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Abstract: This study investigates the wildfire biomass-burning emission levels during strong El
Niño–southern oscillation (ENSO) events of 2010–2011 (characterized by a strong La Niña event) and
2015–2016 (characterized by a strong El Niño event) over the southern African region. Specifically,
the biomass-burning parameters of black carbon (BC), carbon monoxide (CO) and sulfur dioxide
(SO2) were investigated. Of interest in the current study was the strong El Niño (2015–2016) and
La Niña (2010–2011) events during the main fire seasons in southern Africa, i.e., June–July–August
(JJA) and September–October–November (SON). Furthermore, the study looks at how meteorological
parameters (temperature and precipitation) are influenced by the two strong ENSO events. The
sequential Mann–Kendall (SQMK) test is used to study the long-term trends of the emission and
meteorological parameters. Anomaly detection on the long-term emission trends and meteorological
parameters are performed using the seasonal and trend decomposition loess (STL) and generalized
extreme studentized deviate (GESD). Overall, the results show higher emission levels of SO2, CO,
and BC during the JJA season compared to the SON season. The SQMK results show an increasing
trend of SO2, CO, and BC over time, indicating an increase in the amount of biomass burning. The
GESD showed significant anomalies for BC, SO2, and CO emanating from the two strong El Niño
and La Niña events. On the other hand, no significant anomalies were detected for temperature
and precipitation. The results in this study highlight the significant effect of strong ENSO events on
wildfire emissions, thus retrospectively showing the potential effect of future events, especially in the
context of climate change.
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1. Introduction

The El Niño–southern oscillation (ENSO) is a large-scale climatic occurrence that em-
anates in the tropical Pacific, but affects various parts of the world’s climate patterns [1–3].
Components of ENSO that are strongly related are sea surface temperature (SST), atmo-
spheric pressure, and the Walker circulation [4]. ENSO events can be classified using the
Oceanic Niño Index (ONI), which uses three-month running means of SST anomalies in
the Niño 3.4 region (5◦N to 5◦S, 120◦W to 170◦W) [5]. Monitoring of ENSO conditions
primarily focuses on SST anomalies in four geographic regions of the equatorial Pacific [6].
On the positive side, ENSO occurrence, dynamics, and influence are well understood and
can be predicted [7]. However, the response of ENSO to global warming is still of great
interest for the future climate [8].

When ENSO is inactive, i.e., during a neutral year, the equatorial Pacific trade winds
blow from east to west. An east–west difference in SST and sea level pressure is created,
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thereby maintaining the trade winds. During an El Niño year, the east–west SST and the
pressure difference weakens and the trade winds and their effects on the ocean weaken,
resulting in further warming of the eastern Pacific [9]. The El Niño event generally results
in higher temperatures and reduced precipitation across the tropics [10]. The opposite
happens during the La Niña year: the east–west difference in temperature strengthens,
the pressure difference strengthens, and the trade winds and their effects on the ocean
strengthen, so the east Pacific cools further. ENSO robustly modulates global drought,
temperature, tropical cyclones, precipitation, extratropical cyclones, tornadoes, and other
extreme events [11]. ENSO also plays an important role in global warming projections.

The Summary for Policymakers (SPM) presented by the Working Group I (WGI) contri-
bution to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report
(AR6) on the physical science basis of climate change shows that “the last four decades have
been successively warmer than any decade that preceded it since 1850” [12]. The report
further showed that the increases in well-mixed greenhouse gas (GHG) concentrations
since around 1750 are unequivocally caused by human activities [12]. The report also
showed that human influence (such as biomass burning (BB)) has warmed the climate at a
rate that is unprecedented in at least the last 2000 years [12]. Wildfire BB emission directly
influences climate change [13,14].

Wildfires release large quantities of gaseous pollutants and aerosol particles to the
atmosphere that have a substantial impact on air quality and human health [15,16]. When
burned, biomass material releases widespread varieties of gases such as carbon monoxide
(CO), black carbon (BC), carbon dioxide (CO2), methane (CH4), smoke, volatile and semi-
volatile organic compounds, aldehyde, organic acid and inorganic elements, and particulate
matter (PM) [17]. These pollutants can be transported over long distances and affect regions
farther away from the source area [18]. Bai et al. [19] explored the relationship between
disturbances caused by forest insect–fire interactions and ENSO using fire-burned area,
insect-damaged area, average temperature, diurnal temperature range, precipitation, and
self-calibrated Palmer Drought Severity Index in China. Their study found a significant cor-
relation between forest insect and fire damage and ENSO during spring. In another study,
Burton et al. [20] evaluated the effects of the 2015/16 El Niño on precipitation, temperature,
and burned area globally with a specific focus on South America, Africa, and Asia using a
dynamic land surface model. Their model projected a variable response in precipitation,
with some areas including southern Africa becoming drier, and causing a wider burned
area during El Niño conditions. African regions exhibited variable (i.e., lower and higher)
burned areas. Shikwambana et al. [21] examined the spatio-temporal properties of wildfires
during the recent strong ENSO events using various emission and burned area parameters,
but did not show the seasonal variation and trends of these emission parameters, which
may be interesting for wildfire management and conservation authorities.

Satellite sensors are the favored way to measure pollutants and detect their transport
as they provide frequent and comprehensive observations [22]. They further enable the
observation-based tracking of pollutants with relatively high spatial resolution. However,
some sensors are based on coarse spatial resolution images (≥500 m), which may have
significant omission and commission errors, particularly where fires are small [23]. Some
of the satellite sensors that have been used to measure pollutants from wildfires include
the moderate resolution imaging spectroradiometer (MODIS) [24], Cloud–Aerosol Lidar
with Orthogonal Polarization (CALIOP) [25], atmospheric infrared sounder (AIRS) [26],
and, more recently, the tropospheric monitoring instrument (TROPOMI) [27]. Furthermore,
wildfire risk has climate drivers of high wind speed, lightning, relative humidity, high
temperature, and low precipitation [28], which can be measured by satellite sensors. Reanal-
ysis products from the Modern-Era Retrospective Analysis for Research and Applications,
version 2 (MERRA-2) have also been used [29].

Against this background knowledge, this study aims at comparing the wildfire BB
emissions during the two strong ENSO events of 2010/11 (i.e., La Niña) and 2015/16
(i.e., El Niño) over the southern African region. Specifically, the spatial distribution of
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BC, CO, and SO2 are examined during the main wildfire seasons, i.e., June–July–August
(JJA) and September–October–November (SON), as previously identified by Kganyago
and Shikwambana [30]. In addition, meteorological parameters, i.e., temperature and
precipitation’s spatial distributions in relation to emission hotspots and trends, are also
investigated. To our knowledge only a limited number of studies of this nature have been
carried out in southern Africa. The study contributes to a better understanding of regional
BB emission patterns in response to strong ENSO events.

2. Study Area

The climates in southern Africa (0◦–34◦S) are seasonal, ranging from arid to semi-arid,
and from temperate to tropical [31]. The region is already highly exposed to the effects of
ENSO. The ENSO cycles respectively cause severe droughts and floods in the region. They
are a major driver of climate variability, which is partly responsible for food insecurity [32].
Moreover, the southern African climate is also impacted to a lesser extent by the Southern
Annular Mode (SAM) and SST dipole events in the Indian and South Atlantic Oceans [31].
The other two unique regional ocean features imprint on the climate of southern Africa are
the Angola–Benguela Frontal Zone (ABFZ) and the Seychelles–Chagos thermocline ridge
(SCTR) [32–35].

3. Data and Methods
3.1. Data

The data used in this study are summarized in Table 1. This table illustrates the
products with their spatial and temporal resolution. The CO, BC, SO2, temperature, and
precipitation data are also used in the statistical trend analysis.

Table 1. Summary of the parameters used in this study.

Input Data Source (Temporal Acquisition,
Spatial Resolution) Products Used Time of

Analysis Deliverables

The Modern-Era Retrospective Analysis for
Research and Applications, Version 2 (Merra-2)

(monthly; 0.5◦ × 0.625◦)

(a) CO emissions (kg·m−2·s−1)
(b) BC and SO2 biomass-burning

emissions
(kg·m−2·s−1)

2010/2011
and

2015/2016

(a) Spatial distribution maps of
CO emissions

(b) BC and SO2 distribution maps
of biomass-burning emissions

Cloud–Aerosol Lidar and Infrared Pathfinder
Satellite Observations (CALIPSO)

(monthly,2◦ × 5◦)
(a) AOD mean elevated smoke

2010/2011
and

2015/2016

(a) Spatial distribution maps of
AOD mean smoke

Atmospheric Infrared Sounder (AIRS)
(monthly, 13.5 km at nadir, 1 km vertical) Air temperature (◦C)

2010/2011
and

2015/2016

Spatial distribution maps of
air temperature

Tropical Rainfall Measuring Mission (TRMM)
(monthly, 0.25◦ × 0.25◦) Precipitation rate (mm/month)

2010/2011
and

2015/2016

Spatial distribution maps of the
precipitation rate

3.1.1. MERRA-2

The Modern-Era Retrospective Analysis for Research and Applications, Version 2
(MERRA-2) is the first long-term global reanalysis to assimilate space-based observations
of aerosols and represent their interactions with other physical processes in the climate
system [36]. MERRA-2 is produced with the Global Modeling and Assimilation Office
(GMAO)/GEOS-5 (Goddard Earth Observing System Data Assimilation System Version 5)
Data Assimilation System Version 5.12.4 and its natural resolution is 0.5◦ × 0.625◦ × 72 hy-
brid sigma/pressure levels. Hourly data intervals are used for two-dimensional products,
while three-hourly intervals are used for three-dimensional products [37]. More details
on MERRA-2 can be found in Gelaro et al. [37], Buchard et al. [38], and Randles et al. [39].
The datasets used in this study are BC and SO2 BB emissions, and CO emission. Many
studies have proven the reliability of MERRA-2 data by determining the correlation be-
tween BC concentrations from MERRA-2 reanalysis data and ground measurements [40]
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(Yan et al., 2022). Therefore, the reliability of MERRA-2 data for BC is authentic and
trustworthy. However, MERRA-2 aerosol analysis corrects aerosol loadings, but does not
assimilate any SO2 and CO observations. Thus, SO2 and CO concentrations are completely
unconstrained [39].

3.1.2. CALIPSO/CALIOP

Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) is the primary instru-
ment on the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)
satellite [41]. CALIOP is a two-wavelength (532 nm and 1064 nm) polarization-sensitive
lidar that provides high-resolution vertical profiles of aerosols and clouds. CALIOP uses
three receiver channels: one measures the 1064 nm backscatter intensity, and two channels
measure the orthogonally polarized components of the 532 nm backscattered signal. The
receiver telescope is 1 m in diameter. The full-angle field of view of the telescope is 130 µrad,
resulting in a footprint at the Earth’s surface of about 90 m. The CALIOP level 2 aerosol
products provide vertically resolved aerosol extinction as well as aerosol type [41]. There
are three types of level 2 data products: layer products, profile products, and the vertical
feature mask (VFM). Layer products provide layer-integrated or layer-averaged properties
of detected aerosol and cloud layers, profile products provide retrieved extinction and
backscatter profiles within these layers, and the VFM provides information on cloud and
aerosol locations and types [42]. More details on the algorithm developed to identify
aerosol and cloud layers and to retrieve a variety of optical and microphysical properties
is discussed by Winker et al. [41] and Vaughan et al. [43]. In this study, we use the AOD
mean elevated smoke product.

3.1.3. AIRS

The atmospheric infrared sounder (AIRS) is one of six instruments aboard NASA (the
National Aeronautics and Space Administration)’s Aqua satellite, which was launched
on 4 May 2002 [44]. AIRS was launched into orbit with the intention of enhancing our
understanding of Earth’s weather and climate. AIRS has 2378 infrared channels in the
spectral range of 3.7 to 15.4 microns, with a spatial resolution of 13.5 km and four Vis/NIR
channels from 0.4 to 0.8 microns with a spatial resolution of 2.3 km [45]. More details of the
instrument are discussed by Hartmut et al. [46], Chahine et al. [47], and Menzel et al. [48].
In this study, we use the air temperature product.

3.1.4. TRMM

The Tropical Rainfall Measuring Mission (TRMM) was designed to improve the under-
standing of the distribution and variability of precipitation within the tropics as part of the
water cycle in the climate system. TRMM provides precipitation information using several
space-borne instruments to increase the understanding of the interactions between the
water vapor and clouds that are central to regulating Earth’s climate. The five TRMM in-
struments onboard are the lightning imaging sensor (LIS), TRMM microwave imager (TMI),
visible and infrared scanner (VIRS), the precipitation radar (PR), and the Clouds and the
Earth’s Radiant Energy System (CERES). Kummerow et al. [49] and Liu et al. [50] provide
comprehensive details on the specifications of the TMI, PR, VIRS, and LIS instruments.

3.2. Statistical Analysis
3.2.1. SQMK Test

The sequential Mann–Kendall (SQMK) test on time series x detects approximate
potential trend change points [51]. This test sets up two series: a progressive u(t) and a
retrograde (backward) series u′(t). If they cross each other and diverge beyond the specific
threshold value, then there is a statistically significant trend. The point where they cross
each other indicates the approximate year (i.e., change point) at which the trend begins [52].
The threshold values in this study are ±1.96 (α = 0.05). The SQMK test is computed using
the ranked values yi of the original values in analysis (x1, x2, x3, . . . , xn). The magnitude of
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yi (i = 1, 2, 3 . . . , n) are compared with yj (j = 1, 2, 3, . . . , i− 1). For each comparison, the
cases where yi>yj are counted and denoted by ni. A statistic ti can therefore be defined as:

ti = ∑i
j=1 nj (1)

The distribution of test statistic ti has a mean as

E(ti) =
i(i− 1)

4
(2)

and variance as

var(ti) =
i(i− 1)(2i + 5)

72
(3)

The sequential progressive value can be calculated as

u(ti) =
ti − E(ti)√

var(ti)
(4)

Similarly, the values of u′(ti) are computed backwards, starting from the end of the
series. In this study, the SQMK test was used to test the null hypothesis (H0) that there is
no significant change point in the times of the BB emissions and meteorological parameters
at the 95% confidence level.

3.2.2. Anomaly Detection

Anomaly detection is critical for discovering significant or extreme biomass emission
events from the time series data. Emissions data were obtained using seasonal and trend
decomposition loess (STL) [53] and generalized extreme studentized deviate (GESD) [54].
The STL is a robust non-linear technique for decomposing a time series into seasonal, trend,
and remainder components. The seasonal component consists of the variation in the time
series data for a given seasonal frequency, e.g., yearly, while the trend component consists
of the variation in the time series data in the long-term low-frequency non-stationary level,
and the remainder is the remaining portion of the time series that is not trend or season.
GESD identifies multiple anomalies (or outliers) in time series observations by ranking
them according to the order of deviation from the mean [55]. The GESD test assumes the
normal distribution of a univariate dataset, and using Equation 5, it tests the null hypothesis
(H0) that no outliers exist in the data, while the alternative hypothesis (H1) is that one or
more outliers exist in the data.

Ri = maxi∈{1,...,n}
|xi − x|

s
(5)

where s and x are the sample standard deviation and mean, respectively. Given an upper
bound, r, for the number of suspected anomalies, the GESD test essentially performs r
separate tests; it then removes the observation that maximizes |xi − x| and recomputes
the above statistic with n − 1 observations. It repeats this process until r observations
have been removed, resulting in the r test statistics R1, R2, . . . , Rr. Consistent with the test
statistics, the test computes the critical values as follows:

hi =
(n− i)× tp, n− i− 1√(

n− i− 1 + t2
p,n−i−1

)
× (n− i + 1)

, i = 1, 2, . . . , r (6)

where t2
p,v is the 100p percentage point from the t distribution with v degrees of freedom

and p = 1− α
2(n−i−1) . The number of outliers is determined by finding the largest i, such

that Ri > hi. The anomaly detection analysis was performed in R-Statistics version 4.2.2
using the packages “Anomaly Detection” and “Anomalize”.
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4. Results
4.1. Trend Analysis

Time series plots of the progressive u(t) and retrograde u′(t) series values are shown in
Figures 1 and 2, and the associated interannual variability can be observed in
Figures 3 and 4. The results of the SQMK test for emission datasets in southern Africa detect
the statistically significant change points in the annual trends for BC biomass-burning emis-
sions (see Figure 1a), CO emissions (see Figure 1b), and SO2 biomass-burning emissions
(see Figure 1c). The progressive series shows that BC and SO2 biomass-burning emissions
have two intersection points in 2007 and 2011, respectively (see Figure 1a). However, these
intersections do not occur within the defined confidence interval of ±1.96 at α = 0.05,
indicating that the change point is not significant at the 95% confidence level. BC and SO2
biomass-burning emissions increase from 2008, but become statistically significant after
2016. CO emissions (see Figure 1c) show an intersection within the confidence interval
in 2008, indicating a change point. An increasing trend from 2007 is also observed and
becomes statistically significant in 2015. The retrograde series shows a decrease in BC
and SO2 biomass-burning emission during the La Niña period and an increase during the
El Niño period. CO emissions also show the same trend. Therefore, for these emission
parameters, the SQMK test rejected the null hypothesis at the 95% confidence level.
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Figure 4. Interannual variability and anomalies of meteorological parameters detected by generalized
extreme studentized deviate (GESD) from 2000 to 2020. (a) Precipitation (PCPN) and (b) temperature.

The progressive u(t) and retrograde u′(t) curves of precipitation (see Figure 2a) and
temperature (see Figure 2b) do not indicate any significant trends. The overall trend for
precipitation exhibits a slight decrease over the period, whereas the temperature does not
show any significant trend. Therefore, the SQMK test for precipitation and temperature
failed to reject the null hypothesis at the 95% confidence level. The summary of the SQMK
results is shown in Table 2. The precipitation trends show a slight increase in the La Niña
and El Niño periods. The temperature shows a slight decrease in the La Niña period and
an increase in the El Niño period.
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Table 2. Intersection points by sequential Mann–Kendall test for southern Africa (values significant
at p ≤ 0.05).

Parameters
Intersection Points

Remarks
1st 2nd 3rd

BC 2007 2011 —– Significant

SO2 2007 2011 —– Significant

CO 2007 —– —— Significant

Precipitation 2001 2004 2007 ——–

Temperature 2005 2012 2016 ——–

4.2. Anomaly Detection

The results for anomaly detection using generalized extreme studentized deviate
(GESD) are presented in Figures 3 and 4. As shown in Figure 3, the greatest emission
anomalies are observed during a period consistent with strong El Niño and La Niña events.
For all of the emission parameters considered here, the La Niña event of 2010–2011 shows
several and highest anomalies relative to those detected during the strong El Niño event in
2015–2016. For BC, the significant anomalies were detected in 2000 (i.e., July and August),
2002 (i.e., July), 2003 (October), 2006 (i.e., July), 2008 (September), 2010 (August, September,
and October), 2011 (i.e., September), 2013 (June), and 2016 (June). For CO, the significant
anomalies were detected in times consistent with BC, except that additional significant
anomalies were also detected in 2009 (September) and no anomalies were detected in 2006.
Lastly, the SO2 anomalies were also consistent with BC anomalies, except that no significant
anomalies were detected in 2003 and anomalies were also detected in 2015 (August). On
the other hand, no significant anomalies were detected in the meteorological parameters
during the strong ENSO events (see Figure 4).

4.3. Spatial Distribution of Emission and Meteorological Parameters during JJA and SON

Since we observed the significant change points (based on SQMK test) and highest
anomalies during the years 2010/11 and 2015/16, we further analyzed the seasonal varia-
tions of the emissions, particularly focusing on the June–July–August (JJA) and September–
October–November (SON) periods, which are the main fire seasons in southern Africa as
observed by Kganyago and Shikwambana (2019). Figure 5 shows the spatial distribution
of BC biomass-burning emissions during the JJA and SON seasons during the strong La
Niña and El Niño events. A high BB emission of BC is observed during the JJA season for
both ENSO events (see Figure 5a,b). A BC plume in the JJA season is mainly attributed
to the burning of vegetation [56]. A slightly larger BC biomass-burning emissions dis-
tribution (1.5 × 10−10 kg.m−2.s−1) is observed in the La Niña event compared to the BC
distribution in the El Niño event. In the La Niña event, BC biomass-burning emissions
are observed in Botswana and not observed during the El Niño event. The La Niña event
is wetter, which allows for vegetation to grow, while the opposite is true for El Niño,
therefore less vegetation is present, resulting in less BC biomass burning. On the other
hand, during the SON season in both ENSO events, low BC biomass-burning emissions
of ~0.5 × 10−10 kg·m−2·s−1 is observed (see Figure 5c,d). The results for other emission
parameters, i.e., SO2 biomass-burning emissions (see Figure 6) and CO emissions (see
Figure 7) also show similar patterns, i.e., higher emissions in JJA than SON seasons.
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The seasonal spatial distribution results in Figures 5–7 are consistent with the higher
anomalies observed during La Niña than the El Niño event. The elevated smoke AOD
during the strong ENSO events for the seasons of JJA and SON is shown in Figure 8. A
high smoke AOD of 0.7 is observed during the JJA season for both the La Niña and El Niño
periods (see Figure 8a,b). Surprisingly, the highest smoke AOD of 0.7 is observed during the
La Niña period compared to the smoke AOD value of ~0.6 during the El Niño period. This
is because burning wet and/or damp wood produces more smoke than burning dry wood;
therefore, the La Niña period will produce more smoke AOD. Compared to the JJA season,
the SON season (see Figure 8c,d) produces a moderate smoke AOD during the La Niña and
El Niño events. La Niña shows smoke AOD values of ~0.45, while El Niño has a smoke
AOD value of ~0.35. Again, La Niña shows slightly higher smoke AOD values. The smoke
is produced primarily from the burning of vegetation. Smoke, in general, is produced when
biomass does not burn completely. Dry biomass burns more, thus producing less smoke
compared to wet wood, which does not burn completely and produces more smoke [57].
Smoke perturbs atmospheric radiation through its effects on light extinction and cloud
properties [58].

The spatial distributions of temperature and precipitation in the JJA and SON seasons
during the La Niña and El Niño periods are shown in Figures 9 and 10. A noticeable
temperature difference between La Niña and El Niño events in some parts of southern
Africa during the JJA is observed (see Figure 9a,b). The dashed boxes and red arrows show
the regions where discernible changes occurred. During the La Niña period (2010–2011),
a relatively lower temperature of ~12 ◦C is observed in the Angola region (dashed box),
whereas a higher temperature of ~20 ◦C in the same region is observed during the El Niño
event (2015–2016). Similar results are observed in the Republic of South Africa (see red
arrows), which also shows slightly lower temperatures ~9 ◦C during the La Niña event and
a slightly higher temperature of ~11 ◦C in the same region during the El Niño period. In
the Democratic Republic of Congo (DRC), i.e., where high emission plumes were observed,
the temperatures are consistently high between the two ENSO events. Generally, the
comparison of the temperature shows lower temperatures during the JJA seasons.
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Figure 10 shows the spatial distribution of precipitation in the JJA and SON seasons
during the strong La Niña and El Niño events. Overall, the JJA season shows low to
moderate precipitation (between 0 and 150 mm/month) compared to the SON season. SON
has moderate to high precipitation (between 150 and 300 mm/month). Moreover, the La
Niña period shows more precipitation than the El Niño period.

5. Discussion

ENSO is one of the most vital and longest-studied climate phenomena due to its
ability to influence temperatures and precipitation across the globe. Numerous severe and
prolonged ENSO events have been recorded throughout time, as well as some notable
extreme El Niño events (1982–1983, 1997–1998) and La Niña events (1988–1989, 1973–1974).
Recently, the 2015–2016 El Niño is known to be the strongest on record, while the 2010–2011
La Niña is of interest because of its recency. However, studies assessing the influence of
the strong ENSO events on BB emissions are rare in Africa. In the current study, trend
analysis and anomaly detection were carried out to evaluate whether these ENSO events
caused significant anomalies and changes (in magnitude and direction) in BB emissions
and meteorological parameters. Moreover, we used several parameters to characterize the
spatial distribution of CO, BC, SO2, temperature, and precipitation during the 2010–2011
and 2015–2016 ENSO events.

According to the results, the BB emission trends were significant at the 95% confidence
level, showing a significant decline during the 2010–2011 La Niña event and increasing
trend during the 2015–2016 El Niño event. Our previous related study [21], which did
not consider seasonal variations in BB emissions between the two ENSO events, showed
that most of the 2010–2011 (i.e., La Niña) BB emissions came from the region above −10◦S
(northern Angola and DRC), while the 2015–2016 (i.e., El Niño) emissions came mainly
from the region below −10◦S (Zimbabwe, Botswana, and Zambia). Therefore, the trends
observed here can be attributed to such patterns, although the region above −10◦S equally
releases high BB emissions in both ENSO events. A closer look at the main fire seasons,
i.e., JJA and SON, in the current study revealed even more interesting results, showing that
BB emissions are high in the JJA rather than SON period. In particular, the BB emissions
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in JJA are mostly distributed in northern Angola, DRC, parts of Zambia, and Tanzania,
while SON’s relatively lower emissions (~0.5× 10−10 kg·m−2·s−1) are mainly from Zambia,
Zimbabwe, Botswana, and Mozambique in both ENSO events. A study by Winkler et al. [59]
showed a precipitation deficit in southern Africa at a region around−10◦S during the onset
(i.e., August) of the 2010–2011 La Niña event, which explains the higher emissions during
JJA. Our results, therefore, imply a delayed response of wildfires to ENSO in the region
below −10◦S.

It should be noted that southern Africa is characterized by southern hemisphere
summers, where most rainfall occurs between October and March. The SON season,
therefore, contains two months from the early summer season (October to December), which
is influenced by the extratropical atmospheric circulation [60]. Therefore, the observed
higher emissions in JJA than SON indicate the influence of early rains, especially during La
Niña events as compared to El Niño events, where rains are frequently late, i.e., occurring
in the late summer season (January to March). In Figure 2a, it was shown that the 2010–2011
La Niña event experienced a slight increase in precipitation. These rains mostly affect, as
shown by the precipitation results (Figure 10c,d), the tropical regions around −10◦S, thus
suppressing widespread fires during SON. Fuel moisture content is one of the important
factors that determine ignition probability and fire behavior in forest ecosystems [61].
Fuel moisture content is the most critical factor affecting fire ignition [62]. Precipitation
influences the moisture content of fuels by cooling down the surface and helping to maintain
moisture levels within the fuel itself. It therefore slows down or eradicates the combustion
process overall.

The relatively lower precipitation levels and high temperatures during JJA in both
ENSO events studied here caused water stress and drastically reduced root-zone soil
moisture, eventually leading to low productivity and dry vegetation conditions, thus
favoring intense and widespread wildfires, which were detected by the GESD anomaly
detection (Figure 3a–c). Indeed, wildfires are modulated by a variety of factors such as
relative humidity, wind speed, wind direction, fuel load, fuel moisture, and topography,
but as the authors in [58] note, temperature and precipitation are the most important factors
in fire behavior. Prolonged high temperatures and low precipitation in either ENSO event
can increase aridity by drying out the vegetation, making it an effective fuel in the burning
process [63,64], as also shown by Figures 9 and 10. Specifically, the El Niño event has been
associated with frequent droughts in southern and eastern Africa for the past decade [65],
thus further explaining the results of the current study. Brenner [66] found a positive
correlation of 71% between the average central Pacific SST anomaly, explaining up to 50%
of the variability in burned areas in Florida.

The GESD anomaly detection highlighted anomalous BB emission values recorded
during specific months of the two ENSO events. Therefore, the results are significant for
fire management agencies, which can then target such hotspot months to extinguish and
control fires. This would ensure that the net carbon dioxide is reduced.

6. Conclusions

This study sought to compare biomass-burning (BB) emissions from wildfires (i.e., BC,
CO, and SO2) and associated meteorological conditions (i.e., temperature and precipitation)
during the 2010–2011 La Niña and 2015–2016 El Niño events over the southern African
region. The study expands on Shikwambana et al. [21] to focus on fire seasons, trends, and
anomalies. It must be emphasized that MERRA-2 products have a notable bias, which may
be attributed to the systemic bias of the assimilation system. However, the obtained results
do give the correct perspective of the distribution and trends of the pollutants discussed.

Generally, the results showed that all of the BB emission parameters had significant
trends at the 95% confidence level, considering the period from 2000 and 2018. During
the 2010–2011 La Niña and 2015–2016 El Niño strong ENSO events, a significant decline
and increase were observed, respectively. Moreover, we observed higher emissions of
SO2, CO, and BC during the JJA season compared to the SON season, mainly distributed
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below −10◦S (northern Angola and DRC) and above −10◦S (Zimbabwe, Botswana, and
Zambia) in both ENSO events. The emissions were higher during La Niña, due to observed
precipitation deficit observed by Winkler [59] in August of 2010 and high temperatures,
which then facilitated expansively spread fires and resulted in high levels of emissions
during JJA at regions below −10◦S. The anomaly detection using GESD showed significant
anomalies for BC, SO2, and CO emanating from the strong El Niño and La Niña events,
which were higher during La Niña than El Niño. The higher emissions during SON at a
region below −10◦S indicate some prolonged effect of ENSO in this region, while relatively
low emissions at a region above −10◦S can be attributed to slightly higher precipitation
during La Niña that suppressed wildfires. The slightly higher temperature and slightly
lower PCPN during the El Niño period favors drier conditions for fires and emissions. On
the other hand, no significant anomalies (at 95% confidence) were detected for temperature
and PCPN. Overall, this study has provided new insights into the response of BB emissions
to the strong ENSO events, focusing on significant fire seasons in southern Africa. The
findings warrant further studies in the region, which should use high temporal resolution
(i.e., daily) data to understand the intra-season variations in BB emissions and modulating
parameters during strong ENSO events. Overall, this study is significant for decision- and
policymaking related to climate change mitigation and the reduction of GHG emissions
from wildfires.
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