wake detection.
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Figure 2. Flow diagram of Kelvin wake detection in SAR images.

2. Kelvin Wake Modeling

Lord Kelvin presented the principle of water waves by moving ships in 1887. He
described the ship as an ideal point perturbation with a Kelvin wake that contains two
distinct waveforms, that is, transverse waves and divergent waves. The included angle
between the divergent waves and transverse waves is between 16

◦
and 19.5

◦
. In this area,

the divergent and transverse waves interfere with each other to form a cusp wave, thus
forming the Kelvin arms.

It is assumed that the ship travels along the negative X-axis with velocity Us. The wave
height of the Kelvin wake can be obtained from the superposition of the waves [17,22]:

ς(x, y) = Re
∫ π/2

−π/2
A(θK) exp[−ikr sec2 θK(x cos θK + y sin θK)]dθK (1)
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where x and y represent the coordinates of the ship wake on the X-axis and Y-axis, respec-
tively. kK sec2 θK(x cos θK + y sin θK) is the phase function and kK sec2 θK is the wavenumber
of the wave component propagating along the angles of wave propagation θK with the
X-axis. A(θK) is a function of a ship’s parameters. When the depth of water is limited,
kK = g/U2

s · tanh(kH), where k is the wavenumbers; when (H → ∞) , kK = g/U2
s . The

wavelength is λm = 2π/kK.
A(θK) is usually described by the Michell thin ship theory [21], which holds that the

water flow around a ship is generated by sources in the central plane of the ship and that
the strength of the headwaters is proportional to the local slope of the ship, i.e.,

A(θK) =
4kK
Us
· (sec3 θK) · H(kK sec2 θK, θK) (2)

H(K, θK) =
x

SH

σ(x, y, z) · exp(K(ix cos θK + iy sin θK + z))dxdy (3)

where H(K, θK) is the Kochin function. The headwater intensity σ(x, y, z) can be written
as follows:

σ(x, y, z) = −2Us

4π

∂

∂x
f (x, z) (4)

If the hull shape f is parabolic, then

f (x, z) =

{
b(1− x2/l2) (−d < z < 0,−l < x < l)
0 (z < −d)

(5)

where b is half of the ship’s breadth, l is the ship’s length, and d is the depth of immersion.
Therefore, the wave height of the Kelvin wake can be written as follows:

ς(x, y) = ς0(x + l, y) + Cς0(x− l, y) + ς1(x + l, y)−Cς1(x− l, y) (6)

where C is the viscosity coefficient.

ς0(x, y) =
4b
πkK l

∫ π/2

−π/2

(
1− e−kKd sec2 θK

)
sin[kK sec2 θK(x cos θK + y sin θK)]dθK (7)

ς1(x, y) =
4b
πk2

K l2

∫ π/2

−π/2
cos θK

(
1− e−kKd sec2 θK

)
sin[k sec2 θK(x cos θK + y sin θK)]dθK (8)

We illustrate the algorithm with a numerical example. The rough sea surface is
simulated using the Elfouhaily-type wave spectrum [23]. Figure 3 depicts the composite
scene of the rough sea surface and ship’s Kelvin wake at different ship speeds, ship azimuth
angles, and viscosity coefficients. The ship’s length is l = 137.202 m, half of the ship’s
breadth is b = 8.31 m, and the depth of immersion is d = 8.732 m. The size of the rough
sea surface is 256 m× 256 m, the windspeed is 5 m/s, and the wind direction is 0

◦
; other

parameters are shown in Table 1.

Table 1. Simulation parameters of Figure 3.

Figure Us (m/s) Ship Azimuth Angle Viscosity Coefficient

Figure 3a 6 90
◦

0
Figure 3b 6 90

◦
0.6

Figure 3c 10 0
◦

0
Figure 3d 10 0

◦
0.6

Figure 3e 10 75
◦

0
Figure 3f 10 135

◦
0



Remote Sens. 2023, 15, 1089 5 of 20Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 22 
 

 

(a) (b) (c)  

   
(d) (e) (f) 

Figure 3. Composite scene of the rough sea surface and ship’s Kelvin wake at different ship speeds, 
ship azimuth angles, and viscosity coefficients. (a) s sU Cϕ= = = ; (b) 

s sU Cϕ= = = ; (c) s sU Cϕ= = = ; (d) s sU Cϕ= = = ; (e) 

s sU Cϕ= = = ; (f) s sU Cϕ= = = . 

3. Scattering from a Dielectric Two-Scale Profile 
Based on the two-scale sea surface model, the sea surface is visualized as a profile 

that is broken down by the number of slightly rough facets, with capillary waves as mi-
croscopic random roughness [24,25], as shown in Figure 4. When the EM waves are inci-
dent nearly vertically on the sea surface, the mirror reflection from the flat surface of the 
large-scale gravity waves is the main scattering mechanism in this incident interval. In 
this mechanism, the commonly used scattering model is the Kirchhoff approximation 
model (KAM), which can be expressed as [26] 

KAM KAM
pq i s pq x y

z

kˆ ˆ, P z z
q

σ
q

k k
 

(9)

where ( )s i
ˆ ˆk= −q k k

, ik̂  and sk̂  are the combined vectors of the incident and scattered 

wavenumbers, respectively, k is the number of EM waves, x yP z z  is the joint prob-

ability density function obeyed by xz  and yz . x x zz q q= −  and y y zz q q= −  are the 

slopes of the tangent planes of the mirror points, and the polarization factor of KAM 
KAM
pq  

can be expressed as 

Figure 3. Composite scene of the rough sea surface and ship’s Kelvin wake at different ship
speeds, ship azimuth angles, and viscosity coefficients. (a) Us = 6 m/s, ϕs = 90

◦
, C = 0;

(b) Us = 6 m/s, ϕs = 90
◦
, C = 0.6; (c) Us = 10 m/s, ϕs = 0

◦
, C = 0; (d) Us = 10 m/s, ϕs = 0

◦
, C = 0.6;

(e) Us = 10 m/s, ϕs = 75
◦
, C = 0; (f) Us = 10 m/s, ϕs = 135

◦
, C = 0.

3. Scattering from a Dielectric Two-Scale Profile

Based on the two-scale sea surface model, the sea surface is visualized as a profile that
is broken down by the number of slightly rough facets, with capillary waves as microscopic
random roughness [24,25], as shown in Figure 4. When the EM waves are incident nearly
vertically on the sea surface, the mirror reflection from the flat surface of the large-scale
gravity waves is the main scattering mechanism in this incident interval. In this mechanism,
the commonly used scattering model is the Kirchhoff approximation model (KAM), which
can be expressed as [26]

σKAM
pq (k̂i, k̂s) =

πk2|q|2

q4
z

∣∣∣F̃KAM
pq

∣∣∣P(ztan
x , ztan

y

)
(9)

where q = k
(
k̂s − k̂i

)
, k̂i and k̂s are the combined vectors of the incident and scattered

wavenumbers, respectively, k is the number of EM waves, P(ztan
x , ztan

y ) is the joint probability
density function obeyed by ztan

x and ztan
y . ztan

x = −qx/qz and ztan
y = −qy/qz are the slopes

of the tangent planes of the mirror points, and the polarization factor of KAM F̃
KAM
pq can be

expressed as

F̃KAM
vv = M0

[
Rv(θl

i )(V̂s · k̂i)(V̂i · k̂s) + Rh(θ
l
i )(Ĥs · k̂i)(Ĥi · k̂s)

]
F̃KAM

vh = M0

[
Rv(θl

i )(V̂s · k̂i)(Ĥi · k̂s)− Rh(θ
l
i )(Ĥs · k̂i)(V̂i · k̂s)

]
F̃KAM

hv = M0

[
Rv(θl

i )(Ĥs · k̂i)(V̂i · k̂s)− Rh(θ
l
i )(V̂s · k̂i)(Ĥi · k̂s)

]
F̃KAM

hh = M0

[
Rv(θl

i )(Ĥs · k̂i)(Ĥi · k̂s) + Rh(θ
l
i )(V̂s · k̂i)(V̂i · k̂s)

] (10)
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Figure 4. Two-scale sea surface model. The global coordinate systems
{

x̂g, ŷg, ẑg

}
are fixed on the

Earth, whereas
{

x̂l , ŷl , ẑl
}

is the local coordinate system fixed on the facet of the rough sea surface.

Here, θl
i is the local incidence angle.

{
k̂i, k̂s

}
and

{
Ĥi, Ĥs, V̂i, V̂s

}
are the incident and

scattering unit vectors of the EM wave and its corresponding polarization unit vector, re-
spectively. M0 = |q||qz|/

{[
(Ĥs · k̂i)

2
+ (V̂s · k̂i)

2
]
kqz

}
. Rv and Rh are the Fresnel reflection

coefficients corresponding to horizontal and vertical polarizations, respectively, and they
can be expressed as

Rv = (ε cos θl
i −
√

ε− sin2 θl
i )/(ε cos θl

i +
√

ε− sin2 θl
i ) (11)

Rh = (cos θl
i −
√

ε− sin2 θl
i )/(cos θl

i +
√

ε− sin2 θl
i ) (12)

where ε is the dielectric constant of the ocean from the Debye model [27].
The scattering coefficient of an arbitrarily tilted micro-rough small surface element

can be written as follows [26]:

σTSPM
pq (k̂i, k̂s) =

1
2
πk2|ε− 1|2

∣∣∣F̃PQ

∣∣∣2Sζ(ql) (13)

where Sζ(ql) is the spatial power spectrum [26]. F̃PQ denotes the polarization factor in the
global coordinate system and can be written as follows:[

F̃VV F̃VH
F̃HV F̃HH

]
=

[
V̂s · v̂s Ĥs · v̂s
V̂s · ĥs Ĥs · ĥs

][
Fvv Fvh
Fhv Fhh

][
V̂i · v̂i V̂i · ĥi
Ĥi · v̂i Ĥi · ĥi

]
(14)

where Fpq is the polarization vectors and
{

Ĥi, V̂i, Ĥs, V̂s
}

and
{

ĥi, v̂i, ĥs, v̂s
}

are the incident
and scattering unit vectors of the electromagnetic wave and its unit polarization vectors
in the global and local coordinate systems, respectively. Their relationship can be written
as follows:

Ĥi = (Ĥi · v̂i)v̂i + (Ĥi · ĥi)ĥi, V̂i = (V̂i · v̂i)v̂i + (V̂i · ĥi)ĥi
Ĥs = (Ĥs · v̂s)v̂s + (Ĥs · ĥs)ĥs, V̂s = (V̂s · v̂s)v̂s + (V̂s · ĥs)ĥs

(15)

Details of these are described elsewhere [26] and in our previous work [24,25].
In Figure 5, the bistatic scattering of the cosine surface is calculated by the method

of moment (MoM) and TSM. The frequency of the incident wave is f = 2 GHz. The
dielectric constant of the cosine surface is ε = (71.603, 50.657). The incident angles are
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θ
g
i = 30

◦
, φ

g
i = 0

◦
. The size of the cosine surface is 6λ × 6λ. As shown in Figure 5, the

results of the TSM agree well with the results of the MoM. Therefore, the TSM is effective.
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4. Range–Doppler Algorithm

The RDA [28] was used to simulate the Kelvin wake in SAR images in this paper. This
algorithm consists of three main steps: range compression, range cell migration correction
(RCMC), and azimuth compression. Range compression contains fast Fourier transform
(FFT) in the range direction and inverse fast Fourier transform (IFFT) in the range direction;
the azimuth compression is achieved by the IFFT in the azimuth direction. A detailed flow
of the RDA is shown in Figure 6. With this algorithm, the scattering echo data obtained by
the TSM are processed to obtain the Kelvin wake in SAR images.
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We verified the results of numerically simulated SAR images by comparing real SAR
data from satellite platforms, namely, TerraSAR-X [29], with simulated SAR images. The
diagram of ship wake SAR imaging is shown in Figure 7. We identified the wake of
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the “TSX_20191128T052044.652_Vesuv_C414_O093_D_R_SM003_SSC” data in TerraSAR-X,
and its latitude and longitude information is shown in Figure 8. The sea state and ship
parameters of the real SAR data are not clear. Therefore, when simulating the Kelvin wake
in SAR images, the parameters are arbitrarily selected. In the following case, the SAR
platform velocity is V = 100 m/s, the platform altitude is H = 3000 m, the SAR resolution
in the range and azimuth direction are both 0.5 m, the size of the illuminated area in the
SAR images is 256 m in the range direction and 256 m in the azimuth direction, and the
SAR integration time is 1 s. The wind speed is U = 3 m/s, the wind direction is 0

◦
, and the

ship’s speed is Us = 26 m/s. The corresponding result of the numerically simulated SAR
image is shown in Figure 9.
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Figure 9. Real SAR data from TerraSAR-X and the result of the numerically simulated SAR image
(a) Real SAR data from TerraSAR-X; (b) Kelvin wake in the numerically simulated SAR image.

Moreover, the perceptual hash algorithm [30] was used to calculate the similarity be-
tween real SAR data from TerraSAR-X and the result of the mathematically simulated SAR
image, and the similarity reached 95.31%. Figure 10 depicts the “fingerprint” information
of the two images in Figure 9 and reflects the similarity of the two images in Figure 9.
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According to Figures 9 and 10, the real SAR data from TerraSAR-X have the same
characteristics as the results of the mathematically simulated SAR image. The accuracy of
the simulation results is further verified.

5. Inverse Problems of Kelvin Wake Detection in Numerically Simulated SAR Images

Since the ship wakes are modeled as linear features, the Radon transform maps straight
lines in the original image space to points (line integral values) in (ρ, θ) space. Straight
lines with high gray values in the image will form bright spots in (ρ, θ) space, while line
segments with low gray values will form dark spots in (ρ, θ) space. Thus, the detection
of straight lines can be translated into the detection of bright spots and dark spots in the
transformed region. Therefore, the formation of a SAR image can be written in terms of its
Radon transform as [30]

Y = AX + N (16)
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where Y is the SAR image. X(ρ, θ) is the image in the Radon domain. N refers to the
additive noise, and the operator A = R−1 represents the inverse Radon transform. X(ρ, θ)
represents the distance r from the center of Y and the orientation θ from the horizontal axis
of Y.

In image processing applications, computing an integral of the intensities of image
Y(i, j) over the hyperplane, which is perpendicular to θ, leads to Radon transform X(ρ, θ)
of the given image Y. It can also be defined as a projection of the image along the angles, θ.
Hence, for a given image Y, the general form of the Radon transform (X = RY = ATY) is

X(r, θ) =
∫
R2

Y(i, j)δ(r− i cos θ − j sin θ)didj (17)

where δ(·) is the Dirac delta function.
The inverse Radon transform Y = AX of the projected image X can be obtained from

the filtered back projection algorithm [31] as

g(r, θ) = F−1[|υ|F[X(r, θ)]]
Y(i, j) =

∫ π
0

∫
R g(r, θ)δ(r− i cos θ − j sin θ)drdθ

(18)

where υ is the radius in Fourier transform and F[·] and F−1[·] refer to the forward and
inverse Fourier transforms, respectively.

Since recovering the object of interest X from the observation Y is an ill-posed problem,
we must consider prior information on X to obtain a stable and unique reconstruction
result. Under the assumption of an independent and identically distributed (iid) Gaussian
noise case, we express the data fidelity term ψ(·) (i.e., the likelihood) as [20]

ψ(Y, AX) =
‖Y− AX‖2

2
2σ2 (19)

where σ refers to the standard deviation of the noise. Having the prior knowledge p(X),
the problem of estimation X from the observed SAR image Y by using the signal model in
(16) turns into a minimization problem [20]

X̂ = arg min
X

F(X) = arg min
X

{
‖Y− AX‖2

2
2σ2 − log p(X)

}
(20)

where we define ψ(X) = − log p(X) as the penalty function, and F(X) = ψ(Y, AX)+ψ(X)
is the cost function. As discussed earlier, the selection of ψ(X) (or equivalently p(X)) plays
a crucial role in estimating X in order to overcome the ill-posed problem and obtain a
stable solution.

The Cauchy distribution is in the form of a nonconvex penalty for the purpose of
solving imaging inverse problems. The Cauchy distribution is one of the special members of
the α− stable distribution family, which is known to be heavy-tailed and promote sparsity
in various applications. Contrary to the general α − stable family, it has a closed-form
probability density function, which is given by [32]

p(X)α
γ

γ2 + X2 (21)

where γ is the scale parameter, which controls the spread of the distribution. By replacing
p(X) in (16) with the Cauchy prior given in (21), we have [20]

X̂Cauchy = argmin
X

‖ Y− AX ‖2
2

2σ2 −∑
i,j

log

(
γ

γ2 + X2
i,j

)
(22)
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which is the Cauchy regularized minimization in X, with the cost function being
‖Y−AX‖2

2
2σ2 − log p(X), and with the proposed nonconvex Cauchy-based penalty function [20]

ψ(x) = − log
(

γ

γ2 + x2

)
(23)

The solution flow of inverse problems of Kelvin wake detection in numerically simu-
lated SAR images is shown in Figure 11. Details of the proposed methodology are described
elsewhere [33]. Based on [20], the FB-based CPS method is used to solve problems (22).

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 22 
 

 

 

Figure 11. The solution flow of inverse problems of Kelvin wake detection in numerically simulated 

SAR images. 

6. Results and Discussion 

6.1. Influence of Various SAR System Parameters on Kelvin Wake Detection in Numerically 

Simulated SAR Images 

6.1.1. Influence of Various Polarization on Kelvin Wake Detection in Numerically Simu-

lated SAR Images 

In Figure 12, the influence of different polarizations on Kelvin wake detection in nu-

merically simulated SAR images at the X-band is compared, including horizontal–hori-

zontal polarization (HH), vertical–vertical polarization (VV), VH polarization, and HV 

polarization. The azimuth and pitch angle are 90  and 60 , respectively. The wind speed 

is 1m/sU =  . The wind direction is 0 . The ship azimuth angle is 0 . The ship’s speed is 
6 m/ssU =  . The SAR integration time is 1 s.  

As can be seen from Figure 12, the simulation results of HH (Figure 12a), VV(Figure 

12b), and HV (Figure 12d) all reflect the characteristic of the Kelvin wake in SAR images, 

while Figure 12a is clearer. Moreover, the characteristics of Kelvin wake in SAR images 

can hardly be seen under the VH polarization. In the same scene, the SAR images with the 

same polarization are more sensitive to the waves whose propagation direction is parallel 

to the radar look direction, while SAR images with the cross-polarization have the oppo-

site characteristic. Therefore, SAR should select one or more suitable observation angles 

according to the actual direction of the main waves. In conclusion, the imaging effect is 

better with HH polarization, and the characteristic of the Kelvin wake in SAR images is 

also easier to detect. 

Figure 11. The solution flow of inverse problems of Kelvin wake detection in numerically simulated
SAR images.

6. Results and Discussion
6.1. Influence of Various SAR System Parameters on Kelvin Wake Detection in Numerically
Simulated SAR Images
6.1.1. Influence of Various Polarization on Kelvin Wake Detection in Numerically
Simulated SAR Images

In Figure 12, the influence of different polarizations on Kelvin wake detection in numer-
ically simulated SAR images at the X-band is compared, including horizontal–horizontal
polarization (HH), vertical–vertical polarization (VV), VH polarization, and HV polar-
ization. The azimuth and pitch angle are 90

◦
and 60

◦
, respectively. The wind speed is

U = 1 m/s. The wind direction is 0
◦
. The ship azimuth angle is 0

◦
. The ship’s speed is

Us = 6 m/s. The SAR integration time is 1 s.
As can be seen from Figure 12, the simulation results of HH (Figure 12a), VV (Figure 12b),

and HV (Figure 12d) all reflect the characteristic of the Kelvin wake in SAR images, while
Figure 12a is clearer. Moreover, the characteristics of Kelvin wake in SAR images can hardly
be seen under the VH polarization. In the same scene, the SAR images with the same
polarization are more sensitive to the waves whose propagation direction is parallel to
the radar look direction, while SAR images with the cross-polarization have the opposite
characteristic. Therefore, SAR should select one or more suitable observation angles
according to the actual direction of the main waves. In conclusion, the imaging effect is
better with HH polarization, and the characteristic of the Kelvin wake in SAR images is
also easier to detect.
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6.1.2. Influence of Different Pitch Angles on Kelvin Wake Detection in Numerically
Simulated SAR Images

The pitch angle also affects the effective roughness of a rough sea surface with a Kelvin
wake. According to the Rayleigh criterion [34], the roughness of a rough sea surface with a
Kelvin wake decreases with an increase in the pitch angle. Therefore, the scattering echo
energy decreases with an increase in the pitch angle.

In Figure 13, the influence of different pitch angles on Kelvin wake detection in
numerically simulated SAR images is compared. The azimuth angle is 90

◦
, and the pitch

angles are 0
◦
, 60

◦
, and 90

◦
, respectively. Other parameters are consistent with Figure 12.

As can be seen from Figure 13, the scattering echo of a rough sea surface with a Kelvin
wake decreased with an increase in the pitch angle. Moreover, the diffusion and transverse
waves of the Kelvin wake in the SAR images first became clearer and then weaker. This
is because the effective roughness of a rough sea surface with a Kelvin wake at a small
pitch angle (θ = 0

◦ ∼ 20
◦
) is relatively small, which results in mirror reflections from the

surface of large-scale gravity waves, in which case the main contribution is the scattering
echo of the large-scale gravity waves. The diffuse echo of a rough sea surface plays a
major role at a moderate pitch angle (θ = 20

◦ ∼ 70
◦
) for low sea states. Many experiments

show that the Bragg resonance phenomenon occurs due to small-scale capillary waves
and EM waves in the diffuse scattering region. Since the SAR can only detect the Bragg
waves in the look direction, the Bragg scattering is the main scattering contribution in
this case, and the characteristic of the Kelvin wake in SAR images can be clearly detected
by SAR. Moreover, the white crown, cusp waves, and breaking waves play an important
role at θ > 60

◦
. The backscattering shows spikes, and speckles appear in the SAR images.

Therefore, the difference between the sea surface background and the Kelvin wake waves
in the SAR images is more obvious at large pitch angles, which makes the Kelvin wake in
the SAR images clearer and easier to detect at large incidence angles.
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(a) θ = 0

◦
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.

6.1.3. Influence of Various Wavebands on Kelvin Wake Detection in Numerically Simulated
SAR Images

The influence of various wavebands for Kelvin wake detection in simulated SAR
images mainly has two aspects. One is the effective roughness of the rough sea surface,
which mainly affects the scattering direction distribution of EM waves from the rough
sea surface and further affects the echo energy. The other is their effect on the complex
permittivity of the rough sea surface, which affects the reflection ability of the rough
sea surface and the penetration ability of EM waves [35]. According to [36], the echo
intensity increases as the radar wavelength decreases. Therefore, when other parameters
remain unchanged, imaging the rough sea surface in different wavebands results in
different echo intensities; as a result, the SAR image intensity data and texture also
change greatly.

In Figure 14, the influence of the L-band, C-band, and X-band on Kelvin wake detection
in numerically simulated SAR images is compared. The bandwidths are both 300 MHz.
The pitch angle is 0

◦
. Other parameters are consistent with Figure 12. As can be seen from

Figure 14, the Kelvin wake in the SAR image is hardly visible in the L-band. The Kelvin
wake in the SAR image can be observed at the C-band and X-band. Moreover, the Kelvin
wake in the SAR image is detected only in the X-band. This is because the pitch angle is 0◦,
equivalent to looking down at the Kelvin wake. Since the capillary waves are sensitive to
the wavelength of EM waves, when the wavelength is long, the corresponding effective
roughness of the Kelvin wake is small. Therefore, the characteristics of the Kelvin wake
are not easy to detect. On the contrary, the details and characteristics of the Kelvin wake
in SAR images are more obvious. Therefore, the scattering echo in the X-band is more
sensitive to rough sea surface changes at 0

◦
pitch angles.
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Figure 14. Kelvin wake in the simulated SAR images at various wavebands and its detection results.
(a) L-band; (b) C-band; (c) X-band.

However, when there is an inclination angle between the direction of the EM wave
incidence and the facets of the rough sea surface, the Kelvin wake was detected at either
waveband. The influence of the wavelength on Kelvin wake detection in numerically
simulated in SAR images with pitch angles of 0

◦
, 60

◦
and 90

◦
, as shown in Table 2. Other

parameters are consistent with Figure 12. It can be seen from the table that the EM waves are
incident at 60

◦
or 90

◦
, i.e., the surface is illuminated at an inclined angle, and the Kelvin wake

was detected at either waveband. This is because there is an inclination angle between the
direction of the EM wave incidence and the facets of a rough sea surface increase the effective
roughness of the rough sea surface, which leads to relatively large amplitude variations in
the scattering echoes at the facet with larger wave slopes, which in turn highlights the texture
of the Kelvin wake in SAR images. Therefore, it is appropriate to choose the X-band to study
the detection of a Kelvin wake in numerically simulated SAR images.

Table 2. Influence of wavelength on Kelvin wake detection in numerically simulated SAR images
with different pitch angles.

Pitch Angle Waveband Kelvin1 Kelvin2

0
◦

L × ×
C

√ √

X
√ √

60
◦

L
√ √

C
√ √

X
√ √

90
◦

L
√ √

C
√ √

X
√ √

The × indicates that the wake is not detected, and
√

indicates the wake is detected.
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6.2. Influence of Various Ship Parameters on Kelvin Wake Detection in Numerically Simulated
SAR Images

According to Section 6.1, Kelvin wakes were more easily detected at the HH polariza-
tion, with a large pitch angle, and with the X-band. Therefore, HH polarization, a large
pitch angle, and the X-band were chosen to study the effect of ship parameters on Kelvin
wake detection in numerically simulated SAR images.

6.2.1. Influence of Various Ship Speeds on Kelvin Wake Detection in Numerically
Simulated SAR Images

In Figure 15, the influence of various ship speeds on Kelvin wake detection in numeri-
cally simulated SAR images is compared. The ship’s speeds are Us = 3 m/s (Figure 15a),
Us = 6 m/s (Figure 15b), Us = 10 m/s (Figure 15c), and Us = 18 m/s (Figure 15d),
respectively. The wind direction is 0

◦
. The ship azimuth angle is 0

◦
. The wind speed is

U = 4 m/s. The azimuth and pitch angles are both 90
◦
. The SAR integration time is 1 s.

Simulations with the X-band are performed for HH.
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As seen from the figure, the ship’s speed is small, and the wavelength of the Kelvin
wake is shorter. As the ship’s speed increases, the wavelength and wave height of the
Kelvin wake increase significantly, as does the modulation effect on the rough sea surface.
Therefore, the Kelvin arms become increasingly prominent and easier to observe.

Figure 16 shows the Radon transform of Figure 15d. From Figures 15d and 16, both
Kelvin arms in the SAR images are detected. The dark spots and bright spots in Figure 16,
marked by circles in the Radon domain, correspond to the one dark wake and one bright
wake marked by two red lines drawn in Figure 15d. These are consistent with the informa-
tion observed in the SAR image.

In summary, we can draw the following conclusions: when U = 4 m/s and U > 6 m/s,
the texture features of the Kelvin wake in the SAR image are completely visible. Moreover,
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the wave heights of the Kelvin wakes are large in this case, which makes these wakes easier
to detect.
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6.2.2. Influence of Various Ship Azimuth Angles on Kelvin Wake Detection in Numerically
Simulated SAR Images

In Figure 17, the Kelvin wake in numerically simulated SAR images and its detection
results are presented with various ship azimuth angles. The ship’s speed is Us = 6 m/s.
The ship azimuth angles are 0

◦
, 90

◦
, and 120

◦
. The wind speed is U = 1 m/s. Other

parameters are consistent with Figure 15. As seen from the figure, SAR is more sensitive to
Kelvin wake propagating along the radar look directions. Therefore, the Kelvin wakes in
numerically simulated SAR images are unsymmetric except for those perpendicular to and
parallel to the radar motion direction. Moreover, the Kelvin arms in any ship’s azimuth
angle were detected.
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To comprehensively illustrate the influence of ship motion parameters on the size
of the wake physical field, Table 3 describes the detection accuracy of the Kelvin wakes
in numerically simulated SAR images when the wind speed and hull parameters are
changed. The wind speed, ship’s speed, and ship azimuth angles are listed in the table,
and other parameters are consistent with Figure 15. It can be seen from the table that the
detection results of the ship Kelvin wake in simulated SAR images were the same for
different ship azimuth angles. When U = 3 m/s and Us < 6 m/s, no wake was detected,
and wakes are detected at all other ship speeds. When U = 6 m/s and Us < 8 m/s, the
wake was not detected, nor could it be detected when U = 10 m/s and Us < 12 m/s.

Table 3. Detection accuracy of Kelvin wake in numerically simulated SAR images for different wind
speeds and hull parameters.

Wind Speed (m/s) Ship Azimuth Angle Us (m/s) Kelvin1 Kelvin2

3

90
◦

3 × ×
5 × ×
6

√ √

10
√ √

120
◦

3 × ×
5 × ×
6

√ √

10
√ √

6

90
◦

3 × ×
6 × ×
7 ×

√

10
√ √

120
◦

3 × ×
6 × ×
7 ×

√

10
√ √

10

90
◦

3 × ×
6 × ×

10 × ×
11 ×

√

12
√ √

120
◦

3 × ×
6 × ×

10 × ×
11 ×

√

12
√ √

The × indicates that the wake is not detected, and
√

indicates the wake is detected.

6.3. Influence of Noise on the Kelvin Wake in Simulated SAR Images

A jamming bomb is the necessary soft antimissile means on modern ships. After the
jamming bomb explodes in the air, it ejects substantial chaff, which interferes with the radar
seeker of the incoming missile. Based on this, we simulated the effect of actual jammers
by adding noise to the numerically simulated SAR images. In this set of simulations, the
SAR images were multiplied with gamma [37] noise sequences with a number of looks, L,
chosen to be 5. As shown in Figure 18, the simulation parameters are consistent with those
shown in Figure 15b. In Figure 19, Us = 11 m/s, U = 10 m/s, and the ship azimuth angle
is 0◦. As shown in Figures 18 and 19, the characteristics of the Kelvin wakes in SAR images
were disturbed by noise, and the ship wakes were not detected.

In addition, for the cases in Table 3, we combined them with gamma noise sequences
and set L = 5. Notably, the detection results of the ship’s Kelvin wake were still the same for
a different ship azimuth angle. When U = 3 m/s and Us < 7 m/s, the wake could not be
detected, nor could it be detected when U = 6 m/s and Us < 9 m/s or when U = 10 m/s
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and Us < 13 m/s. Thus, the detection of ship wakes in SAR images was degraded in the
presence of noise. On the other hand, these results show that ship wake stealth can be
promoted by jamming.
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Figure 19. Artificial interference detection of Kelvin wake in SAR images (U = 10 m/s; Us = 11 m/s).
(a) Original image; (b) speckled image.

7. Conclusions

This paper introduced a nonconvex regularization with a Cauchy-based penalty for
discussing the influence of ship parameters and speckle noise in the numerically simulated
SAR images. The TSM was used to obtain the EM scattering echoes of simulated Kelvin
wakes. Then, the SAR images of Kelvin wakes were generated by RDA, and wakes were
reconstructed in the Radon domain using the FB-based CPS algorithm. The results show
that the Kelvin wakes were more easily detected in HH polarization with a large pitch angle
and in the X-band. Based on this, the influence of ship parameters and speckle noise on the
detection of ship wake in numerically simulated SAR images was discussed. In the absence
of jamming bomb, when the wind speed is U = 3 m/s, the ship will not be detected if it
keeps sailing at Us < 6 m/s, nor will it be detected when U = 6 m/s and Us < 8 m/s or
when U = 10 m/s and Us < 12 m/s. In the case that the ship is protected by jamming
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bomb, when the wind speed is U = 3 m/s, the ship will not be detected if it keeps sailing at
a speed below 7 m/s at this time, nor will it be detected when U = 6 m/s and Us < 9 m/s
or when U = 10 m/s and Us < 13 m/s. These research conclusions are of value to the
development of ship wake stealth technology and the improvement of ship safety.

The RDA in this paper is computationally intensive and may reduce the resolution of
the imaging when performing RCMC. Therefore, in order to improve the resolution of SAR
images, future investigations on this topic will focus on improved RDA for SAR imaging,
such as secondary range compression (SRC) and squint imaging mode (SIM). Moreover, the
TSM will be considered for acceleration using CUDA to improve computational efficiency.

Author Contributions: Conceptualization, J.W. and Y.W.; methodology, J.W. and Y.W.; validation,
J.W., Y.W. and L.G.; investigation, J.W., S.C. and Y.W.; writing—original draft preparation, J.W.;
funding acquisition, L.G. and Y.W. All authors have read and agreed to the published version of
the manuscript.
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Basic Research Program of Shaanxi (Grant No. 2023-JC-YB-537).
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