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Abstract: The spatial and temporal variation analysis of land cover classification is important for
studying the distribution and transformation of regional land cover changes. The Qilian Mountain
National Park (QMNP), an important ecological barrier in northwestern China, has lacked land cover
products for long time series. The Landsat images available on the Google Earth Engine (GEE) make
it possible to analyze the land cover changes over the past three decades. The purpose of this study
was to generate a long time series of datasets of land cover classification based on the method of
sample migration in the QMNP in Northwest China. The Landsat 5, 7, and 8 images and field sample
data were combined with multiple image features and the random forest algorithm to complete the
land cover classification of the QMNP from 1990 to 2020. The results indicate that (1) the method of
Jeffries–Matusita (J-M) distance can reduce image feature redundancy and show that elevation and
phenological features have good differentiability among land cover types that were easy to mix with
feature classes; (2) the spatial distribution of land cover every 10 years between 1990 and 2020 was
consistent in the QMNP, and there were obvious differences in land cover from the east to the west
part of the QMNP, with a large area of vegetation distribution in Sunan county in the central part
and Tianzhu county in the east part of the QMNP; (3) over the past 30 years, forests and grasslands
decreased by 62.2 km2 and 794.7 km2, respectively, while shrubs increased by 442.9 km2 in the QMNP.
The conversion of bare land to grassland and the interconversion between different vegetation types
were the main patterns of land cover changes, and the land cover changes were mainly concentrated
in pastoral areas, meaning that human activity was the main factor of land cover changes; and
(4) when the samples of 2020 were migrated to 2010, 2000, and 1990, the overall classification
accuracies were 89.7%, 88.0%, 86.0%, and 83.9%, respectively. The results show that the vegetation
conservation process in the QMNP was closely related to human activities.

Keywords: Landsat; sample migration; Jeffries–Matusita distance; machine learning

1. Introduction

Land cover is an important factor for assessing ecological change in alpine mountains
in Northwest China [1]. Land cover, especially vegetation, in most areas of Northwest
China is ecologically diverse and fragile [2]. The Qilian Mountain National Park (QMNP)
is one of the first pilots of the national park system in China established since 2017 and is
an important ecological safety barrier in the alpine-type mountains of Northwest China [3].

Over the past several decades, long-term ecological services have been seriously af-
fected. Ecosystems in nature and their biodiversity are endangered by human-induced
causes [4]. The ecological environment in the Qilian Mountains has been damaged to
varying degrees by overgrazing, unauthorized construction of hydropower stations, un-
regulated operation of tourism facilities, and other human activities [5]. Land cover and
land management influence soil and water conservation, environmental protection, etc.,
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for example, via its contribution to river changes [6]. Therefore, making a long time series
of land cover data products and analyzing the spatiotemporal changes in vegetation are
essential to quickly capture the characteristics of vegetation change in the QMNP. There is
still a lack of sufficiently detailed classification and long time series of land cover data to
reflect the typical changes in vegetation, which results in a poor understanding of the long-
term impacts of vegetation in the QMNP [7]. With the development of sensors and cloud
computing technology, the acquisition and analysis of land cover data have developed
rapidly. Currently, object-based and pixel-based classification methods are widely used
for land cover classification. Yu et al. [8] presented an object-based backdating approach
that increases the efficiency of land use and land cover classification. Lu et al. [9] proposed
an object-based data blending model based on Landsat and MODIS to detect land cover
changes. Aguirre-Gutierrez et al. [10] combined object-based and pixel-based methods
and found the combined classification method improved classification accuracy and land
cover change detection. Tehrany et al. [11] obtained the results of land cover classification
in Selangor using object-based and pixel-based methods; the results showed that the object-
based method performed better. The object-based method needs to determine the optimal
segmentation scale and requires high spatial resolution of remote sensing images, so it
is subject to some limitations in land cover data analysis [12]. The pixel-based method is
simple, but the accuracy of the result depends more on the classification system and the
classification algorithm.

Cloud computing platforms are efficient ways of accessing and analyzing data on
very powerful servers. Several cloud computing platforms have been developed to date.
For example, the Google Earth Engine (GEE) provides researchers with new classification
ideas due to its powerful data storage function and computing power so that they can pay
more attention to the optimization of the classification processes of land cover from remote
sensing images [13]. It is difficult to accurately classify vegetation only by vegetation
indices and other auxiliary data, while phenological features are good supplementary data
to distinguish different vegetation types. The extraction of phenological features from time
series normalized difference vegetation index (NDVI) curves for more detailed land cover
classification has received widespread attention from researchers. Reed et al. [14] were the
first to propose the use of phenological features. Nguyen et al. [15] extracted parameters
such as coefficients based on the time series enhanced vegetation index (EVI) curves of crops
from Landsat data, which they used as a phenological feature in land cover classification.
Zeng et al. [16] reviewed the existing methods for weather detection in detail and showed
that the extraction of thresholds based on vegetation index time series curves is the simplest
and most effective method in vegetation phenological extraction that is widely used for
phenological metric extraction. In addition, the acquisition of samples from multiple years
in long time series land cover studies has been a focus of researchers. Huang et al. [17]
migrated the training samples of 2010, 2005, 2000, 1995, and 1990 based on the sample set
of 2015 and all available Landsat 5 data on GEE by measuring the spectral similarity and
spectral distance between the reference and target spectra. Naboureh et al. [18] migrated
the samples of 2020 based on the spectral distance to obtain the sample set of 1987–2019 and
extracted the farming area of the Urmia Lake basin with good results. Ghorbanian et al. [19]
obtained the land cover products for the whole of Iran in 2019 based on the classification
results of 2017 and the sample migration method of spectral distance with an accuracy
greater than 90%. Sample migration based on spectral distance has become an important
technical tool for multiyear land cover classification. It makes up for the shortage of training
samples and greatly improves classification efficiency. Huang et al. [20] developed a new
sample migration method combined with other strategies to effectively support long time
series global land cover mapping. Liu et al. [21] combined sample migration, machine
learning, and other methods to generate a 36-year-long, 30 m resolution global land cover
map dataset. Zhong et al. [22] used a sample migration method to obtain data for the the
earlier years from the 2011–2015 Landsat data and produced a long time series land cover
dataset based on a machine learning method.
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The Landsat dataset, field data, the GEE platform with machine learning algorithms,
phenological features, and the sample migration method allowed us to obtain previous
sample data and land cover classification results for QMNP. Therefore, to solve the problem
of a lack of long time series land cover change analysis of the QMNP, this study uses
phenological features and sample migration methods to analyze land cover changes. The
main objectives of this paper are (1) to develop a sample selection method for land cover
classification in long time series, (2) to explore the optimal combination of features based on
Landsat data for complex mountainous terrain, and (3) to analyze the land cover changes
based on the QMNP classification results to reveal ecological changes and better protect
the ecological barrier.

2. Materials and Methods

A classification process based entirely on the GEE applied to QMNP is proposed in
this study. Figure 1 describes the main procedures of this study. The time series images of
the target years were mosaicked and synthesized using the available Landsat images in
the GEE. Then, sample migration was performed to obtain sample sets of the target year,
optimize the feature set, and finally, use a random forest algorithm to complete land cover
classification for four periods. The method used in this study is summarized as follows:

i. Data processing, including image declouding and mosaicking, as well as sample point
selection for 2020;

ii. Sample migration, which was achieved by measurements of spectral angles;
iii. Feature extraction, which mainly includes time series curve reconstruction and phe-

nology parameter extraction;
iv. Classification using the random forest algorithm, optimization of algorithm parame-

ters, and accuracy assessment;
v. Land cover change analysis through transfer matrix and land mapping.
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2.1. Study Area

The study area is located in the Qilian Mountains (95◦~103◦E, 36◦~40◦N, Figure 2) at
the junction of the Gansu and Qinghai Provinces [23]. The QMNP climate is humid in the
summer and dry and cold in the winter, with shorter summers and longer winters [24].
The large east–west span of the region leads to obvious climatic differences, with the
west being cold and dry, the central area being alpine and semiarid, and the east being
alpine and semihumid [25]. Precipitation decreases from the east to the west and is mainly
concentrated from May to September. The main vegetation types in the QMNP are forest,
shrub, and grassland. The forests are mainly natural forests supplemented by planted
forests, and the types include temperate evergreen coniferous forests, temperate deciduous
broadleaf forests, mixed coniferous forests, and cold-temperate coniferous forests [26].
Among them, Picea crassifolia and Juniperus przewalskii are the dominant species, accounting
for 88.9% and 95.06% of the area and storage volume, respectively [25].
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Figure 2. Location of the Qilian Mountain National Park.

2.2. Classification Scheme

The classification system of this study was based on the situation that the QMNP is
mainly dominated by vegetation cover, with Picea crassifolia and Juniperus przewalskii as
the dominant species, and with reference to two classification systems: the International
Geosphere-Biosphere Programme (IGBP) and Global Land Cover 2000 (GLC2000). Twelve
categories were ultimately determined. Evergreen conifer forests in the IGBP and GLC2000
classifications were subdivided into Picea crassifolia and Juniperus przewalskii; evergreen
shrubs and deciduous shrubs in GLC2000 were retained; and typical feature types such
as snow and ice, water bodies, and arable land were retained. The category names and
interpretation marks are shown in Table 1.
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Table 1. Interpretation signs of land cover.

First Class Second Class Third Class Abbreviation Description Elevation Range

Forest

Evergreen
Needleleaf Forest Picea crassifolia PC

Needle-leaved, evergreen; >85% of
the forest is composed of Picea

crassifolia, including plantations;
H = 3–30 m

2500–3600 m

Evergreen
Needleleaf Forest

Juniperus
przewalskii JP

Needle-leaved, evergreen; >85% of
the forest is composed of Juniperus
przewalskii, including plantations

2700–4000 m

Broadleaf Forest Broadleaf
Forest BF

Flattened, broader, deciduous leaves;
>85% broadleaf trees in the forest,

including plantations
1900–2700 m

Mixed Forest Mixed Forest MF

The respective proportions of
coniferous and broad-leaved forests
ranged from 25% to 75% and were

above 3 m in height, including
planted forests

2500–2900 m

Shrubland

Evergreen Shrub Evergreen
Shrub ES

Plant communities dominated by
coniferous shrubs less than two

meters in height
3000–3700 m

Deciduous Shrub Deciduous
Shrub DS

Plant communities dominated by
deciduous shrubs less than two

meters in height
1900–3700 m

Grassland Grassland Grassland G

Plant community dominated by
annual or perennial herbaceous
vegetation, including land in a
managed state such as human

grazing and harvesting

1700–3000 m &
3500–4200 m

Agricultural
Lands Cropland Cropland C Refers to land on which crops

are grown Below 2500 m

Impervious
Surface

Impervious
Surface

Impervious
Surface IS

Cities, towns, villages, and other
settlements and roads, as well as

artificial hard surfaces
Below 2500 m

Water Water Water W
Including natural and artificially
constructed relatively stationary

water surfaces
-

Snow and
Ice Snow and Ice Snow and Ice SI Land whose surface is covered by ice

and snow year-round Above 4600 m

Desert and
Low-

vegetated
Lands

Desert and Bare
soil Bare Land BL Land with surface covered by soil

and loose structure 4200–4600 m

2.3. Data
2.3.1. Remote Sensing Dataset

Landsat images and other ancillary datasets were used to complete the land cover
classification for each decade from 1990 to 2020. The Landsat data include Landsat 8 surface
reflectance data for 2019 and 2020; Landsat 5 surface reflectance data for 1989, 1990, 2009,
and 2010; and Landsat 7 surface emissivity data for 1999 and 2000, as shown in Table 2.
These data were atmospherically corrected using the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) cloud algorithm [27] to produce a cloud, shadow,
water, and snow mask using the C function of the Mask algorithm, as well as a per-pixel
saturation mask [28]. Other ancillary data included Shuttle Radar Topography Mission
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Digital Elevation Model (SRTM DEM) data and land cover data, i.e., Finer Resolution
Observation and Monitoring of Global Land Cover (FROM-GLC10).

Table 2. Landsat image information.

Year Number of Images Satellite Date of Image Acquisition

1990 509 Landsat 5 TM 1 January 1989–31 December 1990
2000 202 Landsat 7 ETM+ 1 January 1999–31 December 2000
2010 211 Landsat 5 TM 1 January 2009–31 December 2010
2020 666 Landsat 8 OLI 1 January 2019–31 December 2020

2.3.2. Field Data

The sample point data acquisition for this study in 2020 combined forest survey
data, fieldwork data, and high-resolution Google Earth images to ensure accurate results
of subsequent land cover classification. A total of 713 samples of field data included
482 sample data collected during the Second Tibetan Plateau Scientific Expedition and
Research in 2018–2021 and 231 sample data from field work in 2022. A set of 745 sample
images from forest resources survey data were used, and 2433 sample data were obtained
from Google Earth data. The final distribution of sample points is shown in Figure 3. The
field data were collected mainly by manual positioning and photographing. For some
places inaccessible to humans, unmanned aerial vehicles (UAVs) were used to obtain field
data. UAVs can facilitate the recording of high-quality remote sensing data [29]. The
corresponding sample-level orthophotos and panoramic photos collected by UAVs are
a reliable supplement to visual interpretation using Google Earth, especially solving the
difficulty of discriminating Picea crassifolia and Juniperus przewalskii on Google Earth images,
as shown in Table 3.
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Table 3. Image comparison of Picea crassifolia and Juniperus przewalskii.

Tree Species Google Earth Image Photo by Camera UAV Orthophoto

Picea crassifolia
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2.4. Methods
2.4.1. Feature Extraction

Various features were extracted in this study to improve the differentiability between
land cover types. Spectral, textural, and topographic features based on Landsat data were
extracted to make full use of the feature information of different land covers in remote
sensing images. Four topographic features—slope, aspect, hill shade, and elevation—were
generated using SRTM DEM data stored on the GEE to improve the accuracy of land cover
classification in mountainous areas. Six texture features—angular second moment, vari-
ance, homogeneity, entropy, contrast, and correlation—were generated by the gray-level
co-occurrence matrix (GLCM) method. The GLCM can describe the random and spatial sta-
tistical features of texture elements, fully consider the statistical features of the surrounding
image elements, and greatly reduce the influence of sensors and weather on a single image
element [30,31]. Additionally, three tasseled cap transformation features— brightness,
greenness, and wetness—were calculated based on the remote sensing image bands [32].
Six spectral indices were calculated due to their good performance in differentiating veg-
etation types, the formulas of which are shown in Table 4: the normalized difference
vegetation index (NDVI) [33], enhanced vegetation index (EVI) [34], soil-adjusted vegeta-
tion index (SAVI) [35], normalized difference built-up index (NDBI) [36], ratio vegetation
index (RVI) [37], and modified normalized difference water index (MNDWI) [38].

Table 4. Formulas of spectral indices.

Spectral Index Formula Application

NDVI NIR − R
NIR + R

Mainly used to detect vegetation cover and
distinguish vegetation from non-vegetation

EVI 2.5 × NIR − R
NIR + 6 × R − 7.5 × B + 1 Good for detecting sparse vegetation

SAVI NIR − R
NIR + R + L × (1 + L)

Reduces the effect of soil background and
increases sensitivity to sparse vegetation

NDBI SWIR − NIR
SWIR + NIR

The value range is −1~1, and the value of
artificial surfaces is greater than 0

RVI NIR
R

A good reflection of the differences in
vegetation growth status and coverage

MNDWI G − SWIR1
G + SWIR1

Good for distinguishing between water
bodies and shadows
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However, the conventional vegetation indices still have limitations in distinguishing
between evergreen and deciduous forests, and the phenological features extracted from the
vegetation indices have been proven to be important in the fine classification of vegetation.
To extract the phenological features, two-year time series curves of the three vegetation
indices were constructed. However, the time series curves were inevitably affected by rain,
ground ice, and snow; therefore, some abnormal values appeared, which greatly adversely
affected the accuracy of the acquisition of phenological features. Finally, the harmonic
analysis of time series (HANTS) method was used to remove the abnormal values and
reconstruct the time series, making the curves smoother and more realistic to reflect the
cyclical change patterns of vegetation growth [39]. Taking NDVI as an example, its original
time series curve (blue curve) and reconstructed time series curve (red curve) are shown in
Figure 4, where the X-axis represents the months.
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(d) evergreen shrub, (e) Picea crassifolia, (f) Juniperus przewalskii, (g) mixed forest, and (h) broadleaf
forest (meaning of the letters on the X-axis from left to right: Mar, March; May, May; J, July; S,
September; N, November).

To better reflect the growth of vegetation in different periods, five parameters—the
maximum value, minimum value, mean value, amplitude, and phase angle—of the three
vegetation indices were extracted as features to participate in the classification. The final
selection of all features is shown in Table 5.
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Table 5. The feature parameters selected to participate in the classification.

Type Name Parameters

Spectral

Landsat 5 and 7 bands B1, B2, B3, B4, B5, B7

Landsat 8 bands B2, B3, B4, B5, B6, B7

Tassel cap transformation Brightness, greenness, wetness

Spectral index MNDWI, NDBI, RVI

Phenological

NDVI_MIN, NDVI_MEAN, NDVI_MAX,
magnitude, phase, EVI_MIN, EVI_MEAN,

EVI_MAX, magnitude2, phase2, SAVI_MIN,
SAVI_MEAN, SAVI_MAX, magnitude3, phase3

Texture Gray-level co-occurrence
matrix (near-infrared)

B8(B5)_asm, B8(B5)_var, B8(B5)_idm, B8(B5)_ent,
B8(B5)_contrast, B8(B5)_corr

Terrain Terrain factors SLOPE, ELEVATION, ASPECT, HILLSHADE

2.4.2. Jeffries–Matusita Distance

The feature selection method based on Jeffries–Matusita (J-M) distance has been widely
used in the study of remote sensing classification and is highly evaluated. For example,
Pacheco et al. [40] used J-M distance to evaluate separability between burned and un-
burned vegetation. Thomas et al. [41] concluded that J-M distance is reliable in separability
measurements and suitable for less homogeneous classes. Feature optimization based on
the J-M distance method was implemented to reduce the computational complexity and
improve the classification accuracy by removing redundancy from the existing features.
The J-M distance is an important indicator of the separability of a single feature between
categories; the principle is to calculate the sample distance between each category to de-
termine the separability of the category and then select the features with high separability
for similar land cover types [42]. It has been widely used, owing to its simple, efficient
parameters and accurate optimization results, and its formula is expressed as follows:

JM = 2
(

1 − e−B
)

(1)

B =
1
8
(m1 − m2)

2 2
σ1

2 + σ22 +
1
2

ln
[

σ1
2 + σ2

2

2σ1σ2

]
(2)

where B denotes the Bhattacharyya distance, and mi and σi are the mean and variance of a
feature of two different classes, respectively.

2.4.3. Sample Migration

The sample data in classification directly affect the accuracy of the classification results.
In this study, an automated sampling method was used to obtain high-quality sample
data, which significantly reduces the workload required to obtain reliable samples. First,
a certain number of random points of various land cover types were generated using
the FROM_GLC10 land cover product. Second, a preliminary sample set was formed by
visual interpretation of high-resolution images on Google Earth supplemented by fieldwork
sample points. Third, the classification was performed, and the sample set was corrected
according to the confusion matrix of the classification and used as a reliable sample set for
the reference year. Finally, the spectral angles of the same points in the target and reference
years were measured based on the spectral angle mapping (SAM) method [43].

The principle of the SAM method is to treat the spectrum of each image element as
a high-dimensional vector and measure the similarity between the spectra by calculating
the angle between the two vectors. The smaller the angle between the two vectors, the
more similar the spectra are and the more likely that they belong to the same species.
Suitable thresholds can exclude pixels with a high probability of experiencing land cover
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change, thereby providing a constant and high-quality training sample for the target year.
Therefore, a trial-and-error procedure was used to find the optimal threshold, which was
experimentally set to 0.2 to ensure sufficient high-quality samples for the target year. This
method allowed for automatic updating of the sample set without fieldwork. The final
sample size for each land cover type is shown in Table 6.

Table 6. Land cover samples in the study area based on sample migration.

Year 2020 2010 2000 1990

Picea crassifolia 476 475 475 440
Grassland 1081 971 972 931
Bare land 902 771 669 729

Water body 61 24 24 16
Impervious surface 242 242 236 235

Snow and ice 119 67 26 49
Cropland 247 231 224 228

Juniperus przewalskii 146 146 146 146
Deciduous shrub 287 280 279 248
Evergreen shrub 149 119 140 20

Mixed forest 63 54 54 45
Broadleaf forest 118 118 113 104

Total 3891 3498 3358 3191

2.4.4. Classification and Accuracy Assessment

The random forest (RF) algorithm has shown good performance in land cover classifi-
cation [19,44,45]. RF is an integrated classification algorithm that uses multiple decision
trees to complete training and prediction [46]. The core of RF is integrated learning, which
greatly compensates for the shortcomings caused by a single classifier. In the classification
process, each decision tree acted as a basic unit to vote on the prediction of the sample,
thereby improving the generalization ability of the algorithm and making the classification
results more reliable.

The accuracy of the RF algorithm results depends largely on the number of decision
trees. Therefore, to obtain more accurate classification results, in this study, we set the
number of trees as 50, 100, 150, 200, 250, 300, 350, 400, 450, and 500 and compared the final
classification accuracy. The results are shown in Figure 5. The results show that the overall
classification accuracy increased with the number of decision trees until the maximum
classification accuracy reached 400 and then remained stable, so the number of trees in
the final random forest classifier was set to 400. In addition, the 10-fold cross-validation
method can better train the RF classifier and verify its classification performance.

To evaluate the classification results for each year, in this study, we calculated four
metrics based on the confusion matrix—the overall accuracy (OA), F1 score, producer
accuracy (PA), and user accuracy (UA)—to objectively illustrate the accuracy of the classifi-
cation [47,48]. The calculation formulas and descriptions are shown in Table 7.
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Table 7. Evaluation indices of accuracy.

Name Formula Description

Overall Accuracy OA = ∑k
i=1 Xi
N

The number of correctly classified pixels divided
by the total number of pixels

F1 Score
F1 =

2 × p × r
p + r

p = TP
TP + FP

r = TP
TP + FN

For a specific class A, TP is the number of pixels
correctly classified as A, FP is the number of
pixels incorrectly classified as A, FN is the

number of pixels that A incorrectly classified as
non-A, and TN is the number of pixels correctly

classified as Non-A

User Accuracy UA = Xi
∑r

i=1 Xi

For a specific class (A), UA is the number of
pixels correctly classified as A divided by the

total number of pixels in class A

Producer Accuracy PA = Xi
∑c

i=1 Xi

For a specific class (A), PA is the number of
pixels correctly classified as A divided by the

number of all true pixels in class A

3. Results
3.1. Optimization of Classification Features Based on the J-M Distance Method

All of the extracted features were used for land cover classification; the confusion
matrix of the classification results through the Landsat 8 images in 2020 is presented in
Table 8, showing that the easily confused land cover types include impervious surface and
bare land, cropland and grassland, deciduous shrub and grassland, mixed coniferous forest
and Picea crassifolia, and broadleaf forest and deciduous shrub.
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Table 8. Confusion matrix for 2020 classification results obtained from samples of all land cover (LC)
types (the unit of the data in the table is number of samples).

LC Type PC G BL W IS SI C JP DS ES MF BF

PC 88 0 0 0 0 0 0 1 6 0 0 0
G 0 193 4 0 1 0 3 0 3 0 0 0
BL 0 3 174 0 2 0 0 0 0 0 0 0
W 0 0 0 13 0 0 0 0 0 0 0 0
IS 0 11 6 1 37 0 1 0 1 0 0 1
SI 0 0 2 0 0 25 0 0 0 0 0 0
C 0 11 0 0 1 0 38 0 1 0 0 2
JP 0 1 0 0 0 0 0 15 0 0 0 0
DS 0 8 0 0 0 0 2 0 44 1 0 0
ES 2 0 0 0 0 0 0 0 0 39 0 0
MF 3 0 0 0 0 0 0 1 0 0 12 0
BF 1 2 1 0 0 0 2 0 4 0 0 12

Since J-M distance can calculate the separability for two types of features, the J-M
distances were calculated for the above five pairs of confusable land cover types, the
results of which are shown in Figure 6. The higher the value of J-M distance, the better the
separability of the feature to the pair of corresponding land types.
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Figure 6. The J-M distance between different land cover types of Landsat 8 in 2020 (D1 indicates IS
and BL, D2 indicates C and G, D3 indicates DS and G, D4 indicates MF and PC, and D5 indicates BF
and DS).

The J-M distances of all features for each pair of land cover types were ranked from
largest to smallest. As seen in Figure 6, for D1 and D5, the J-M distance of NDVI_MIN
is the largest; for D2, the value of EVI_MIN is the largest; for D3, the value of B2 is the
largest; and for D4, the value of NDVI_MAX is the largest. Therefore, these features
were included in top combination in Table 9. Accordingly, the top ten and the first fifteen
features were obtained, as shown in Table 9. NDBI and MNDWI were also included in
the top combination, owing to their proven effectiveness in distinguishing impervious
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surfaces from water bodies. These combinations of features were included in land cover
classification; the variation in classification accuracy with different feature combinations is
shown in Figure 7. The final classification features and detailed information are shown in
Table 10.

Table 9. Classification features for 2020.

Combination Features

Top 1 NDVI_MIN, EVI_MIN, B2, NDVI_MAX, NDBI, MNDWI
Top 2 Top 1 + ELEVATION, B3
Top 3 Top 2 + phase2, B4, magnitude, SLOPE
Top 4 Top 3 + RVI, phase, phase3
Top 5 Top 4 + magnitude2, B8_contrast, wetness, NDVI_MEAN
Top 6 Top 5 + brightness
Top 7 Top 6 + B8_asm, EVI_MAX
Top 8 Top 7 + SAVI_MAX
Top 9 Top 8 + B7, B8_var, HILLSHADE

Top 10 Top 9 + B6, greenness
Top 15 Top 10 + B5, B8_ent
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Table 10. Final classification features.

Dataset Combination Number Name

Landsat 8 Top 10 28

NDVI_MIN, EVI_MIN, B2, NDVI_MAX,
NDBI, MNDWI, ELEVATION, B3, phase2,

B4, magnitude, SLOPE, RVI, phase, phase3,
magnitude2, B8_contrast, wetness,
NDVI_MEAN, brightness, B8_asm,
EVI_MAX, SAVI_MAX, B7, B8_var,

HILLSHADE, B6, greenness
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3.2. Land Cover Change in the QMNP from 1990 to 2020

Large changes in land cover every ten years between 1990 and 2020 are shown in the
land cover transfer matrix in Tables 11–13, where PC, JP, MF, and BF were combined for
forest (F), while DS and ES were combined for shrub (S), thereby highlighting the changes
in forest, shrub, and grassland.

Table 11. Land transfer matrix for 1990–2000 (km2).

F G BL W IS SI C S Total Area in 2000

F 1520.2 73.0 54.3 2.7 1.7 0.0 0.6 190.1 1842.6
G 107.5 11,002.2 914.8 3.8 42.4 17.5 11.0 263.7 12,363.0
BL 6.3 904.4 29,951.5 69.6 16.1 381.2 3.9 16.8 31,349.8
W 0.5 0.9 164.2 21.2 0.1 3.1 0.0 0.4 190.4
IS 5.5 254.3 58.3 0.5 37.3 0.0 6.7 20.9 383.5
SI 0.0 42.1 277.0 1.2 0.0 1562.4 0.0 0.0 1882.7
C 0.5 8.9 2.0 0.0 4.1 0.0 26.9 2.8 45.2
S 286.2 572.8 43.1 4.2 3.1 0.1 1.7 1231.7 2142.8

Total area in 1990 1926.6 12,858.5 31,465.3 103.2 104.6 1964.4 50.8 1726.5 50,200.0

Table 12. Transfer matrix of land cover for 2000–2010 (km2).

F G BL W IS SI C S Total Area in 2010

F 1489.8 137.8 8.9 1.4 5.4 0.0 0.7 215.2 1859.3
G 60.8 11,324.1 1623.7 2.2 238.7 53.1 13.2 374.5 13,690.2
BL 13.9 392.7 29,263.6 163.1 20.8 437.3 0.5 11.1 30,303.0
W 2.4 2.4 26.2 15.5 0.8 2.8 0.1 2.0 52.1
IS 14.1 86.9 97.7 1.0 98.1 0.0 6.9 26.6 331.3
SI 0.0 7.3 318.7 6.6 0.0 1389.5 0.0 0.0 1722.2
C 0.5 8.3 1.2 0.0 5.3 0.0 21.3 2.5 39.1
S 261.1 403.4 9.7 0.6 14.3 0.0 2.6 1510.8 2202.7

Total area in 2000 1842.6 12,363.0 31,349.8 190.4 383.5 1882.7 45.2 2142.8 50,200.0

Table 13. Land transfer matrix for 2010–2020 (km2).

F G BL W IS SI C S Total Area in 2020

F 1549.6 54.7 31.5 1.2 17.6 0.0 2.6 207.4 1864.4
G 84.1 11,007.5 437.1 3.9 98.2 21.0 15.6 396.3 12,063.8
BL 25.2 1917.1 29,198.7 32.4 68.2 164.4 0.6 21.5 31,428.0
W 0.8 0.7 26.4 9.8 1.7 3.8 0.0 0.2 43.4
IS 10.5 294.4 91.4 0.5 126.6 0.0 4.7 13.5 541.7
SI 0.0 5.0 517.2 4.0 0.0 1533.0 0.0 0.0 2059.2
C 2.0 8.5 0.0 0.0 3.0 0.0 14.2 2.4 30.1
S 187.1 402.1 0.8 0.3 16.1 0.0 1.6 1561.3 2169.4

Total area in 2010 1859.3 13,690.2 30,303.0 52.1 331.3 1722.2 39.1 2202.7 50,200.0

Table 11 shows that the conversion of forest to shrub and grassland from 1990 to 2000
was 286.2 and 107.5 km2, respectively, while 904.4 km2 of grassland was converted to bare
land. The conversion of shrubland to grassland and forest was larger, with 263.7 km2

converted to grassland and 190.1 km2 converted to forest. In general, the area of forest and
grassland decreased from 1990 to 2000, while the area of shrub increased, and the total area
of vegetation slightly decreased.

Table 12 shows that the largest areas of forest converted to other features in 2000–2010
were shrub and grassland, with 261.1 km2 and 60.8 km2, respectively, both of which
declined compared to 1990–2000. At the same time, a larger portion of bare land was
converted to grassland. Overall, the areas of forest, shrub, and grassland increased, while
the area of bare land decreased.
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Table 13 shows that the area of forests increased, while the area of shrub and grassland
slightly decreased from 2010 to 2020. There was little change in forest, and 1917.1 km2 of
grassland area was converted to bare land; 396.3 km2 and 207.4 km2 of shrub area were
converted to grassland and forest, respectively. The total area of vegetation showed a
decreasing trend, primarily due to the reduction in grassland.

It can be seen from Tables 11–13 that there were variations in forest, shrub, and
grassland in every decade, but the total area of forest and scrub did not change considerably
in any decade, which shows that vegetation cover change in mountainous areas is relatively
slow. Moreover, the forest area decreased from 1990 to 2000 and gradually increased after
2000, which is also related to the implementation of a stricter ecological protection policy in
QMNP in 2000.

To clearly indicate changes in forest, shrub, and grassland, QMNP was divided into
502 grids with a resolution of 10 km × 10 km, and their kernel density was estimated, as
shown in Figure 8. The map of the (a) series in Figure 8 shows the spatial distribution of
forest, shrub, and grassland changes every ten years between 1990 and 2020, and the map
of the (b), (c), and (d) series in Figure 8 shows the kernel density estimates for forest, shrub,
and grassland changes every ten years between 1990 and 2020.

The conversion between vegetation was noticeable from 1990 to 2000. Forest change
was evident in the eastern and central parts of QMNP, mainly in Sunan and Tianzhu
counties. Grassland also changed significantly in the eastern and central regions of the
park, mainly in Subei and Tianjun counties. Shrub change areas cover a considerably wider
range of the park, with a few areas in the west and more significant changes in the east and
central parts. The conversion trends of forest, shrub, and grassland during the 2000–2010
and 2010–2020 periods were similar to those of 1990–2000.
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The result of the land cover classification of QMNP in 2020 is shown in Figure 9. The
vegetation varies strongly from east to west in QMNP. Forests are widely distributed in
the central county of Sunan and the eastern county of Tianzhu. The spatial distribution
of shrubs is the same as that of forest, and grassland is distributed in the central counties
of Sunan and Qilian and the eastern county of Tianzhu, while bare land—the largest land
cover type in QMNP—is concentrated in the western part of the national park. Regions
A and B in Figure 9 belong to Sunan and Menyuan counties, respectively, where forests
are abundantly distributed. Both Sunan and Menyuan counties have a large distribution
of forests and contain several typical land cover types, such as Picea crassifolia, Juniperus
przewalskii, evergreen shrub, deciduous shrub, and mixed forests.
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Sunan and Menyuan counties were chosen for detailed demonstrations of vegeta-
tion changes because of the notable land cover changes, as shown in Figures 10 and 11.
Figure 10 shows that the area of Sunan county mainly changed from forest to shrub dur-
ing the 1990–2000 period, while the area was mainly converted from shrub to grassland
during the 2010–2020 period. The changes were diverse during the 2000–2010 period.
As shown in Figure 11, in Menyuan county, the conversion of forest to shrub occurred
primarily during the 1990–2000 period, while other land cover types were converted to
forest during the 2000–2010 period, and the conversion to forest was more notable during
the 2010–2020 period.
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3.3. Accuracy of Land Cover Classification

The 10-fold cross-validation method was used for accuracy evaluation, which can
avoid contingency in the result validation process and improve accuracy evaluation. All
samples were divided into ten subsets, nine of which were used as training data and one as
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validation data to perform classification, with the mean value of the results taken as the
result of accuracy evaluation, as shown in Table 14.

Table 14. Accuracy evaluation of land cover classification results.

Type

1990 2000 2010 2020

PA
(%)

UA
(%) Error F1

Score
PA
(%)

UA
(%) Error F1

Score
PA
(%)

UA
(%) Error F1

Score PA(%) UA
(%) Error F1

Score

PC 0.900 0.914 −0.014 0.907 0.914 0.932 −0.018 0.923 0.938 0.930 0.008 0.934 0.937 0.953 −0.016 0.945
G 0.845 0.932 −0.087 0.886 0.869 0.945 −0.076 0.905 0.879 0.946 −0.067 0.911 0.894 0.946 −0.052 0.919
BL 0.944 0.949 −0.005 0.946 0.959 0.946 0.013 0.952 0.960 0.963 −0.003 0.961 0.947 0.963 −0.016 0.955
W 0.953 0.965 −0.012 0.959 0.967 0.942 0.025 0.954 0.900 0.937 −0.037 0.918 0.976 0.976 0 0.976
IS 0.812 0.823 −0.011 0.817 0.790 0.789 0.001 0.789 0.793 0.815 −0.022 0.804 0.861 0.833 0.028 0.847
SI 0.861 0.884 −0.023 0.872 0.984 0.969 0.015 0.976 0.967 0.896 0.071 0.930 0.962 0.907 0.055 0.934
C 0.824 0.808 0.016 0.816 0.819 0.848 −0.029 0.833 0.853 0.859 −0.006 0.856 0.798 0.804 −0.006 0.801
JP 0.898 0.850 0.048 0.873 0.874 0.844 0.03 0.859 0.908 0.903 0.005 0.905 0.935 0.941 −0.006 0.938
DS 0.802 0.798 0.004 0.800 0.820 0.785 0.035 0.802 0.779 0.813 −0.034 0.796 0.800 0.866 −0.066 0.832
ES 0.834 0.825 0.009 0.829 0.810 0.874 −0.064 0.841 0.842 0.903 −0.061 0.871 0.892 0.926 −0.034 0.909
MF 0.786 0.797 −0.011 0.791 0.771 0.786 −0.015 0.778 0.780 0.801 −0.021 0.790 0.813 0.825 −0.012 0.819
BF 0.814 0.803 0.011 0.808 0.805 0.815 −0.01 0.810 0.831 0.826 0.005 0.828 0.806 0.801 0.005 0.803

OA(%) 0.839 0.860 0.880 0.897

Table 14 shows that the classification accuracy of land cover in all four periods was
greater than 0.80, and the accuracy gradually increased from 1990 to 2020. The highest
classification accuracy was 0.897 in 2020. The user and producer accuracy of each land cover
type show that Picea crassifolia, grassland, bare land, water body, and Juniperus przewalskii
had good classification accuracy in these four years, while the classification accuracy of
deciduous shrubland, mixed forest, and broadleaf forest was slightly poorer, mainly due to
the similarity of their spectral characteristics to those of other land cover types. The error
values presented in the table were obtained by subtracting the UA from the PA of each
land cover type. The F-scores of Picea crassifolia, grassland, bare land, and water bodies are
almost all above 0.9 and are higher than the values of other land cover types, indicating
better classification performance for these land cover types.

4. Discussion

The method combining phenological features, J-M distance, and sample migration
provided time series land cover classification data in QMNP from 1990 to 2020; however,
there are still some problems to be solved in the classification work. The lack of quality
and auxiliary data in land cover classification is a serious issue in mountainous areas in
the QMNP of Northwest China. Although remote sensing images can be filtered by the
declouding algorithm of GEE, images in QMNP are affected by cloud cover, resulting
in a lack of high-quality image sets [49]. For example, in the western part of QMNP,
the selection of sample points for specific vegetation types may have been misjudged
due to a lack of high-quality images, thereby affecting the final classification results [50].
To improve the classification of vegetation subdivision types, phenological features were
extracted from the NDVI, EVI, and SAVI time series curves to participate in the classification,
which can better reflect the seasonal differences in vegetation, especially for complex
vegetation types in mountainous areas [16]. Elevation and phenological features showed
good separability among easily confused feature classes based on J-M distance, especially
among different vegetation types. In addition, in this study, we migrated the sample set
based on the spectral angular distance in 2020 on the GEE. The final accuracy assessment
demonstrates the feasibility of automatically acquiring samples with this method. It avoids
the misjudgment of human visual judgment while greatly saving time and is especially
suitable for mountainous regions where high-resolution data are lacking [51].

In the classification results, multisource datasets were used, and images with the least
amount of clouds in the study area were provided, allowing for improved classification
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accuracy. The field samples provide accurate land cover types, increasing the reliability of
the samples, which is also the basis for sample migration and classification of images from
other years. Since different features have different degrees of separation of land cover types,
the phenological features in particular can better distinguish deciduous and evergreen
forests, which greatly improves the accuracy of vegetation classification. Therefore, feature
selections and optimizations were performed.

In addition, a comparison of Figures 5 and 7 shows that the effect of different numbers
of trees on OA in random forest is much less than the effect of different feature combinations.
The range of OA variation shown in Figure 5 is less than 1%, while the maximum difference
of the effect of feature combinations on accuracy shown in Figure 7 is close to 9%. This
result is reasonable, and the reason for such a strong variation is that the importance
of feature selection is much higher than the importance of the number of trees in RF.
Because the number of trees only affects the lower limit of classification accuracy when the
classification features and samples are determined, whereas the upper limit is saturated
when the number of trees sufficient. In contrast, the selection of classification features
directly affects the upper limit of classification accuracy, and suitable classification features
such as phenological features are effective means to distinguish evergreen species from
deciduous species.

Exploring land cover dynamics is crucial for understanding ecological conservation
in QMNP. The above results show generally trends that are generally consistent trends
with the literature cited hereafter. Qian et al. [52] found that the land cover of the Qilian
Mountain National Nature Reserve (QMNNR) has changed dramatically over the past four
decades and that the land cover structure of the QMNNR has remained stable, although
the total area of vegetation decreased by 49.6 km2 from 1975 to 2015. Peng et al. [53] found
that, with the majority of vegetation recovering significantly, only 0.14% of the QMNP
area experienced significant degradation between 2000 and 2019. The height feature for
vegetation structure, which can accurately distinguish shrubs and forests, is the primary
difference between the two. However, there is a lack of auxiliary data that can reflect
vegetation height information. Due to the lack of characteristics reflecting vegetation
height information, future studies will concentrate on adding satellite-based vegetation
height data to participate in classification to further improve the accuracy of forest and
shrub classification.

5. Conclusions

A long time series of land cover data is considered to be a foundation for forest
management and vegetation restoration in QMNP. Based on the GEE cloud platform
and a reliable reference year sample dataset, in this study, we constructed a method
to accomplish land cover classification using sample migration, avoiding complicated
processing. The final classification was completed using the random forest algorithm,
and good classification accuracy was achieved. To ensure accuracy and avoid bias of
the samples, 500 random samples were generated for each classification type, and the
correctly classified samples were retained by visual interpretation of Google Earth images.
Fieldwork was conducted in multiyear scientific investigations to ensure an accurate and
representative sample set. All the above efforts can be evenly distributed spatially to ensure
better accuracy of the final classification.

For the QMNP as a whole, the results show that the total sample size decreased by
10.1%, 13.7%, and 18.0% when the 2020 sample was migrated to 2010, 2000, and 1990,
respectively, and the overall precision reached 89.7%, 88.0%, 86.0%, and 83.9%, respectively.
The feature set can be optimized well using the J-M distance, with 35 features reduced to
29 and overall accuracy improved from 88.6% to 89.7%. Analysis of land cover change
in QMNP showed that vegetation changes were mainly accounted for by interconversion
between forest, shrub, and grassland and that the areas of change were mainly distributed in
Sunan and Tianzhu counties of Gansu Province and Menyuan county of Qinghai Province.
Forests and shrubs were mainly distributed in Sunan and Tianzhu counties; forest decreased
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by 62.2 km2 and shrub increased by 442.9 km2 from 1990 to 2020. Grasslands are abundantly
distributed mainly in Sunan, Qilian, and Tianzhu counties and decreased by 794.7 km2

from 1990 to 2020.
The results of land cover change can reveal which areas of the QMNP have experienced

the greatest changes in vegetation coverage such as forest and scrub so that efforts can
be focused on the conservation of these areas. Therefore, it makes sense for regional
management protection. In addition, this study can be considered to provide a framework
for research on land cover change. Accordingly, for any other mountainous region in the
world, land cover change can be determined using the research framework proposed in
this paper as long as sample and image data are available for that particular region.
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