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Abstract: Accurate measurement of the geometric parameters of trees is a vital part of forest inventory
in forestry management. Aerial and terrestrial Light Detection and Ranging (LiDAR) sensors are
currently used in forest inventory as an effective and efficient means of forest data collection. Many
recent approaches to processing and interpreting this data make use of supervised machine learning
algorithms such as Deep Neural Networks (DNNs) due to their advantages in accuracy, robustness
and the ability to adapt to new data and environments. In this paper, we develop new approaches to
deep-learning-based forest point cloud analysis that address key issues in real applications in forests.
Firstly, we develop a point cloud segmentation framework that identifies tree stem points in individual
trees and is designed to improve performance when labelled training data are limited. To improve
point cloud representation learning, we propose a handcrafted point cloud feature for semantic
segmentation which plays a complementary role with DNNs in semantics extraction. Our handcrafted
feature can be integrated with DNNs to improve segmentation performance. Additionally, we
combine this feature with a semi-supervised and cross-dataset training process to effectively leverage
unlabelled point cloud data during training. Secondly, we develop a supervised machine learning
framework based on Recurrent Neural Networks (RNNs) that directly estimates the geometric
parameters of individual tree stems (via a stacked cylinder model) from point clouds in a data-driven
process, without the need for a separate procedure for model-fitting on points. The use of a one-stage
deep learning algorithm for this task makes the process easily adaptable to new environments and
datasets. To evaluate our methods for both the segmentation and parameter estimation tasks, we
use four real-world datasets of different tree species collected using aerial and terrestrial LiDAR.
For the segmentation task, we extensively evaluate our method on the three different settings
of supervised, semi-supervised, and cross-dataset learning, and the experimental results indicate
that both our handcrafted point cloud feature and our semi-supervised and cross-dataset learning
framework can significantly improve tree segmentation performance under all three settings. For the
tree parameter estimation task, our DNN-based method performs comparably to well-established
traditional methods and opens up new avenues for DNN-based tree parameter estimation.

Keywords: forest inventory; tree stem cylinder model; LiDAR; point cloud segmentation;
semi-supervised learning; domain adaptation

1. Introduction

Forest terrains constitute more than 30% of the Earth’s landmass and serve multiple
functionalities to local and global ecosystems as well as society including maintaining
biodiversity, mitigating climate changes, and being of economic value. Forest inventory
technologies play an essential role in investigating and managing natural and commercial
forests. Traditionally, forest inventory relies on manual field work which is laborious and
time-consuming. In recent years, with the development of laser scanning technology, Light
Detection and Ranging (LiDAR) devices have been increasingly adopted in automatic forest
inventory as a more convenient means of tree data acquisition [1–6], and current studies
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are using LiDAR devices mounted on several types of platforms (e.g., mobile terrestrial
platforms, manned aircraft, and unoccupied aerial systems) for forests of different scales
(e.g., plot, stand, and regional).

When determining the characteristics of individual trees based on LiDAR point clouds,
the first and most important task is to locate the main stem of each tree. For data-driven
methods, the main method for this task is point cloud semantic segmentation which is used
to separate stem points from foliage points. Most recently, following the prevalence of deep
neural networks (DNNs) in machine learning and computer vision research, several tree
point cloud segmentation methods based on existing general-purpose DNN segmentation
models have been proposed and promising results have been reported [7–11]. The other
important task in LiDAR-based automatic forest inventory is tree parameter estimation,
in which the segmented stem and foliage points are used for estimating several relevant
tree parameters including height, basal area, diameter at breast height (DBH), and taper.
These parameters are typically estimated using model-fitting techniques, including circular
cross-sections or the use of cylinder shape models [10,12–14]. Methods for shape fitting
must typically be designed for, or tuned towards, a specific type and resolution of point
cloud data.

Despite the progress made by existing research, both tree point cloud segmentation
and tree parameter estimation techniques still face a few challenges. For tree point cloud
segmentation, one issue is that existing works have been mainly employing the general-
purpose methods that were originally designed for the scenarios of autonomous driving,
indoor scene, and general artificial object partitioning [15–22], while these methods may
not be optimal for a forest scenario. More specifically, point cloud objects in autonomous
driving and robotic navigation scenarios have more regular surfaces than trees, while trees
usually have a higher degree of variation in geometric shape which makes tree point cloud
segmentation challenging. The other issue in tree point cloud segmentation is that forest
point clouds are highly structurally complex and heterogeneous in general, which makes
manual labelling very difficult. Therefore, large-scale and publicly-accessible labelled
datasets are not currently available, making labelled training data scarce. Furthermore,
because of the shortage of labelled training data, DNN-based semantic segmentation
models may learn feature representations that are ineffective. Additionally, it is often
the case in a real forestry application that models may be trained using data from one
site/forest type and used to process tree point cloud data in a new site, without wanting to
expend the effort of hand-labelling additional training examples from the new site. For tree
parameter estimation, it would be advantageous to design a data-driven approach that
can be easily used for different types of tree point clouds (e.g., those of different species or
captured with different types of LiDAR) while can also exploit the variety of data for more
accurate estimation.

To address the issues above, we propose methods to improve forest point cloud seman-
tic segmentation and introduce a DNN-based data-driven framework for tree parameter
estimation. We summarise the contributions of our work as follows:

• Inspired by the success of existing works which jointly utilise DNN and handcrafted
features for better image and point cloud representations [23–26], we propose a hand-
crafted feature method which can extract more explicit information than DNNs, par-
ticularly in scenarios in which labelled training data is scarce. Our handcrafted feature
extractor performs on par with DNN models on the tree point cloud segmentation
tasks. Based on our handcrafted feature, we further proposed the first point cloud
semantic segmentation model for forest point clouds which outperforms the DNN
baselines by combining the advantages of both DNN and a handcrafted feature.

• To deal with the practical situations where we only have access to a limited amount of
labelled tree point clouds, we propose a semi-supervised learning framework that can
effectively exploit unlabelled point cloud data of trees for training the segmentation
model. Moreover, our semi-supervised learning framework can be easily extended
to a domain adaptation setting to deal with the cross-dataset semantic segmentation
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problem. To the best of our knowledge, this is the first work to tackle the point cloud
semantic segmentation problem in forests by utilising unlabelled data for training
learning models, while our framework is versatile and can be used under both semi-
supervised learning and domain adaptation settings.

• To achieve better robustness and adaptability in the tree parameter estimation task, we
propose the first DNN-based tree parameter estimation framework which estimates
the tree model parameters directly from input point clouds. The use of our data-driven
framework for the tree parameter estimation task allows for a method that can adapt
to the specifics of the training data examples provided.

Extensive experimental results on four different real-world datasets demonstrate the
effectiveness of all our proposed methods, i.e., the handcrafted feature method, the semantic
segmentation model which integrates handcrafted feature with DNN, the semi-supervised
learning and domain adaptation framework, and the DNN-based tree parameter estima-
tion method.

The rest of the paper is organised as follows. In Section 2, we discuss related work.
In Section 3, we introduce our proposed method in detail. Experimental results are pre-
sented in Section 4 and conclusions of our work in Section 5.

2. Related Work
2.1. Tree Parameter Estimation from LiDAR Point Clouds

Three-dimensional forest point cloud data can be used to automatically determine
key inventory metrics at a tree-by-tree level via a variety of different methods, depending
on the resolution and coverage of the data. Over the broad scales and low-resolution
typical of airborne LiDAR where structural characteristics are not directly observable,
tree stem properties may be inferred indirectly via linear model fitting [27], imputation
methods [28] or copulas [29] from the pattern of points present, for example, in the tree
canopy. For high-resolution point clouds in which stem points are directly observable,
parametric model-fitting approaches may be used for various tree parameters such as stem
diameter [30] or stem curve/taper [31]. For very high-resolution point clouds, Quantitative
Structural Models [14] have been used to reconstruct the cylindrical models representing
the stem/main tree branches using non-linear parametric fitting methods. Although these
methods are effective on high-quality, full-coverage scans, for example from tripod-based
Terrestrial Laser Scanning, they can fail to reconstruct regions of the tree containing low-
resolution points or gaps due to occlusions.

Effective use of parametric model-fitting techniques also relies on a good filtering
method for removing non-stem/branch points and other clutter points. Recently, deep
learning methods have been used to apply point-wise semantic segmentation [10,11] into
different tree parts (e.g., main stem, branches, foliage), prior to applying model-fitting in a
two-stage process [10]. This approach works well in some instances, however point-wise
segmentation models typically under-perform towards the upper region of trees, and where
parts become difficult to recognise based on semantic segmentation alone.

2.2. Point Cloud Semantic Segmentation

Recent DNN-based methods in point cloud learning can learn directly from point
clouds: we refer interested readers to [32] for a comprehensive survey. Most point cloud
semantic segmentation methods have been focused on autonomous driving, robotic nav-
igation, and object part segmentation scenarios. In the pioneering work PointNet [17],
Qi et al. use multi-layer perceptrons (MLP) to map each 3D point coordinate into semantics
and use the pooling operator to aggregate the point-wise semantics. Since PointNet only
considers the point-wise and global features while does not capture the local interaction
of points, various subsequent works have proposed strategies for extracting local infor-
mation. In PointNet++ [18], Qi et al. proposed the set abstraction module to capture
information from increasingly larger areas in a hierarchical fashion. Few other methods
voxelise point clouds [19,33] or project 3D points into 2D spherical grids [21,22], such that
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the regular convolutional neural networks (CNN) can be employed. There are also meth-
ods [15,16,20,34,35] that design spatially-deformable convolutional kernels for extracting
information from the irregular point clouds.

2.3. Deep Point Cloud Learning in Forest Inventory

In recent years, following the success of the DNN as a general-purpose method in point
cloud learning tasks, DNN-based point cloud learning methods have been increasingly
explored in forest applications. Chen et al. [36] and Liu et al. [37] proposed methods based
on the popular PointNet [17] and PointNet++ [18] models for tree species classification.
Luo et al. [38] and Song et al. [8] proposed networks based on the EdgeConv operator [39]
for tree point cloud detection and segmentation, respectively. Shen et al. [7] proposed a
tree segmentation method that jointly utilises point cloud pre-partitioning [40], geometric
feature balancing, and PointCNN [16]. Windrim et al. [9] proposed a tree detection and
segmentation framework which first employs Faster-RCNN [41] to detect individual trees
from 2D birds-eye-view images, then uses a voxel-based 3D semantic segmentation method
based on the Fully Convolutional Network [42] to segment the stem and foliage points for
each individual tree.

2.4. Semi-Supervised Learning

In semi-supervised learning, the labelled training data, unlabelled training data,
and test data are assumed to be drawn from the same underlying data distribution. Typ-
ically, the labelled training data are far outnumbered by unlabelled training data. In the
context of tree point cloud semantic segmentation, using semi-supervised learning can be
helpful when it is difficult to annotate an entire segmentation dataset as each tree point
cloud contains as many as tens of thousands to millions of points, while an annotation is
performed point-wise.

The early works in semi-supervised learning used label-propagation, graph regulari-
sation, co-training, etc. [43–47], we refer interested readers to a comprehensive survey [48].
The recent works have been interested in semi-supervised learning for training DNN such
that the heavy labelling demand for training DNN can be substantially alleviated. One
popular class of methods is consistency regularisation [49–54], which applies several dif-
ferent transformations to each unlabelled example and encourages the predictions to be
consistent across the differently transformed examples. The works in [50,52] use the ensem-
bling strategy on the model predictions and model variables for improved regularisation.
More recently, there are several works [49,54–56] that use elaborately designed image data
augmentation schemes during training. Moreover, there are also other works dedicated to
designing pseudo-labelling strategies [57–60].

While most semi-supervised learning methods have been designed for the image
classification task, only a few works [61–64] have sought to aid point cloud semantic
segmentation with semi-supervised learning. In [64], Mei et al. utilise unlabelled data
by enforcing semantic constraints on the same moving object across two adjacent point
cloud video frames. In [63], Jiang et al. utilise the contrastive learning strategy [65] for
training on the unlabelled data. In [61], Cheng et al. use label propagation to assign
pseudo-labels to the points in unlabelled point clouds. In [62], Deng et al. proposed to
generate pseudo-labels for the pre-partitioned geometrically simpler shapes [40] in each
point cloud.

2.5. Domain Adaptation

In this work, we also deal with the domain adaptation setting where the training data
and test data are assumed to be drawn from different underlying distributions. There is an
unlabelled training dataset that is drawn from the same data distribution as the test data (i.e.,
target domain), and a labelled training dataset that is drawn from a different but related data
distribution (i.e., source domain) with the same set of semantic categories. The difference
between the source and target domains is commonly referred to as a distribution mismatch
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or domain gap. In the context of tree point cloud semantic segmentation, domain gap arises
from variation in laser scanning patterns due to different LiDAR types or different tree
datasets collected at different locations of plantation.

Few recent works tackled the problem of domain-adaptive point cloud semantic
segmentation. Yi et al. [66] assume the domain discrepancy is caused by variation in the
LiDAR scanning pattern and employed point cloud shape completion to deal with the
issue. Wu et al. [22] proposed a method to reduce the domain discrepancy by minimising
the geodesic distance [67] and conducting progressive model calibration [68].

2.6. Summary

We summarise in the following the difference and relations between our work and
each of the research areas above, i.e., tree parameter estimation, point cloud semantic
segmentation, semi-supervised learning, and domain adaptation.

• We adopt the stacked cylinder model for tree parameter estimation following the
recent work by Windrim et al. [10] while taking a new avenue for the estimation
approach. Different from existing works which fit each tree example individually,
we propose a deep-learning-based tree parameter estimation model such that we can
improve the estimation accuracy by enabling the model to learn from an entire dataset
instead of one single example.

• Different from the existing works on tree point cloud semantic segmentation which
only use DNNs, we design a handcrafted feature for point cloud semantic segmenta-
tion, while we combine the advantages of both DNN and handcrafted feature in our
overall method to achieve the best performance.

• The existing DNN-based tree point cloud semantic segmentation methods only deal
with the supervised learning setting, while we also utilise unlabelled data under the
semi-supervised and domain adaptation settings to improve segmentation performance.

• Inspired by the recent works in semi-supervised learning [60,61] and domain adapta-
tion [69], we propose a semi-supervised learning and domain adaptation framework
based on the pseudo-labelling strategy to effectively utilise unlabelled data during
training, while we employ the model-ensembling strategy [52] to improve the accuracy
of the pseudo-labels for the tree point cloud segmentation task.

3. Methodology
3.1. Overview

Our goal is to estimate tree stem parameters from LiDAR point clouds, and our
method is a two-step pipeline consisting of segmentation and parameter estimation. In the
segmentation step (Section 3.3), we use our tree point cloud semantic segmentation model
to separate the stem points from the foliage points. In the parameter estimation step
(Section 3.6), we first compute the PCA transform for each tree individually based on the
segmented stem points, then use our parameter estimation model to measure the tree stem
parameters. We illustrate our complete method pipeline in Figure 1.

Additionally, in Sections 3.4 and 3.5, we extend our segmentation step to deal with
situations where labelled training data are limited, and we achieve this goal by designing a
semi-supervised and cross-dataset learning framework which will be introduced in detail
in these two sections. While it is possible to employ semi-supervised learning and domain
adaptation methods for different types of learning tasks, we focus on the segmentation step
in this work.
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Figure 1. Pipeline of our overall method containing point cloud semantic segmentation and tree
parameter estimation. First, we segment the stem points from the input tree point cloud using our
segmentation model, then we compute the PCA transform using the stem points and apply the PCA
transform to the whole input tree point cloud containing both the stem and foliage points. Finally, we
pass the transformed tree point cloud through our DNN-based tree parameter estimation to obtain
the tree parameters.

3.2. Handcrafted Feature

Following the success of general DNN-based point cloud semantic segmentation meth-
ods, several recent works have used DNN models for forest point cloud segmentation [7–9].
However, general point cloud semantic segmentation and tree point cloud semantic seg-
mentation tasks are essentially different since forest point clouds are much more difficult to
annotate and the labelled forest point cloud datasets are much smaller. Therefore, using
DNN-based methods alone may not be enough for learning effective representations from
forest data. To obtain a better representation for the tree point cloud semantic segmentation
task, we proposed a handcrafted feature that characterises the local interaction of points in
an explicit manner. Motivated by our observation that stem and foliage points differ by the
relative position of their neighbours, we design a histogram-based local feature [70,71] that
encodes for each individual point the direction of its neighbour points.

More specifically, given a point coordinate xo = [xo, yo, zo] and the set of its surround-
ing points N (xo) selected by k-NN search in the 3D space, we first compute the orientation
of the vector xn − xo for each neighbor point xn ∈ N (xo) by projecting xn − xo onto each of
the three 2D planes (i.e., xOy, yOz, and zOx) and computing the three orientation angles
corresponding to the three 2D components, i.e.,

α(xn − xo) = φ(yn − yo, xn − xo)

β(xn − xo) = φ(zn − zo, yn − yo) (1)

γ(xn − xo) = φ(xn − xo, zn − zo)

where the function φ(·, ·) : R×R → [0, 2π) computes the angle of the 2D vector given
by its two input variables, i.e., when using the α(xn − xo) = φ(yn − yo, xn − xo) in (1)
as example,

r =
√
(xn − xo)2 + (yn − yo)2 + ε, u =

xn − xo

r
, vs. =

yn − yo

r
φ(yn − yo, xn − xo) =

(
1[v > 0] · 1[u < 0]− 1[v ≤ 0] · 1[u < 0] + 1

)
· π +

(
2 · 1[u ≥ 0]− 1

)
· arcsin v

(2)

where the ε in r is a small positive value used to avoid zero denominator for u and v,
and 1[·] is the binary indicator function.

For each of the three angles α(xn − xo), β(xn − xo), and γ(xn − xo) in (1), we evenly
divide the [0, 2π) interval into B bins and assign the angle to one of the bins. Using the
α(xn− xo) in (1) for example, the index of the bin to assign the angle is computed as follows,

bα(xn − xo) =

⌊
B · α(xn − xo)

2π

⌋
(3)
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where b·c is the floor operator for numbers. Then we compute the number of points
assigned to each bin based on the orientations computed for all xn ∈ N (xo), i.e., ,

Bj
α(xo) = ∑

xn∈N (xo)

1[bα(xn − xo) = j] (4)

where j ∈ {0, ..., B− 1} is the bin index. By the same token, we compute Bj
β(xo) and Bj

γ(xo)

for the other two angles β(xn − xo) and γ(xn − xo) in (1).
Finally, our histogram feature h(xo) is given by the vector of point numbers across all

bins, i.e.,

h(xo) = [B0
α(xo), . . . , BB−1

α (xo), B0
β(xo), . . . , BB−1

β (xo), B0
γ(xo), . . . , BB−1

γ (xo)] (5)

We illustrate our method for computing h(xo) in Figure 2.

(a)

-NN Points of 

(b)

Other Points

2

4

6

Figure 2. A simplified example of how we compute our handcrafted feature h(xo) for each point xo,
we use an arbitrary one of the three 2D planes (i.e., xOy, yOz, and zOx) in the example. (a) We first
divide the neighbourhood of the point xo into four directional bins represented by the four quadrants
i, ii, iii, and iv, respectively, then find the k-NN neighbour points of xo. We use k = 16 in this example.
(b) We obtain the histogram feature h(xo) by computing the number of k-NN points fallen within
each directional bin indicated by the quadrant number.

The histogram feature h(xo) only contains the relative position information of points
and does not utilise the original 3D point coordinates, while we empirically found it is
beneficial to incorporate the point coordinates into our local feature. More specifically, we
improve the descriptiveness of our local feature simply by concatenating the coordinate xo
with the corresponding local feature h(xo), resulting in a feature dimension of 3B + 3 for
each point. For clarity, we denote the improved feature as h̃(xo), i.e.,

h̃(xo) = [xo, h(xo)] (6)

When using the handcrafted feature h̃(xo) alone as the segmentation method and not
integrating with the DNN-based method, we train a simple multi-layer perceptron (MLP)
classifier to predict the segmentation results. In this way, we achieve results on par with
popular DNN-based segmentation methods. In Section 3.3, we will combine the advantage
of both our handcrafted feature and DNN-based methods for improved performance.

3.3. Point Cloud Segmentation Model

In this subsection, we introduce our backbone semantic segmentation model which
we use for all the learning settings involved in this work, i.e., supervised learning, semi-
supervised learning, and domain adaptation. Inspired by the success of existing
works [23–26] which integrate DNN with a handcrafted feature for the image recogni-
tion and point cloud recognition tasks, we integrate our handcrafted local feature with
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a DNN model for the point cloud semantic segmentation task. In this way, our back-
bone point cloud semantic segmentation model can combine the benefits of both types
of methods.

For the DNN component in our point cloud semantic segmentation model, we use
the popular PointNet++ [18] model. In the encoder network of PointNet++, the Farthest
Point Sample algorithm [72] is used to divide the points into local groups and several set
abstraction modules are used to gradually capture semantics from a larger spatial extent.
Then in the decoder, an interpolation strategy based on the spatial distance between point
coordinates is used to propagate features from the semantically rich sampled points to all
the original points.

To integrate our handcrafted feature with the PointNet++ model, for each individual
point, we concatenate our handcrafted feature vector with the output feature vector of the
last feature propagation layer in the decoder component of PointNet++. We illustrate our
backbone point cloud semantic segmentation model in Figure 3.

PointNet++ Feature
Extractor

Handcrafted Feature
Extractor

Point-wise MLP  
Classifier (128, 2)

Tree Point Cloud 

Handcrafted Feature 

DNN Feature

Softmax Scores 

SA 1
(32, 32, 64)

SA 2  
(64, 64, 128)

SA 3  
(128, 128, 256)

SA 4  
(256, 256, 512)

FP 1 
(256, 256)

FP 2  
(256, 256)

FP 3  
(256, 128)

FP 4  
(128, 128, 128)

SA FPSet Abstraction Layer Feature Propagation Layer

PointNet++ Feature Extractor

(a)

(b)

Figure 3. Our backbone model for point cloud semantic segmentation in which we integrate our
handcrafted feature into the PointNet++ model. (a) Overview of our backbone model, where we
use a point cloud with 4096 points as an example. We first use the handcrafted and PointNet++
feature extractors to produce two feature matrices H and F, respectively, where each feature matrix
is a set of point-wise features across all points. Then we merge the features H and F through the
matrix concatenation operator along the feature dimension, which is denoted as the ‘⊕’ symbol
in the figure. We feed the merged point-wise features H ⊕ F to a point-wise MLP classifier with
two fully-connected layers (128 and 2 channels, respectively) and a softmax layer to produce the
segmentation predictions P for each point. (b) Details of the PointNet++ feature extractor. We use
4 set abstraction (SA) layers and 4 feature propagation (FP) layers, and we specify the number of
channels we use for the point-wise MLP contained in each SA and FP layer.
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3.4. Learning Framework for Semi-Supervised Point Cloud Semantic Segmentation

To address the issue of limited labelled data for training the semantic segmenta-
tion model, we utilise unlabelled examples for training the model by employing semi-
supervised learning. We propose a learning framework based on pseudo-labelling and
model ensembling to utilise the unlabelled training data.

Formally, we denote the labelled point cloud dataset as X l = {(Xl
i , Yl

i)}
Nl
i=1, where Xl

i ∈
RPi×3 is a labelled example with Pi being the number of points in Xl

i and Yl
i ∈ {1, . . . , K}Pi

is the set of semantic labels corresponding to each point in Xl
i with K being the total number

of semantic classes.
Inspired by the model ensembling and distillation strategy [52], in our learning frame-

work, we employ two point cloud semantic segmentation models (i.e., one student model
and one teacher model) with an identical architecture. During the training process, we
first use the teacher model to produce pseudo-labels Ŷu

i for each unlabelled example Xu
i

and train the student model on both the labelled examples and the pseudo-labelled ex-
amples, then update the variables in the teacher model by taking Exponential Moving
Average (EMA) of the variables in the student model. More specifically, we denote the
student model function as F (·, ΘF ) : RN×3 → RN×K, where the output is the prediction
probability matrix over all points and semantic classes and ΘF = {θ j

F} is the set of model
variables with j being the layer index of DNN model. Similarly, we use F̃ (·, ΘF̃ ) to denote
the teacher model function. We also use the indices p and k to indicate the p-th point and
the k-th semantic class in the prediction probability matrix, respectively. Then we formulate
our pseudo-labelling strategy, overall training loss function, and EMA update strategy for
the teacher model as Equations (7)–(9) as follows,

ŷu
i,p = arg max

k∈{1,...,K}
[F̃ (Xu

i ; ΘF̃ )]p,k, ∀i, p (7)

L =
1
Nl

Nl

∑
i=1
LCE(F (Xl

i ; ΘF ), Yl
i) + w · 1

Nu

Nu

∑
i=1
LCE(F (Xu

i ; ΘF ), Ŷu
i ) (8)

θ
j
F̃ ← ηθ

j
F̃ + (1− η)θ

j
F , ∀j (9)

where ŷu
i,p ∈ R is p-th element in the pseudo-label vector Ŷu

i (i.e., the pseudo-label predicted
by the teacher model for the p-th point of Xu

i ), LCE(·, ·) denotes the Cross-Entropy loss
function, w is a weight factor for balancing the two loss terms, and η is a constant factor
called momentum that is set to 0.97 in our experiments.

The main issue with the pseudo-labelling strategy is the quality of pseudo-labelled
examples as the lack of variety can harm model performance. Inspired by [73], we propose
a pseudo-label selection strategy based on the entropy ranking of the individual points
to select the pseudo-labelled points in each point cloud that are beneficial for training
the segmentation model. More specifically, for each Xu

i , we compute the entropy of each
individual point and select the 80% points with higher entropy as the pseudo-labelled
points. Therefore, we denote the updated (Xu

i , Ŷu
i ) with only the selected points and their

corresponding pseudo-labels as (X̃u
i , Ỹu

i ). In this way, we are selecting the hard examples
which are better for the variety of the training dataset. We illustrate our complete learning
framework for semi-supervised and cross-dataset point cloud semantic segmentation
in Figure 4.
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Figure 4. Our learning framework for dealing with the semi-supervised learning and domain
adaptation settings. We use the semi-supervised learning setting as an example in this figure. We
first produce pseudo-labels for the unlabelled example Xu

i using the teacher model F̃ , then use the
entropy ranking strategy to obtain the pseudo-labelled point cloud example (X̃u

i , Ỹu
i ) which only

contains the selected points and their corresponding pseudo-labels. During the training process, we
update the student model F by training on both the labelled and pseudo-labelled examples, while
we update the teacher model F̃ by taking the EMA of the student model. We use only the student
model during testing.

3.5. Extending Semi-Supervised Learning Framework to Domain Adaptation

In practice, aside from the shortage in labelled training data, we often face situations
where the training data and test data are collected from different scenes and do not follow
the same data distribution. For example, in the forest inventory scenario, the training and
test data can be of different tree species, or collected using different types of LiDAR devices
or from different sites. In learning theory, this is known as the “domain adaptation” or
cross-dataset generalisation problem, and the data distributions of the training and test data
are called the source domain and the target domain, respectively. The domain adaptation
problem is usually tackled by exploiting the training data from the target domain, while we
tackle the more challenging setting of unsupervised domain adaptation where the target
training data are unlabelled. Using unlabelled target training data is more advantageous
than using labelled training data in real-world applications since it saves time and the cost
of annotation.

For the cross-dataset point cloud semantic segmentation task, we can extend our semi-
supervised learning framework in Section 3.4 to the domain adaptation setting by simply
replacing the training datasets, i.e., we replace the labelled dataset X l and unlabelled
dataset X u with the labelled source dataset X s = {(Xs

i , Ys
i )}

Ns
i=1 and the unlabelled target

dataset X t = {Xt
i}

Nt
i=1, respectively. Different from the X l and X u in semi-supervised

learning which are assumed to be drawn from the same data distribution, the X s and X t in
domain adaptation are drawn from different data distributions.

3.6. Tree Parameter Estimation Model

Existing works in tree parameter estimation mainly fit a parametric model to char-
acterise the tree stem geometry for each tree point cloud individually. In contrast to the
existing works, we propose a data-driven method for tree parameter estimation based on
DNN to predict the cylindrical parameters of the tree stem [10] while being able to learn
from the variety of data for improved robustness and adaptability to geometric variations
across different individual trees.

In particular, our DNN tree parameter estimation method consists of three components,
splitting the point cloud into sub-clouds based on height, extracting features from each sub-
cloud, and feature processing. Each individual tree point cloud Xi is first passed through
the point cloud division component, where we first divide the height range from 0 to 50 m
into M segments, then group the subset of points (both stem and foliage points) fallen into
the m-th height segment as the tree point cloud segment Xm

i . Here we are overloading the
denotation by using the superscript of Xi to indicate the tree segment index instead of the
dataset as in Sections 3.4 and 3.5. Then in the segment-wise feature extraction component,
we use a PointNet [17] feature extractor on each tree point cloud segment individually to
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extract segment-wise semantics, while the PointNet feature extractor for each individual
tree segment has a shared set of model parameters. The features extracted across the
segments of an individual tree naturally form a sequence. Finally, in the feature processing
component, we employ a Long Short-Term Memory (LSTM) [74] model to process the
sequential features across all the tree segments {Xm

i }M
m=1 and predict the tree parameters

for each segment, i.e., the planar center coordinates {(xm
i , ym

i )}M
m=1 of the stem segments

along the X- and Y- axes and the stem segment radii {rs
i }M

m=1. For the ease of denotation,
we write the tree parameters xm

i , ym
i , and rm

i collectively as vm
i .

Inspired by the recent works in point cloud object detection [75–77], for estimating
the coordinates xm

i and ym
i , we let our tree parameter estimation model predict the residual

between (xm
i , ym

i ) and the point centroid (x̄m
i , ȳm

i ) of each point cloud segment instead of
directly predict (xm

i , ym
i ). When computing each centroid (x̄m

i , ȳm
i ), we first compute the

initial centroid x̄m
o,i, ȳm

o,i by simply averaging the X- and Y-coordinates of the points within
the corresponding point cloud segment, then we evenly divide the xOy-plane centred
on x̄m

o,i, ȳm
o,i into 16 directional bins. Finally, we compute (x̄m

i , ȳm
i ) by randomly sampling

a maximum of 4 points from each directional bin and taking the average on the X- and
Y-coordinates of the sampled points. By refining x̄m

o,i, ȳm
o,i into x̄m

i , ȳm
i in this way, we can

reduce the errors of the initial centroids caused by sampling bias during LiDAR scanning.
Therefore, we formulate our total loss function across all the tree segments as follows,

Lparam =
1

NM

N

∑
i=1

M

∑
m=1
Lhuber

(
Rm ◦ P(Xm

i ; ΘP , ΘR), vm
i − cm

i
)

(10)

where cm
i = [x̄m

i , ȳm
i , 0] is the centroid coordinate vector extended by an additional zero to

match the dimension of vm
i , N is the number of tree point clouds in the dataset, Lhuber(·, ·)

is the Huber loss function with the δ coefficient set to 0.01, P(·; ΘP ) and Rm(·; ΘR) are
the model functions of the PointNet feature extraction component and the LSTM feature
processing component, respectively. P(·; ΘP ) maps each point cloud segment into a D-
dimensional feature vector while each Rm(·; ΘR) maps its input features into the tree
parameters. We illustrate our tree parameter estimation model in Figure 5.

LSTM Unit 

Feature Extraction
Component 

Cylinder Parameters 

Point Cloud
Splitting

Component

Tree Point
Cloud 

Sub-cloud 

Feature Extraction
Component 

Feature Extraction
Component 

LSTM Unit 

LSTM Unit 

Sub-cloud 

Sub-cloud 

Cylinder Parameters 

Cylinder Parameters 

Feature Processing
Component

Figure 5. In our tree parameter estimation model, we use only three height segments as an example
for simplicity. First, we split the input point cloud X into the different sub-clouds X1, X2, and X3

by height segments. Then we pass each point cloud segment through the point cloud feature
extraction component P(·; ΘP ) to produce the features for each height segment. Finally, we employ
an LSTM [74] model to process the features of all three sub-clouds and output the cylinder parameters
for each height segment.

In addition, we also use a data augmentation strategy during the training process to
improve the robustness of our tree parameter estimation method. For each Xi, we apply
a rotation with random angle along the vertical Z-axis to the whole point cloud Xi while
we also apply the same rotation to the xm

i and ym
i coordinates in each vm

i across all m. We
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denote this example-specific rotation operator as ϕi(·). Therefore, by incorporating our
data augmentation strategy into the training process, our loss function in (10) is updated as,

Lparam =
1

NM

N

∑
i=1

M

∑
m=1
Lhuber

(
Rm ◦ P(ϕi(Xm

i ); ΘP , ΘR), ϕi(vm
i − cm

i )
)

(11)

Note in (11) that our data transform ϕi(·) works differently for Xm
i and vm

i since the Z-
coordinates in Xm

i are replaced by the radius in vm
i , while we write ϕi(·) as the same type

of transform for both Xi and vi for the ease of denotation. We only use random rotation for
ϕi(·) during the training process and we use the identity operator for ϕi(·) during testing.

In addition, we also propose a simple tree point cloud semantic segmentation model
which is induced from our tree parameter estimation model. Intuitively, for each cylin-
der segment characterised by the parametric tree model, we classify a point within the
corresponding point cloud segment as a stem if the point falls within the interior of the
cylinder segment, otherwise we classify the point as foliage. More specifically, given a
tree stem segment with parameters (xm

i , ym
i , rm

i ) and a point (x, y) from the corresponding
point cloud segment, we classify (x, y) as stem if it falls within a distance threshold to
(xm

i , ym
i ), i.e.,

(x− xm
i )

2 + (y− ym
i )

2 ≤
(
rm

i (1 + ζ)
)2 (12)

where ζ is a positive coefficient we use to improve the robustness of the model. We name
this induced tree point cloud semantic segmentation model the cylinder segmentation
model. Following the procedure of our tree parameter estimation method, we use the
PCA-transformed points in our cylinder segmentation.

4. Experimental Results and Discussion
4.1. Datasets

Experiments were performed using point cloud data taken from a variety of forest
types using both airborne and terrestrial laser scanning. Airborne datasets were captured
using a Reigl VUX-1 scanner mounted to a helicopter that flew approximately 60–90 m
above the forest canopy, capturing data at approximately 300 to 700 points per m2. Ground-
based datasets were captured using a mobile back-pack mounted Emesent Hovermap
scanner, capturing at approximately 8000 points per m2. Each forest scan was split into
per-tree point clouds based on the method described in [10], for individual tree detection.
Four different datasets of trees were compiled:

• Tumut: Mature Radiata pine trees from a forest outside Tumut, NSW, Australia
captured using airborne scanning.

• HQP: Caribbean Pine spp. trees from a commercial plantation in Queensland, Aus-
tralia, captured using mobile ground-based scanning.

• ct03: Commercial plantation in Tasmania, Australia, captured using mobile ground-
based scanning

• DogPark: Recreational forest (various species) in Rotorua, New Zealand, captured
using mobile ground-based scanning.

Ground-truth per-point annotation/labelling: Each point in each per-tree point cloud
was manually labelled as being either part of the main tree stem (including stem splits
and forks) or tree foliage, using the selection tools in the software package Meshlab (Ver-
sion 2016.12, P. Cignoni, https://www.meshlab.net/ (accessed on 1 January 2023)). The
resulting ground truth labels were used for training and validation in the experiments
described below.

We use the four datasets for both the point cloud semantic segmentation task and
the tree parameter estimation task in our experiments. The trees in the four datasets have
significant intra-dataset variations in geometry which makes both semantic segmentation
and tree parameter estimation challenging, while the trees also have clear inter-dataset
differences caused by the different laser scanning patterns and different tree species which

https://www.meshlab.net/
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puts an additional challenge to cross-dataset semantic segmentation. In the cross-dataset
point cloud semantic segmentation task, our four datasets lead to 12 different cross-dataset
scenarios. We visualise some tree point cloud examples from each dataset in Figure 6.

Tumut HQP ct03 DogPark

Figure 6. Visualisation of some tree point clouds from our Tumut, HQP, ct03, and DogPark datasets.
Best viewed in colour.

We split each of the four datasets into a training set and a validation set. The numbers
of training and validation examples in each dataset are given in Table 1.

Table 1. The number of training and validation tree point cloud examples in each of our four datasets.

Dataset Tumut HQP ct03 DogPark

Training 60 86 17 30
Validation 30 40 10 20

For the semi-supervised and cross-dataset semantic segmentation tasks, we reorganise
the training sets in the following ways. In the semi-supervised learning setting, for each of
the four datasets, we select 5 training examples as the labelled examples and use the rest of
the training examples as the unlabelled examples. In the domain adaptation setting, we
use all the labelled examples in the source training set while we discard the labels of the
target training examples and use them as unlabelled examples.
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4.2. Experimental Setup
4.2.1. Point Cloud Semantic Segmentation

(i) Data Pre-processing and Data Augmentation
We normalise each point cloud example into the unit 3D sphere as following the

standard practice in [17]. For each iteration during both the training and testing processes,
we randomly sample 4096 points from each point cloud. During the training process,
we also apply data augmentation to each training point cloud example by using random
rotation along the vertical Z-axis and adding a random noise variable to each of the three
coordinates of each individual point. We sample each random noise variable from the 1D
Gaussian distribution with a mean of 0 and a standard deviation of 4× 10−4.

(ii) Model Configuration
We jointly use a PointNet++ [18] semantic segmentation network and our handcrafted

local feature in our backbone model for point cloud semantic segmentation. For Point-
Net++, we use the original network architecture while we set the ball query radius to 0.5
times the default value at each set abstraction layer. For our handcrafted feature, we set
the neighbourhood size k to 16 for the k-NN query and set the number of bins b to 24. We
empirically found these hyper-parameters yield the best results.

(iii) Experimental Details
We use the Adam optimiser [78] with a momentum of 0.9 when training each semantic

segmentation model. We train each model for 5000 iterations with the constant learning rate
of 1× e−3 and we use a batch size of 10. In the semi-supervised learning and domain adap-
tation settings which involve the additional unsupervised learning objective, the weight w
on the unsupervised loss term is kept at 0 over the first 4000 training iterations and linearly
increases to 1 between the 4000th and 4100th iterations. Our method is implemented in
Tensorflow and trained on a work station with one NVIDIA GTX 1080Ti GPU.

(iv) Baselines
We compare the performance of our backbone model with the popular DNN models

PointNet [17] and PointNet++ [18] as well as the segmentation method which only uses
our handcrafted feature. In the method based solely on our handcrafted feature, we use a
point-wise MLP with a single hidden layer of 128 channels. We also integrate our hand-
crafted feature with the PointNet semantic segmentation network in a similar fashion to
our backbone model using PointNet++ as an additional baseline.

(v) Evaluation Criterion
We use two different types of Intersection-over-Union (IoU) metrics as our perfor-

mance indicators, i.e., the overall IoU and the average IoU over per-height segments.
For the overall IoU, we simply compute the IoU over the stem points of each entire tree
point cloud. For the average IoU over height segments, we first divide the stem part of the
point cloud by height segment in the same fashion as in Section 3.6 and compute the IoU
for each segment individually, then we average the IoU over the non-empty segments that
each contains at least one stem point. We observed that in some datasets capture using
terrestrial LiDAR devices (e.g., HQP), the stem points are plenty and dense towards the
bottom while few and sparse towards the tip. The issue with this point sampling bias is
that the amount of stem points near the bottom is more than necessary for tree parameter
estimation while the stem points near the tip are insufficient and makes tree parameter
estimation difficult. Therefore, we use the average IoU over height segments as a fairer
performance metric to indicate how each segmentation method performs across different
height segments. For ease of narration we write our overall IoU and average IoU over
height segments as IoU O. and IoU Seg., respectively.

During the testing process, for each validation point cloud example, we repetitively
sample points from the point cloud until each point is sampled 15 times on average, which
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produces multiple down-sampled point clouds (4096 points in each) of the original one.
For example, given a point cloud with 10,000 points, we sample 4096 points each time 37
times, producing 37 down-sampled point clouds while the average number of sampling
per point is 15.16. After sampling, we feed each of the multiple down-sampled point
clouds into the trained segmentation model for inference which produces an average of
15 segmentation predictions per point. To aggregate the different predictions across the
down-sampled point clouds, we use a simple voting strategy to determine the semantic
class for each individual point, i.e., the point is determined to be a stemmed point if no
less than 50% of the predictions on this point are stem, otherwise the point is determined
to be a foliage point. By our voting strategy, we not only can obtain the segmentation
predictions on all the points in each validation point cloud example, but also can improve
the segmentation performance.

Additionally, for each of our four datasets, we create three different training and
validation splits with differently grouped point cloud examples while the numbers of
training and validation examples are the same as in Table 1, and we average the testing IoU
over the three different validation sets for fair comparison.

4.2.2. Tree Parameter Estimation

(i) Tree Parameter Generation
We employ the cylinder model fitting method proposed by Windrim et al. [10] to

generate the cylinder parameters xi, yi, and ri for each height segment in each tree point
cloud. In particular, for each tree, we first use the stem points predicted by our seman-
tic segmentation model (PointNet++ with the handcrafted feature) to perform Principle
Component Analysis (PCA), then use the PCA components of the predicted stem points
to transform the ground-truth stem points. Finally, we apply the fitting method in [10] to
the PCA-transformed ground-truth stem points. Note that for each tree there are height
segments above the tree tip which results in empty tree point cloud segments without
points, and we set the xi, yi, and ri to zeros for these empty segments.

(ii) Data Pre-processing and Data Augmentation
We follow the same data pre-processing scheme and data augmentation strategy as

we use for the point cloud semantic segmentation task, except that we do not normalise
the point clouds for the tree parameter estimation task and we rotate both the point cloud
and the segment-wise stem parameters along the vertical Z-axis when augmenting each
training example as mentioned in Section 3.6.

(iii) Model Configuration
In our tree parameter estimation model, we use the encoder network of the Point-

Net [17] semantic segmentation model (i.e., from the input to the pooling layer of the
PointNet) as the feature extraction component and employ a Bidirectional LSTM [79] as
the feature processing component which can better exploit the sequential property of the
tree stem parameters than the original LSTM [74]. We use the original PointNet encoder
network and we set the number of channels in each LSTM unit to 128. For our cylinder seg-
mentation model in Section 3.6, we select the ζ coefficient from {0.5, 0.6, 0.7, 0.8} depending
on the dataset.

(iv) Experimental Details
The experimental details for training our tree parameter estimation model are the

same as those for training our point cloud semantic segmentation model, except that we
train the tree parameter estimation model for 2000 iterations while the learning rate starts
at 2 × 10−3 and decays to 2 × 10−4 at the 1600-th iteration.
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(v) Evaluation Criterion
We use both the testing IoU of our cylinder segmentation model and the `2 regression

error of the predicted cylinder centres to evaluate our tree parameter estimation method,
while we evaluate our method in the supervised learning setting. For the evaluation using
IoU, we compute the semantic predictions of all points for each validation example and
compare the segmentation result against the supervised semantic segmentation meth-
ods. Following our evaluation criterion for the semantic segmentation, we use the same
three training and validation splits for each of the four datasets and average the testing
results over the three validation sets, while we also use both the IoU O. and IoU Seg. to
evaluate performance.

4.3. Results of Semantic Segmentation Experiments
4.3.1. Supervised Semantic Segmentation

We present the supervised semantic segmentation results of our method and the
baseline methods in Table 2. The four datasets Tumut, HQP, ct03, and DogPark are denoted
as T , H, C, and D, respectively. We use PN, PN2, and H to denote PointNet, PointNet++,
and our handcrafted feature, respectively, and use PN + H and PN2 + H to denote PointNet
with handcrafted feature and PointNet++ with handcrafted feature, respectively.

Our handcrafted feature when used in combination with a simple MLP with one
hidden layer, achieves the average IoU O. and IoU Seg. of 82.26% and 66.67%, respectively,
which surpass the PointNet baseline by 6.98% and 5.47%, respectively. This demonstrates
the effectiveness of our handcrafted feature method. By combining our handcrafted feature
with PointNet++, we achieve the best average IoU O. and IoU Seg. of 87.15% and 75.76%,
which improve the PointNet++ baseline by 0.70% and 0.89%, respectively. Furthermore,
when combining our handcrafted feature with PointNet as an alternative to our baseline
segmentation model, we achieve an average IoU O. and IoU Seg. of 85.38% and 72.72%,
which improves our handcrafted feature baseline by 3.12% and 6.05%, respectively. These
results indicate it is beneficial to jointly utilise DNN and our handcrafted feature for the tree
point cloud semantic segmentation task, while our handcrafted feature method is generic
and can be combined with different DNN point cloud semantic segmentation models.

Table 2. The overall IoU (IoU O.) and average IoU over height segments (IoU Seg.) of the point cloud
semantic segmentation methods under the supervised setting. We report the average results and
standard deviations over the three different training and validation splits for each dataset and we
highlight (in bold) the best result across different methods on each dataset.

Method Tumut HQP ct03 DogPark Avg.

IoU O.

PN 58.35± 2.49 86.77± 6.72 78.51± 2.19 77.48± 2.58 75.28
PN2 81.08± 1.45 88.82± 7.99 86.68± 2.66 89.22± 1.24 86.45

H (Ours) 67.47± 3.05 87.11± 7.04 84.46± 1.27 89.99± 0.77 82.26
PN + H (Ours) 75.81± 2.57 88.68± 7.75 85.25± 1.47 91.77± 0.07 85.38

PN2 + H (Ours) 81.96± 2.02 88.81± 7.74 87.03± 2.31 90.79± 1.89 87.15

IoU Seg.

PN 53.87± 1.34 73.86± 3.63 61.42± 2.87 55.64± 4.84 61.20
PN2 75.16± 1.61 73.57± 5.25 73.49± 2.76 77.27± 0.93 74.87

H (Ours) 59.46± 1.93 69.52± 3.71 63.36± 1.76 74.34± 2.22 66.67
PN + H (Ours) 69.00± 1.55 74.93± 6.58 69.11± 1.61 77.83± 1.15 72.72

PN2 + H (Ours) 76.44± 1.47 73.81± 4.48 73.92± 2.36 78.86± 1.21 75.76

4.3.2. Semi-Supervised Semantic Segmentation

We further evaluate how our semi-supervised learning and domain adaptation frame-
work for point cloud semantic segmentation performs under the semi-supervised learning
setting. We compare our semi-supervised learning method with the supervised baselines
which are only trained on 5 labelled training examples for each dataset and each split. The
results are presented in Table 3. When using our semi-supervised learning method with
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PointNet++ as the backbone model, we achieve the over IoU O. and IoU Seg. of 85.31%
and 73.11%, which improve the supervised PointNet++ baseline by 1.11% and 0.81%, re-
spectively. When using our backbone segmentation model which combines PointNet++
with our handcrafted feature, we further improve the IoU O. and IoU Seg. of our semi-
supervised method 86.50% and 75.10%, which also surpassed the supervised backbone
using PointNet++ and our handcrafted feature by 1.27% and 1.14%, respectively. These
results demonstrate the effectiveness of our semi-supervised learning framework while it
is flexible with different backbone segmentation models.

Table 3. The overall IoU (IoU O.) and average IoU over height segments (IoU Seg.) of the point
cloud semantic segmentation methods under the semi-supervised learning setting, where each
training set has only 5 labelled examples. We compare the results of our semi-supervised methods
(denoted as Semi.) using two different backbone models with the supervised baselines (denoted as
Sup.). We report the average results and standard deviations over the three different training and
validation splits for each dataset and we highlight (in bold) the best result across different methods
on each dataset.

Method Tumut HQP ct03 DogPark Avg.

IoU O.

Sup. (PN) 54.34± 3.72 82.20± 5.83 74.71± 2.33 70.26± 2.00 70.37
Sup. (H) 65.90± 2.48 86.41± 6.71 82.27± 0.32 86.70± 2.58 80.32

Sup. (PN + H) 68.91± 1.17 86.92± 7.56 83.62± 1.60 86.52± 1.84 81.49
Sup. (PN2) 77.83± 3.14 87.65± 6.76 85.56± 3.96 85.75± 1.66 84.20

Sup. (PN2 + H) 78.04± 3.64 88.41± 7.49 86.66± 2.83 87.80± 2.95 85.23

Semi. (PN2) 78.50± 3.24 88.14± 7.60 86.30± 2.98 88.31± 1.11 85.31
Semi. (PN2 + H) 79.89± 2.20 88.42± 7.54 86.87± 2.70 90.82± 0.51 86.50

IoU Seg.

Sup. (PN) 51.31± 0.50 65.84± 5.44 56.73± 5.64 47.71± 4.61 55.40
Sup. (H) 58.26± 1.70 68.58± 2.08 61.07± 5.39 69.43± 2.72 64.33

Sup. (PN + H) 63.12± 2.01 69.34± 6.61 66.91± 7.12 70.39± 1.04 67.44
Sup. (PN2) 71.98± 3.31 72.16± 2.60 72.78± 3.47 72.28± 3.54 72.30

Sup. (PN2 + H) 72.42± 3.20 72.33± 4.45 75.08± 3.63 76.02± 3.52 73.96

Semi. (PN2) 71.84± 3.25 70.89± 3.61 73.06± 4.00 76.67± 0.45 73.11
Semi. (PN2 + H) 73.72± 1.38 72.54± 4.63 74.60± 4.07 79.53± 1.05 75.10

Additionally, there are also improvements when using our handcrafted feature for
the supervised methods. With only five labelled training examples, in terms of both the
IoU O. and IoU Seg., the supervised baseline using our handcrafted feature and a simple
MLP outperforms the supervised PointNet baseline, while the two baseline methods
which combine our handcrafted feature with either PointNet or PointNet++ also achieve
significant improvements compared with the supervised baselines using only PointNet,
PointNet++, or our handcrafted feature. The performances of the supervised methods
using only 5 training examples are consistent with those using all training data under the
fully supervised setting.

4.3.3. Cross-Dataset Semantic Segmentation

We also conduct experiments to study how our semi-supervised and cross-dataset
learning framework deals with the cross-dataset setting. We present our results in Table 4,
where we report the average results across the 12 cross-dataset scenarios in Table 4. In
addition to the supervised baselines which are trained only on the labelled source datasets,
we also compare our methods with the supervised baselines trained on the labelled target
dataset which we use to indicate the upper limit of the performance our cross-dataset
learning method can achieve. We also report more detailed results in each of the 12
cross-dataset scenarios in Table A1 in Appendix A.2.
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Table 4. The overall (IoU O.) and average IoU over height segments (IoU Seg.) of the point cloud
semantic segmentation methods averaged over the 12 cross-dataset scenarios. We compare our cross-
dataset semantic segmentation methods (denoted as C.D.) with the supervised baselines trained only
on the labelled source training set (denoted as Src.) and the supervised baselines trained only on the
labelled target training set (denoted as Tgt.). Both Src. and Tgt. baselines are evaluated on the target
validation set. All the experiments are performed on the three different training and validation splits
for each cross-dataset scenario and we highlight the best results (in bold).

Method IoU O. IoU Seg.

Src. (PN) 54.92 38.53
Src. (H) 71.74 53.62

Src. (PN + H) 70.73 55.90
Src. (PN2) 76.92 63.31

Src. (PN2 + H) 80.27 67.49

C.D. (PN) 67.40 50.19
C.D. (PN + H) 77.06 60.98

C.D. (PN2) 81.00 66.36
C.D. (PN2 + H) 83.66 69.93

Tgt. (PN2) 86.45 74.87
Tgt. (PN2 + H) 87.15 75.76

In terms of both our performance indicators, each of our four cross-dataset methods
achieves significant improvement compared with the source-supervised baseline using
the same backbone model. When using our backbone model which combines PointNet++
with our handcrafted feature, our cross-dataset method achieves the best IoU O. and IoU
Seg. of 83.66% and 69.93%, respectively, which improves the source-supervised baseline
using the same backbone model by 3.39% and 2.44%, respectively. These results indicate
that our semi-supervised and cross-dataset learning framework effectively bridges the
performance gap between the segmentation methods only using labelled source examples
and the segmentation methods with access to the labelled target examples in the ideal case.

In consistency with our results under the fully supervised setting and the semi-
supervised setting, the source-supervised baseline using our handcrafted feature performs
better than the source-supervised PointNet baseline, while we can achieve significant perfor-
mance improvements in the source-supervised baselines by incorporating our handcrafted
feature with PointNet and PointNet++.

4.4. Results of Tree Parameter Estimation Experiments

We evaluate the results of our tree parameter estimation method in two complementary
ways under the supervised learning setting. On the one hand, we compare the segmentation
performance of our cylinder segmentation model with that of our best-supervised segmen-
tation baseline using PointNet++ and our handcrafted feature, as we use the predictions of
the supervised segmentation baseline to compute the PCA transform for the input point
clouds into our tree parameter estimation model. On the other hand, we computed the av-
erage distance between the cylinder centre coordinates xm

i , ym
i predicted by our method and

those obtained using the well-established non-DNN-based method [10], and the average
difference in the cylinder radii rm

i between the two methods.
We report the segmentation results in Table 5, where we compare two variants of

our cylinder segmentation model, i.e., we use the cylinder parameters directly produced
by the non-DNN method [10] for one of the variants while use the output of our DNN-
based tree parameter estimation model for the other. We call these two variants Cylinder
(Non-DNN) and Cylinder (DNN), respectively. Our two cylinder segmentation models
are outperformed by the baseline method using PointNet++ and our handcrafted feature
in terms of the IoU O. However, in terms of the IoU Seg., both our cylinder segmentation
models achieve an average result of 76.43%, which surpasses the baseline by 0.67%, while
our Cylinder (DNN) outperforms the baseline on three of the four datasets. Our two
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cylinder segmentation models perform comparably in terms of both IoU O. and IoU Seg.,
while Cylinder (DNN) performs slightly better than Cylinder (Non-DNN).

Table 5. We compare the overall IoU (IoU O.) and average IoU over height segments (IoU Seg.)
between two variants of our cylinder segmentation model and our best-supervised backbone segmen-
tation model under the supervised setting. Our cylinder (Non-DNN) variant is based on the cylinder
parameters directly produced by the non-DNN fitting method in [10], while our cylinder (DNN) vari-
ant is based on the cylinder parameters estimated using our DNN-based tree parameter estimation
model. We report the average results and standard deviations over the three different training and
validation splits for each dataset and we highlight the best result across different methods on each
dataset (in bold).

Method Tumut HQP ct03 DogPark Avg.

IoU O.

PN2 + H 81.96± 2.02 88.81± 7.74 87.03± 2.31 90.79± 1.89 87.15

Cylinder
(Non-DNN) 71.94± 2.65 87.98± 7.53 85.87± 4.30 87.00± 2.43 83.29

Cylinder
(DNN) 79.73± 1.78 88.66± 8.11 84.40± 3.92 81.94± 2.45 83.68

IoU Seg.

PN2 + H 76.44± 1.47 73.81± 4.48 73.92± 2.36 78.86± 1.21 75.76

Cylinder
(Non-DNN) 75.41± 1.27 76.77± 4.71 76.10± 2.35 77.44± 1.06 76.43

Cylinder
(DNN) 77.15± 1.75 80.27± 4.87 76.04± 4.26 72.24± 2.29 76.43

Alternatively, we use the regression errors of our tree parameter estimation method
for evaluation, i.e., we compute the average `2 error in the cylinder centre coordinates and
the average `1 error in the cylinder radii. To further evaluate how our method performs
at different segments of the trees, we compute the average errors at several different
height ranges. We report the validation errors on each of the four datasets in Table 6.
When varying the height range from 0 ∼ 10 m to 0 ∼ 50 m, Our method achieves the
average centre coordinate error of 0.098 to 0.158 and the average radius error of 0.021 to
0.074. The estimated parameters of our DNN-based tree parameter estimation model are
comparable with those produced by the well-established traditional method [10], which
together with the segmentation results of our Cylinder (DNN) clearly demonstrate the
efficacy of our method.

Table 6. The average `2 error (in meter) in cylinder centre coordinates and the average `1 error (in
meter) in cylinder radii of our DNN-based tree parameter estimation method. We report multiple
results for each dataset by varying the height range.

Range Tumut HQP ct03 DogPark Avg.

Error in xy
(in meter)

0 ∼ 10 m 0.211± 0.026 0.062± 0.006 0.060± 0.018 0.060± 0.003 0.098
0 ∼ 20 m 0.201± 0.021 0.067± 0.003 0.070± 0.035 0.084± 0.010 0.106
0 ∼ 30 m 0.209± 0.026 0.074± 0.004 0.114± 0.047 0.097± 0.009 0.123
0 ∼ 40 m 0.254± 0.026 0.076± 0.007 0.137± 0.063 0.112± 0.009 0.145
0 ∼ 50 m 0.305± 0.027 0.076± 0.007 0.137± 0.063 0.112± 0.009 0.158

Error in r
(in meter)

0 ∼ 10 m 0.038± 0.009 0.012± 0.002 0.014± 0.008 0.021± 0.004 0.021
0 ∼ 20 m 0.032± 0.008 0.012± 0.002 0.013± 0.006 0.046± 0.017 0.026
0 ∼ 30 m 0.043± 0.008 0.015± 0.002 0.059± 0.023 0.058± 0.020 0.044
0 ∼ 40 m 0.100± 0.021 0.015± 0.002 0.084± 0.045 0.078± 0.018 0.069
0 ∼ 50 m 0.118± 0.030 0.015± 0.002 0.084± 0.045 0.078± 0.018 0.074
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4.5. Visualisation of Results

We further give a qualitative evaluation of our methods by visualising both the point-
wise predictions of our semantic segmentation method and the parameter predictions of
our DNN-based tree parameter estimation model.

In Figure 7, we visualise the ground-truth stem and foliage points and those predicted
by the supervised semantic segmentation methods in Tables 2 and 5. We selected three
trees from our Tumut dataset as an example which have clearly different shapes and
segmentation accuracy, while we include the IoU O. and IoU Seg. for each tree and each
method in the figure. The visualisation indicates that PointNet performs the worst as it
can only capture the global feature of the point clouds, while our handcrafted local feature
is more adaptable to the geometry across different trees. Furthermore, by combining the
advantages of both global and local features, i.e., using PointNet with a handcrafted feature,
PointNet++, and PointNet++ with a handcrafted feature, we can significantly improve the
segmentation performance on the points near the tree tip where segmentation becomes
more difficult. Additionally, despite the simplicity of our cylinder segmentation model,
the cylinder at each point cloud segment can accurately discriminate the stem points from
foliage points without many false positives or false negatives.

59.06/65.42 70.17/60.47 83.89/65.25 89.82/77.82 92.22/82.26 93.46/92.37

Ground-Truth PointNet Handcraft PointNet & Handcraft PointNet++ PointNet++ &  Handcraft Cylinder

47.22/23.99 77.99/60.43 77.99/60.43 93.79/67.76 88.44/70.17 89.83/79.85

58.03/66.23 51.76.77.25 66.17/81.83 62.85/86.20 73.12/89.80 68.52/74.42

Figure 7. Visualisation of ground-truth stem and foliage points as well as those predicted by the
different semantic segmentation methods. We use three different trees from the Tumut dataset as an
example and we include the IoU O./IoU Seg. for each method and each tree. Best viewed in colour.
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For the results of our DNN-based tree parameter segmentation model, we visualise
the estimated cylinder tree models and compare the shape of each tree model with that of
the segmented stem points. We present the visualisation in Figure 8, where we use the same
three trees as in Figure 7. While our tree parameter estimation model uses the predicted
stem points only for computing the PCA transform and uses both the stem and foliage
points for estimating the stem parameters, each estimated cylinder tree model accurately
matches the corresponding tree stem in geometry.

Ground-Truth Stem
and Foliage Points

Predicted Stem
Points

Predicted Stem
Points after Rotation

Predicted Tree
Cylinders

Figure 8. Visualisation of the parametric predictions of our DNN-based tree parameter estimation
method compared with the predicted stem points. We use three different trees from our Tumut
dataset as an example. Best viewed in colour.

4.6. Discussion

Overall, results from our experiments indicate that the use of the handcrafted feature and
semi-supervised learning and domain adaptation paradigms can improve the performance of
tree segmentation models in the presence of limited training data. This has implications for
improving accuracy in real forestry applications in which training annotations are difficult
and time-consuming to obtain, for example, when working in new forest types or with new
laser scanning systems. Moreover, our results also indicate that the use of a deep learning



Remote Sens. 2023, 15, 1086 22 of 28

model that directly predicts tree stem structure (tree cylinder model parameters) performs
with comparable accuracy with a two-stage approach (semantic segmentation followed by a
RANSAC-based fitting [10]). Our novel one-stage approach has several potential advantages
in that it removes the need for hand-tuning of parameters in the RANSAC-fitting process and
is potentially adaptive to new datasets with varying point cloud resolution. The limitation
with our tree parameter estimation model is that it mainly deals with single-branch trees as
following the previous approach [10]. Therefore, in future work, we will explore the potential
to adapt our tree parameter estimation approach to work with multi-forked/branching
tree models, which would extend the capability of our approach to reconstruct smaller
tree branches and woody material. Detailed discussions of our three main components,
i.e., the handcrafted feature extractor, the semi-supervised learning and domain adaptation
framework, and the DNN-based tree parameter estimation model, are given below.

Our handcrafted feature method extracts local features that are complementary to deep
network features while being explainable. In our experiments, we used segmentation back-
bones which combine our handcrafted feature with PointNet and PointNet++. As discussed
in Section 4.3.1, in the supervised setting, PointNet with handcrafted feature (compared
with the handcrafted feature baseline) achieves larger improvement from the baseline than
PointNet++ with handcrafted feature (compared with the PointNet++ baseline) in terms of
both IoU O. and IoU Seg. This is because our handcrafted feature provides local information
which is complementary to the global information extracted by PointNet, while PointNet++
also extracts local information which renders our handcrafted feature less helpful in terms of
performance gain when combined with PointNet++ but still complementary.

The experimental results in Sections 4.3.2 and 4.3.3 indicate that our semi-supervised
learning and domain adaptation framework is generic and can improve segmentation
performance for multiple backbone models under both the semi-supervised and domain
adaptation settings, while being robust to hyper-parameters. However, for few datasets
in the semi-supervised learning setting (Table 3) and scenarios in the domain adaptation
setting (Table A1), there are insignificant improvements or slight drops in segmentation
performance, e.g., the HQP and ct03 datasets in the semi-supervised setting and the C→H
and D→H scenarios in the domain adaptation setting. The main cause lies in the topological
simplicity of the trees in the HQP and ct03 datasets by having relatively straight stems and
hence the ease of segmentation, which renders our learning framework less effective while
incorrectly pseudo-labelling some unlabelled stem points as foliage points.

For our tree parameter estimation model, besides the aforementioned limitation,
one drawback lies in its difficulty in dealing with complex tree examples. For instance,
the Tumut dataset has the most complex tree stem topology among the four datasets which
leads to the largest error in xy and error in r, as shown in Table 6. The other drawback
as indicated by the results in Table 6, is the difficulty in sequentially modelling the tree
stem geometry when near the tree tip. For all four datasets, both error in xy and error in
r increase on average as the height range increases, since some tree stems start to sweep
around at higher height ranges.

In the following, we further discuss a few of the other proposed components and
implementation details. For our cylinder segmentation model, as shown in Table 5, both
variants of our cylinder segmentation model achieve higher IoU Seg. than the baseline
PointNet++ with the handcrafted feature. This indicates the cylinder segmentation model
can achieve better segmentation performance at a higher height range than the baseline
segmentation model. Moreover, as shown in the third row of Figure 7, the cylinder
segmentation model suffers from empty stem segments, which is further illustrated in
Figure 8 by the distortion in the stacked cylinder model at empty stem segments.

Our voting strategy for aggregating the segmentation results at each individual point
can achieve significant improvement on all segmentation models except PointNet, which
is the only model that cannot extract local information. This indicates that when using
PointNet, each point has almost the same segmentation results across the different sub-
sampled point clouds, e.g., when using 15 votes, a point can have 15 consistently incorrect
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predictions. Moreover, when using the other models which can extract local information,
a point can have different predictions across different sub-sampled point clouds, which
leads to the effectiveness of our voting strategy. The experimental results on our voting
strategy with different numbers of votes are shown in Table A2.

For the training schedule of our semi-supervised learning framework, we empirically
found it helpful to pre-train the model before utilising pseudo-labels. In some semi-
supervised learning methods [53,56,80], pseudo-labelling starts at the beginning of the
training process, while we found that in our tree point cloud segmentation task, we need a
model well pre-trained on labelled data before training on the unlabelled objective in our
semi-supervised learning framework.

5. Conclusions

In this work, we studied two key problems in LiDAR-based forest inventory, i.e., point
cloud semantic segmentation and tree parameter estimation. For the point cloud semantic
segmentation problem, we first proposed a handcrafted local feature to provide com-
plementary information to DNN-based methods. Based on our handcrafted feature, we
proposed a backbone model which integrates the PointNet++ model with our handcrafted
feature for boosted performance. In addition to our backbone model, to tackle the cir-
cumstances where labelled data are limited, we proposed a learning framework for point
cloud semantic segmentation which can effectively utilise the unlabelled data to improve
the segmentation performance, while our learning framework can deal with both the
semi-supervised and cross-dataset settings. For the tree parameter estimation problem,
we proposed a DNN-based method for estimating the cylindrical tree stem model. We
extensively evaluated our methods on four datasets of different tree species collected
using different types of LiDAR devices. The results on segmentation demonstrate our
backbone method outperforms other popular DNN methods under the supervised setting
while also significantly outperforming the supervised methods under the semi-supervised
and cross-dataset settings. Moreover, our tree parameter estimation method performs
comparably with the well-established traditional method and opens up a new avenue of
tree parameter estimation based on DNN.

Author Contributions: Conceptualization, M.B.; Methodology, F.W.; Software, F.W.; Formal analysis,
F.W.; Investigation, F.W.; Resources, M.B.; Data curation, M.B.; Writing – original draft, F.W.; Writing –
review & editing, M.B.; Visualization, F.W.; Supervision, M.B.; Project administration, M.B.; Funding
acquisition, M.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Institute for Forest Production Innovation
grant NIF073-1819 and the University of Sydney.

Data Availability Statement: Restrictions apply to the availability of these data. Point cloud data
was obtained from third parties described in the acknowledgment and may be made available with
their permission.

Acknowledgments: This work has been supported by the Australian Centre For Robotics (ACFR),
University of Sydney. Thanks to David Herries, Susana Gonzales, Lee Stamm, Interpine New Zealand,
HQPlantations Australia and OneFortyOne Plantations for providing access to airborne and terrestrial
laser scanning datasets.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Further Experimental Results

Appendix A.1. Handcrafted Feature with Different Neighbourhood and Bin Sizes

To demonstrate our proposed handcrafted feature works well under different neigh-
bourhood size and bin size, we use the Tumut dataset as example and repeat the experi-
ments of the method using our handcrafted feature and a simple MLP with one hidden
layer, while we select the neighbourhood size from {16, 32, 64} and the bin size from
{8, 16, 24, 32}. The results are shown in Figure A1. In terms of both IoU O. and IoU Seg.,
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the best performance is achieved when the neighbourhood size is set to 32 and the bin size
is set to 24 or 32. While these hyper-parameter values work the best for the method using
our handcrafted feature and the simple MLP, we find other neighbourhood sizes can work
better for methods that integrate our handcrafted feature with DNN networks, e.g., we set
the neighbourhood size to 16 for PointNet++ with our handcrafted feature.
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Figure A1. The curves of IoU O. vs. bin size (left) and IoU Seg. vs. bin size (right) when different
neighbourhood sizes and bin sizes are used in our handcrafted feature. We use k to denote the
neighbourhood size.

Appendix A.2. Full Result of Cross-Dataset Semantic Segmentation

In addition to the average cross-dataset semantic segmentation results over the 12
scenarios which we present in Table 4, we report the detailed results in each scenario in
Table A1. In terms of both IoU O. and IoU Seg., our cross-dataset semantic segmenta-
tion method using the PointNet++ with handcrafted feature backbone achieves the best
performance in most cross-dataset scenarios.

Table A1. The overall IoU (IoU O.) and average IoU over height segments (IoU Seg.) of the point
cloud semantic segmentation methods under each of the 12 cross-dataset scenarios. We compare
our cross-dataset semantic segmentation methods (denoted as C.D.) with the supervised baselines
trained only on the labelled source training set (denoted as Src.) and the supervised baselines trained
only on the labelled target training set (denoted as Tgt.). Both Src. and Tgt. baselines are evaluated on
the target validation set. We report the average results over the three different training and validation
splits for each cross-dataset scenario and we highlight the best result across different methods on
each dataset (in bold). The Tumut, HQP, ct03, and DogPark datasets are denoted as T, H, C, and D,
respectively.

Method H→T C→T D→T T→H C→H D→H T→C H→C D→C T→D H→D C→D Avg.

IoU O.

Src. (PN) 37.28 21.60 31.62 75.23 54.61 66.58 59.51 71.41 59.12 61.55 64.73 55.81 54.92
Src. (H) 51.37 36.54 53.77 83.52 85.40 82.28 76.06 75.60 79.92 81.40 74.70 80.29 71.74

Src. (PN + H) 53.58 43.62 59.19 80.74 79.01 81.71 71.14 75.74 80.85 75.58 74.64 72.96 70.73
Src. (PN2) 72.36 55.10 42.10 88.13 87.80 85.06 83.52 84.09 84.17 80.73 79.92 80.10 76.92

Src. (PN2 + H) 74.31 65.93 65.04 88.51 87.00 86.15 83.93 85.22 83.73 78.95 82.06 82.40 80.27

C.D. (PN) 50.82 49.74 49.80 77.89 80.77 75.26 71.65 77.02 71.20 68.26 68.72 67.71 67.40
C.D. (PN + H) 61.15 61.72 66.12 85.73 85.39 84.66 78.88 81.59 82.76 82.09 76.50 78.12 77.06

C.D. (PN2) 73.97 69.26 61.37 88.24 88.56 87.45 84.64 84.28 84.74 83.06 82.67 83.74 81.00
C.D. (PN2 + H) 77.28 77.01 68.24 88.55 88.49 87.92 84.75 85.51 85.63 86.61 86.14 87.84 83.66

Tgt. (PN2) 81.08 81.08 81.08 88.82 88.82 88.82 86.68 86.68 86.68 89.22 89.22 89.22 86.45
Tgt. (PN2 + H) 81.96 81.96 81.96 88.81 88.81 88.81 87.03 87.03 87.03 90.79 90.79 90.79 87.15
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Table A1. Cont.

Method H→T C→T D→T T→H C→H D→H T→C H→C D→C T→D H→D C→D Avg.

IoU Seg.

Src. (PN) 32.55 18.87 42.90 55.49 30.82 45.22 39.52 52.80 35.37 40.37 38.95 29.53 38.53
Src. (H) 42.53 29.25 46.02 65.66 62.03 64.12 56.66 53.63 59.76 65.69 46.89 51.25 53.62

Src. (PN + H) 48.39 42.09 52.49 63.05 58.04 64.62 54.82 55.01 62.48 64.78 55.91 49.11 55.90
Src. (PN2) 64.92 53.16 35.15 74.07 71.22 60.12 70.17 65.34 60.20 69.55 66.76 69.12 63.31

Src. (PN2 + H) 66.89 61.99 57.64 74.66 69.89 65.62 71.11 67.09 60.52 71.88 71.41 71.14 67.49

C.D. (PN) 45.78 48.85 49.54 53.76 63.01 56.11 47.91 57.79 52.33 43.22 43.47 40.47 50.19
C.D. (PN + H) 55.11 56.07 59.73 65.07 66.23 66.47 58.54 63.41 62.77 68.22 58.31 51.77 60.98

C.D. (PN2) 66.01 60.55 52.47 70.28 71.45 65.15 70.08 66.29 63.26 70.29 69.45 71.05 66.36
C.D. (PN2 + H) 70.50 69.89 59.34 72.40 72.54 68.09 68.51 68.02 64.89 75.42 74.54 75.04 69.93

Tgt. (PN2) 75.16 75.16 75.16 73.57 73.57 73.57 73.49 73.49 73.49 77.27 77.27 77.27 74.87
Tgt. (PN2 + H) 76.44 76.44 76.44 73.81 73.81 73.81 73.92 73.92 73.92 78.86 78.86 78.86 75.76

Appendix A.3. Voting Strategy with Different Numbers of Votes

To demonstrate the effectiveness of our voting strategy for aggregating the point-wise
semantic predictions, we report the supervised semantic segmentation results on the Tumut
dataset while varying the average number of votes in {1, 5, 15}. When the average number
of votes is set to 1, we simply run segmentation test on each point once and we do not
aggregate the point-wise predictions. The results are presented in Table A2.

In terms of both the IoU O. and IoU Seg., using the voting strategy with 5 votes per
point on average significantly improves the results for all the methods except PointNet. This
indicates that when the semantic segmentation method utilises local features, the multiple
predictions at each point during testing can vary significantly each time a different subset of
points is sampled, while our voting strategy can effectively exploit the multiple predictions
at each point for better results. When the average number of votes is increased from 5 to
15, the performance of both PointNet++ and PointNet++ with our handcrafted feature are
further improved by significant margins.

Table A2. Performance of the supervised point cloud semantic segmentation methods when varying
the average number of votes during testing.

Method #Votes = 1 #Votes = 5 #Votes = 15

IoU O.

PN 58.31± 2.52 58.27± 2.56 58.35± 2.49
PN2 74.77± 1.88 79.11± 1.53 81.08± 1.45

H (Ours) 65.17± 3.02 66.95± 2.84 67.47± 3.05
PN + H (Ours) 73.29± 2.43 75.24± 2.54 75.81± 2.57

PN2 + H (Ours) 77.12± 2.51 80.35± 2.13 81.96± 2.02

IoU Seg.

PN 53.81± 1.43 53.82± 1.37 53.87± 1.34
PN2 70.47± 1.73 74.10± 1.51 75.16± 1.61

H (Ours) 58.50± 1.75 59.53± 1.65 59.46± 1.93
PN + H (Ours) 67.53± 1.24 69.01± 1.45 69.00± 1.55

PN2 + H (Ours) 72.53± 1.72 75.41± 1.39 76.44± 1.47
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