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Abstract: Hyperspectral images taken from aircraft or satellites contain information from hundreds
of spectral bands, within which lie latent lower-dimensional structures that can be exploited for
classifying vegetation and other materials. A disadvantage of working with hyperspectral images
is that, due to an inherent trade-off between spectral and spatial resolution, they have a relatively
coarse spatial scale, meaning that single pixels may correspond to spatial regions containing multiple
materials. This article introduces the Diffusion and Volume maximization-based Image Clustering
(D-VIC) algorithm for unsupervised material clustering to address this problem. By directly incorpo-
rating pixel purity into its labeling procedure, D-VIC gives greater weight to pixels corresponding to
a spatial region containing just a single material. D-VIC is shown to outperform comparable state-of-
the-art methods in extensive experiments on a range of hyperspectral images, including land-use
maps and highly mixed forest health surveys (in the context of ash dieback disease), implying that it
is well-equipped for unsupervised material clustering of spectrally-mixed hyperspectral datasets.

Keywords: hyperspectral imaging; clustering; diffusion geometry; spectral unmixing; forest health;
ash dieback

1. Introduction

Hyperspectral images (HSIs) are images of a scene or object that store spectral re-
flectance at a hundred or more spectral bands per pixel [1–3]. HSI remote sensing data,
which is generated continuously by airborne and space-borne sensors, has been used
successfully for signal processing problems in fields including forensic medicine (e.g., age
estimation of forensic traces [4]), conservation (e.g., species mapping in wetlands [5,6]), and
ecology (e.g., estimating water content in vegetation canopies [7]). The high-dimensional
characterization of a scene provided in remote sensing HSI data has motivated its use in
material classification problems [8], wherein machine learning is used to separate pixels
based on the constituent materials (including vegetation types, trees species, and plant
health) within spatial regions [2,3,9].

Though hyperspectral imagery has become an essential tool across many scientific
domains, material classification using HSI data faces at least two key challenges. First,
because of an inherent trade-off between spectral and spatial resolution, HSIs are generated
at a coarse spatial resolution [10–15]. One would prefer an HSI with both a high spatial
resolution (so that individual pixels correspond to spatial regions containing just one
material) and a high spectral resolution (to enable capacity for material classification) [11].
However, an increase in the spatial resolution of an HSI often comes at the cost of reducing
the effective detection energy entering the recording spectrometer across each spectral
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band [10]. While this effect may at least partially be mitigated by increasing the aperture
of the optical system underlying the spectrometer used to generate HSI data [16], high-
aperture instruments generally also have high volume and weight [10]. As such, HSI data
is typically generated at a coarse spatial resolution (roughly 1 m from drone, 3–10 m from
aircraft, 30 m from space). Thus, though some high-purity pixels in an HSI may correspond
to spatial regions containing predominantly just one material, other pixels are mixed,
corresponding to spatial regions with many distinct materials [12,14]. A second challenge
is that the generation of expert labels—often used for training supervised machine learning
models—is generally impractical due to the large quantities of HSI data continuously
produced by remote sensors [1]. To efficiently analyze unlabeled HSIs, one may use
HSI clustering algorithms, which partition HSI pixels into groups of points sharing key
commonalities [17]. These algorithms are unsupervised; i.e., ground truth labels are not
used to provide a partition of an HSI [17]. Though clustering has become an important
tool in the field of hyperspectral imagery [18–31], HSI clustering algorithms that do not
directly account for the fact that HSI pixels are often spectrally mixed may fail to extract
meaningful latent cluster structure [32,33].

This article introduces the Diffusion and Volume maximization-based Image Cluster-
ing (D-VIC) algorithm for unsupervised material classification (i.e., material clustering)
of HSIs. D-VIC is the first algorithm to simultaneously exploit the high-dimensional
geometry [19,34] and abundance structure [12,32] observed in HSIs for the clustering prob-
lem. In its first stage, D-VIC locates cluster modes: high-purity, high-empirical density
pixels that are far in diffusion distance (a data-dependent distance metric [35]) from other
high-purity, high-density pixels. These pixels serve as exemplars for all underlying material
structures in the HSI. In its mode selection, D-VIC downweights high-density pixels that
correspond to commonly co-occurring groups of materials. As such, D-VIC’s exploitation
of spectrally mixed structure in HSI data [10–13] enables the selection of modes that better
represent the material structure in the scene. After detecting cluster modes, D-VIC prop-
agates modal labels to non-modal pixels in order of decreasing density and pixel purity.
Since pixel purity is also incorporated into D-VIC’s non-modal labeling, D-VIC accounts
for material abundance structure in the HSI during its entire labeling procedure. D-VIC
is compared against classical and related state-of-the-art HSI clustering algorithms on
three benchmark real HSI datasets and applied to the problem of unsupervised detection
of a forest pathogen—ash dieback disease (Hymenoscyphus fraxineus) [36–39]—using real
remote sensing HSI data. On each dataset, D-VIC produces competitive unsupervised
labelings and, moreover, enjoys robustness to hyperparameter selection. Computationally,
D-VIC scales quasilinearly in the size of the HSI, and its empirical runtime is competitive,
suggesting it is well-suited to cluster large HSIs.

The rest of this article is structured as follows. Section 2 provides background on HSI
clustering, diffusion geometry, and spectral unmixing. Section 3 motivates incorporating
spectral unmixing into a nonlinear graph-based clustering framework and introduces
D-VIC. Section 4 demonstrates the efficacy of D-VIC through substantial experiments on
three real HSI datasets. Additionally, it is shown in Section 4 that D-VIC may be used for
an unsupervised ash dieback disease detection problem using remotely sensed HSI data
collected over a forest in Great Britain [40]. We conclude and offer directions for future
work in Section 5. Finally, in Appendix A, we detail hyperparameter optimization.

2. Background
2.1. Background on Unsupervised HSI Clustering

HSI clustering algorithms partition an HSI, denoted X = {xi}n
i=1 ⊂ RD (interpreted

as a point cloud of HSI pixels’ spectral signatures, with n pixels and D spectral bands)
into K clusters of pixels. The partition, which we call a clustering of X, may be encoded
in a labeling vector C ∈ {1, 2, . . . , K}n such that C(xi) = Ci ∈ {1, 2, . . . , K} is the label
assigned to the pixel xi. Ideally, pixels from any one cluster are in some sense “related,”
and pixels from any two clusters are “unrelated” [17,28,41,42]. Clustering algorithms
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are unsupervised, meaning that data points are labeled without the aid of any expert
annotations or ground truth labels. This has motivated the development of algorithms
explicitly built for material clustering using HSIs [18–31,43].

Though classical clustering algorithms such as K-Means and the Gaussian Mixture
Model (GMM) [17] remain widely used in practice, these algorithms tend to perform
poorly on HSIs for a number of reasons [18,19]. First, algorithms that rely on Euclidean
distances are prone to the “curse of dimensionality” on datasets like HSIs with a high
ambient dimension (i.e., the number of spectral bands is large) [44]. Second, HSIs are often
spectrally mixed [10–13], and overlap may exist between clusters in Euclidean space [18].
A final complication is that classical algorithms generally assume that latent clusters in a
dataset are approximately ellipsoidal groups of points that are well-separated in Euclidean
space [17], but clusters in HSIs often exhibit nonlinear structure [34]. A simple toy dataset,
visualized in Figure 1 [41], serves as an example of a dataset with a nonlinear structure.
This dataset lacks a linear decision boundary between its K = 2 latent clusters, and
classical algorithms (K-Means and GMM [17]) could not learn its latent nonlinear cluster
structure. HSIs often contain clusters that can only be separated using a nonlinear decision
boundary [18]; thus, algorithms that rely solely on Euclidean distances are expected to
perform poorly at material clustering on HSIs.
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Figure 1. Example of a toy dataset (n = 1000) with nonlinear cluster structure: two interleaving
half-circles. The idealized clustering, visualized in (a), separates each half-circle. Due to the lack of
a linear decision boundary, however, both K-Means (b) and GMM (c) were unable to extract latent
cluster structure from this simple nonlinear dataset. Both algorithms were run with 100 replicates.

The limitations outlined above have motivated the application and development of
nonlinear graph-based algorithms for HSI clustering [18–24,31,41,43,45–47]. Graph-based
algorithms rely on data-generated graphs; pixels are represented as nodes in the graph, and
edges encode pairwise similarity between them. Highly connected regions in the graph
may then be summarized using a nonlinear coordinate transformation [35,48–50], as is
described in more detail in Section 2.2. Thus, a partition may be obtained by implementing
a classical clustering algorithm on the dimension-reduced dataset. Due to their reliance on
a graph representation of an HSI, these algorithms tend to be robust to small perturbations
in the data and noise. Moreover, theoretical guarantees exist for the successful recovery of
latent cluster structure, even if boundaries between latent clusters are nonlinear [42,51,52].
Despite their exhibited successes, algorithms that rely solely on graph structure tend to
perform poorly on datasets containing multimodal cluster structure [42,52,53]; i.e., if a
single cluster has multiple regions of high and low density. Importantly, this includes
spectrally mixed HSIs, the classes of which often contain multiple co-occurring materials of
varying abundances [10–12].

Deep neural networks and graph convolutional networks have recently become pop-
ular for material classification and clustering in HSIs because of their capacity to predict
complex data sources [25–27,29,30,47,54,55]. While these algorithms tend to be highly
accurate at material classification using real HSI data, many state-of-the-art deep models
for HSI segmentation still rely in some part on training labels, whether via pre-training
some or all of the network [54,55] or explicitly relying upon a small number of ground
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truth labels [25,26,47,56], and/or pseudo-labels [25,29]. Moreover, even fully unsupervised
“deep clustering” algorithms [27,30] rely on deep neural networks, which have been shown
to be prone to error from perturbations and noise [57,58] and whose success in unsuper-
vised clustering is often due to data pre-processing steps rather than the unsupervised
network learning meaningful features [59].

2.2. Background on Spectral Graph Theory

As overviewed in Section 2.1, graph-based clustering algorithms learn latent, possi-
bly nonlinear cluster structure from HSIs by treating pixels as nodes in an undirected,
weighted graph, where connections between pixels are encoded in a weight matrix
W ∈ Rn×n [41,42,52,60]. In large datasets like HSIs, edges can be restricted to the first
N � n `2-nearest neighbors (i.e., Euclidean distance nearest neighbors) and given unit
weight. In other words, Wij = 1 if xi is one of the N nearest neighbors of xj or vice versa,
and Wij = 0 otherwise. Let P = D−1W, where D ∈ Rn×n is the diagonal degree matrix de-
fined by Dii = ∑n

j=1 Wij. The matrix P ∈ Rn×n may be interpreted as the transition matrix
for a Markov diffusion process on X and has a unique stationary distribution π ∈ R1×n

satisfying πP = π [35,42]. Define {(λi, ψi)}n
i=1 to be the (right) eigenvalue-eigenvector

pairs of P, sorted in non-increasing order so that 1 = λ1 > |λ2| > · · · > |λn| ≥ 0. The
first K eigenvectors of P often concentrate on the K most coherent subgraphs in the graph
underlying P, making these vectors useful for clustering [41].

Background on Diffusion Geometry

Diffusion distances are a family of data-dependent distance metrics which enable
comparisons between points in the context of the Markov diffusion process encoded in
P [35]. Diffusion distances have been successfully used in a number of applications (e.g.,
in gene expression profiling [61,62], data visualization [63,64], and molecular dynamics
analysis [65–67]). Moreover, diffusion distances have been shown to efficiently capture
low-dimensional structure in HSI data, resulting in excellent clustering performance [18,52].

Define Dt(xi, xj) =
√

∑n
k=1[(Pt)ik − (Pt)jk]2/πk to be the diffusion distance at time

t ≥ 0 between pixels xi, xj ∈ X [35,68,69]. Diffusion distances are a nonlinear data-
dependent distance metric that have a natural connection to the clustering problem [42,52].
To see this, note that Dt(xi, xj) may be interpreted as the Euclidean distance between the
ith and jth rows of Pt, weighted according to 1/π. If pixels from the same cluster share
many high-weight paths of length t, but paths of length t between any two pixels from
different clusters are relatively low weight, then the ith and jth rows of Pt are expected to
be nearly equal for pixels xi and xj from the same cluster and very different if these pixels
come from different clusters. So, the diffusion distance between points from the same
cluster is expected to be small, and the diffusion distance between points from different
clusters is expected to be large [42,52]. Diffusion distances can be efficiently computed

using the eigendecomposition of P: Dt(xi, xj) =
√

∑n
k=1 λ2t

k [(ψi)k − (ψj)k]2 [35,68,69]. For t

sufficiently large so that |λk|2t ≈ 0 for k > `, the sum in diffusion distances can be truncated
past the `th term, yielding an accurate and efficient approximation of diffusion distances.
Importantly, the relationship between diffusion distances and the eigendecomposition of P
indicates that diffusion distances may be interpreted as Euclidean distances after nonlinear
dimensionality reduction via the following dimension-reduced mapping of the ambient
space into R`: xi → [λt

1(ψ1)i λt
2(ψ2)i . . . , λt

`(ψ`)i] [35,68,69].
HSIs often encode well-defined latent multiscale cluster structures that can be learned

by diffusion-based HSI clustering algorithms by varying the time parameter t in diffusion
distances [52,60]. Indeed, smaller t values generally enable the detection of fine-scale local
cluster structure, while larger t values enable the detection of coarse-scale global cluster
structure. However, for algorithms that require K as an input, t must be tuned to correspond
to the desired number of clusters. Thus, the choice of t must be carefully considered when
clustering a dataset using an algorithm that relies on diffusion distances [52,60].
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2.3. Background on Spectral Unmixing

Real-world HSI data is often generated at a coarse spatial resolution; thus, pixels
may correspond to spatial regions containing multiple materials [70–72]. To learn the
latent material structure from HSIs, spectral unmixing algorithms decompose each pixel’s
spectrum into a linear combination of endmembers that encode the spectral signature of
materials in the scene. The endmembers may be understood as “pure” material signatures.
When representing a pixel as a linear combination of these endmembers, the coefficients
of the linear combination indicate the relative abundance of materials within the spatial
region corresponding to that pixel. Mathematically, a spectral unmixing algorithm learns
U = (u1 u2 . . . um)T ∈ Rm×D (with rows encoding the spectral signatures of endmembers)
and A ∈ Rn×m (with rows encoding abundances) such that xi ≈ ∑m

j=1 Aijuj for each
xi ∈ X [72]. Usually, the entries of A are nonnegative and normalized so that ∑m

j=1 Aij = 1
for each i; hence, abundances are data-dependent features storing estimates for the relative
frequency of materials in pixels. The purity of xi ∈ X, defined by η(xi) = max1≤j≤m Aij [32],
will be large if the spatial region corresponding to xi is highly homogeneous (i.e., containing
predominantly just one material) and small otherwise. As such, pixel purity and spectral
unmixing may be used to aid in the unsupervised clustering of HSIs [21,28,32].

Spectral unmixing has become an important tool in hyperspectral imagery, prompt-
ing its usage in a number of applications (e.g., image reconstruction [73–75], noise
reduction [76–78], spatial resolution enhancement [79–81], supervised material classifica-
tion [32,82,83], change detection [84–87], and anomaly detection [31,88,89]). The importance
of spectral unmixing in remote sensing has motivated the development of many algorithms
for this task, which we broadly summarize here; see surveys [12,90–94] for a more thorough
overview. Geometric methods for spectral unmixing estimate endmembers by searching
for points that form a simplex of minimal volume, subject to a constraint that at least some
nearly pure pixels exist within the observed HSI pixels [12,14,19,70,95–104]. For highly
mixed HSIs that lack pure pixels, statistical methods may be used [105–109]. These methods
typically treat spectral unmixing as a blind source separation problem, and though they
are often successful at this task, statistical algorithms are usually more computationally
expensive [12]. Additionally, autoencoding methods learn latent spectral mixing structure
by training neural networks that map pixel spectra to a lower-dimensional space that can
be related to endmember and abundance matrices U and A [110–118]. Finally, while linear
spectral unmixing is well-developed and widely used in practice, some nonlinear unmixing
algorithms (including some relying on neural networks [111,115,119–122]) have been devel-
oped to account for nonlinear interactions between endmembers [111,115,119,120,122–127].
Nevertheless, many of these algorithms typically require training data or hyperparameter
inputs, unlike many of the linear mixing models reviewed above [12].

Spectral unmixing is relevant to our paper as a way to determine cluster modes in an
unsupervised setting. Below, we focus on two standard methods in unmixing but note that
D-VIC is modular in this regard, and other unmixing algorithms could be used.

2.3.1. Background on the HySime Algorithm

Hyperspectral Signal Subspace Identification by Minimum Error (HySime) is a stan-
dard algorithm for estimating the number of materials m in X [128]. HySime assumes
that each xi ∈ X is of the form xi = yi + ζi, where yi ∈ RD and ζi ∈ RD model the
signal and noise associated with xi, respectively. If signal vectors are linear mixtures of m
ground truth endmembers (i.e., yi = ∑m

j=1 Aijuj for 1 ≤ i ≤ n), then the set {yi}n
i=1 lies on

a m-dimensional subspace of RD. With this motivation, HySime estimates the subspace
dimension by balancing the error of projecting signal vectors {yi}n

i=1 onto their first m
principal components with the amount of noise captured by those vectors’ orthogonal
complement. Though other algorithms exist for estimating the number of materials in a
scene using HSI data, many of these alternatives rely on hyperparameter inputs to estimate
m or have large computational complexity [129]. For example, the ubiquitous virtual
dimensionality—which relies on a Neyman–Pearson detection theory-based threshold to
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determine m [130]—has been shown to be highly sensitive to small perturbations in pixel
spectra and hyperparameter inputs [128]. In contrast, HySime is hyperparameter-free
and can compute a high-quality, numerically stable estimate using only X in just O(D2n)
operations.

2.3.2. Background on the AVMAX Algorithm

Alternating Volume Maximization (AVMAX) is a spectral unmixing algorithm, requir-
ing m as a parameter, that searches for vectors {ui}m

i=1 ⊂ RD that produce an m-simplex
of maximal volume, subject to the constraint that each ui lies in the convex hull of the
dataset after Principal Component Analysis (PCA) dimensionality reduction: projecting
pixel spectra onto the span of the first m− 1 principal components [70]. This dimensionality
reduction step is motivated by the fact that any vector in the affine hull of the m endmem-
bers can always be expressed as y = Cα + 1

n ∑x∈X x, where C ∈ RD×(m−1) is related to
the first m− 1 principal components of X [70,131]; see Lemma 1 in [70] for details. End-
members are optimized through multiple partial maximization procedures (i.e., keeping
m− 1 endmembers constant and optimizing for volume while varying the mth endmember)
until convergence [70]. AVMAX has become popular for spectral unmixing because of its
strong performance guarantees and the rigor behind its optimization framework [12,70].
Indeed, in a noiseless, linearly mixed dataset containing the optimal endmember set, if
each partial maximization problem in AVMAX converges to a unique solution, AVMAX is
guaranteed to converge to the optimal endmember set [70]. Moreover, AVMAX can easily
be modified to make it robust to random initialization; one can run multiple replicates
of AVMAX in parallel and choose the endmember set with the largest volume. Once
endmembers are learned, abundances may be computed using a nonnegative least squares
solver: (Ai1 Ai2 . . . Aim) = argmina∈[0,∞)m ‖xi −∑m

j=1 ajuj‖2
2 for each xi ∈ X [132].

3. Diffusion and Volume Maximization-Based Image Clustering

In spectrally mixed HSIs, any one pixel may correspond to a spatial region that contains
many materials [12,14]. Thus, even state-of-the-art algorithms for unsupervised material
clustering may perform poorly on mixed HSIs, failing to recover clusterings that can be
linked to materials within the scene. Algorithms that do not directly incorporate a spectral
unmixing step into their labeling may assign clusters corresponding to groups of materials
rather than clusters corresponding to individual materials. Thus, additional improvements
are needed to develop algorithms suitable for material clustering on mixed HSIs.

This section introduces the Diffusion and Volume maximization-based Image Cluster-
ing (D-VIC) algorithm (Algorithm 1) for unsupervised material clustering of HSIs. To learn
material abundances, D-VIC first performs a spectral unmixing step: decomposing the HSI
by learning the number of endmembers m using HySime [128], implementing AVMAX with
that m-value to learn endmembers [70], and calculating abundances and purity through
a nonnegative least squares solver [132]. As will become clear in Section 4, this estimate
for pixel purity resulted in high-quality material clustering with D-VIC. Nevertheless,
the choice of the algorithm used for spectral unmixing in D-VIC is quite modular, and
future work may consider applying other endmember extraction algorithms [12,92–94,130]
and/or abundance solvers that explicitly constrain estimates to sum to one [133,134]. D-
VIC then estimates empirical density using a kernel density estimate (KDE) defined by
p(x) = 1

Z ∑y∈NNN(x) exp(−‖x− y‖2
2/σ2

0 ), where NNN(x) is the set of N `2-nearest neigh-
bors of x in X, σ0 > 0 is a KDE scale controlling the interaction radius between points, and
Z is a constant normalizing p(x) so that ∑y∈X p(y) = 1. By construction, p(x) will be large
if the pixel x is close to its N `2-nearest neighbors in X and small otherwise [18,42,135].
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Algorithm 1: Diffusion and Volume maximization-based Image Clustering
Input: X (HSI), N (# nearest neighbors), σ0 (KDE scale), t (diffusion time),
K (# clusters)
Output: C (clustering)

1 Estimate m, the number of latent endmembers in X, using HySime [128];
2 Learn endmembers U ∈ Rm×D using AVMAX [70] and abundances A ∈ Rn×m

using a nonnegative least squares solver [132];
3 For each x ∈ X, calculate pixel purity η(x) and empirical density p(x). Store

ζ(x) = 2p̄(x)η̄(x)
p̄(x)+η̄(x) , where p̄(x) = p(x)

maxy∈X p(y) and η̄(x) = η(x)
maxy∈X η(y) ;

4 Build dt(x) using ζ(x), where diffusion distances are computed from a KNN
graph with N edges per pixel;

5 Assign C(xmk ) = k for 1 ≤ k ≤ K, where {xmk}K
k=1 are the K pixels maximizing

Dt(x) = ζ(x)dt(x);
6 In order of non-increasing ζ(x), for each unlabeled x ∈ X, assign x the label C(x∗),

where x∗ = argminy∈X{Dt(x, y)| ζ(y) ≥ ζ(x) and C(y) > 0}.

To locate pixels that are both high-density and indicative of an underlying material,
D-VIC calculates ζ(x) = 2p̄(x)η̄(x)

p̄(x)+η̄(x) , where p̄(x) = p(x)
maxy∈X p(y) and η̄(x) = η(x)

maxy∈X η(y) . Thus,

ζ(x) returns the harmonic mean of p(x) and η(x), which are normalized so that density
and purity are approximately at the same scale. By construction, ζ(x) ≈ 1 only at high-
density, highly pure pixels x. In contrast, if a pixel x is either low-density or low-purity,
then ζ(x) will be small. Importantly, ζ(x) downweights mixed pixels that, though high-
density, correspond to a spatial region containing many materials. Thus, points with large
ζ-values will correspond to pixels that are modal (due to their high empirical density) and
representative of just one material in the scene (due to their high pixel purity).

D-VIC uses the following function to incorporate diffusion geometry into its procedure
for selecting cluster modes:

dt(x) =

{
maxy∈X Dt(x, y) x = argmaxy∈X ζ(y),

miny∈X{Dt(x, y)|ζ(y) ≥ ζ(x)} otherwise.

Thus, a pixel will have a large dt-value if it is far in diffusion distance at time t from its
Dt-nearest neighbor of higher density and pixel purity. D-VIC assigns modal labels to the
K points maximizing Dt(x) = dt(x)ζ(x), which are high-density, high-purity pixels far in
diffusion distance at time t from other high-density, high-purity pixels.

After labeling cluster modes, D-VIC labels non-modal points according to their Dt-
nearest neighbor of higher ζ(x)-value that is already labeled. Importantly, D-VIC down-
weights low-purity pixels through ζ(x) in its non-modal labeling. Thus, pixel purity is
incorporated in all stages of the D-VIC algorithm through ζ(x). D-VIC is provided in
Algorithm 1, and a schematic is provided in Figure 2.

3.1. Computational Complexity

The computational complexity of the HySime algorithm is O(D2n) operations [128],
whereas the computational complexity of spectral unmixing using AVMAX and a standard
nonnegative least squares solver [132] is O((D2 + m4 + m2 I)n) operations, where I is the
number of AVMAX partial maximizations [70]. We assume that nearest neighbor searches
are performed using cover trees: an indexing data structure that enables logarithmic nearest
neighbor searches [136]. To see this, define the doubling dimension of X by d = log2(c),
where c > 0 is the smallest value for which any ball Bp(p, r) = {q ∈ X | ‖p− q‖ ≤ r}
can be covered by c balls of radius r/2. If the spectral signatures of pixels in X ⊂ RD have
doubling dimension d, a search for the N `2-nearest neighbors of each HSI pixel using cover
trees has computational complexity O(NDCdn log(n)), where C is a constant independent
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of n, D, N, and d. Thus, if W is constructed using cover trees [136] with N nearest neighbors,
and O(1) eigenvectors of P are used to calculate diffusion distances, then the computational
complexity of D-VIC is O((D2 + m4 + m2 I)n + NDCdn log(n)) [42,136].

So long as the spatial dimensions of the scene captured by an HSI are not changed, we
expect that m (the expected number of materials within the scene) will be constant with
respect to the number of samples n. Similarly, numerical simulations have shown that if m
remains constant as the number of samples increases, then I tends to grow only slightly [70].
If m = O(1) and I = O(log(n)) with respect to n, then the complexity of D-VIC reduces to
O(NDCdn log(n)) (i.e., quasilinear in the image size).

Spectral Unmixing

Input: 𝑋 = {𝑥!}!"#$ , 𝐾; parameters, 𝑁, 𝜎%, 𝑡
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𝑂(𝑁𝐷𝐶'log(𝑛))

For each pixel 𝑥! ∈ 𝑋

Compute joint density-purity measure 𝜁 𝑥
𝑂(𝑛)

Estimate endmembers 𝑼 ∈ ℝ(×* using AVMAX
𝑂(𝑚&𝐼𝑛)

Solve for abundances 𝑨 ∈ 𝑅$×( using a 
nonnegative least squares solver

𝑂((𝑚++𝐷&)𝑛)

Compute pixel purity 𝜂 𝑥! = max
#,-,(

𝑨!-

𝑂(𝑚)

Locate the 𝑁 nearest neighbors of each 𝑥! ∈ 𝑋
𝑂(𝑁𝐷𝐶'𝑛 log 𝑛 )

Build sparse weight matrix 𝑾:𝑾𝒊𝒋 = 1 if  𝑥- is a 
nearest neighbor of 𝑥- or vice versa and 0 otherwise

𝑂(𝑁𝑛)
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𝑂(𝑁𝑛)
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4
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For each 𝑥! ∈ 𝑋, calculate the nonlinear coordinate 
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𝑂(𝑘𝑛)
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𝑂(𝑁𝑘𝐶'𝑛 log 𝑛 )

Assign unique labels to cluster modes: 
the 𝐾 maximizers of  𝒟5 𝑥 = 𝜁 𝑥 d6 x

𝑂(𝑛)

For each still unlabeled data point, 
in order of decreasing 𝜁 𝑥
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Output: clustering {𝑋4}4"#9

Figure 2. Diagram of the D-VIC clustering algorithm. The computational complexity of each step
is colored in red. The scaling of D-VIC depends on n (no. pixels), D (no. spectral bands), m
(no. endmembers), I (no. AVMAX maximizations), N (no. nearest neighbors), d (doubling dimension
of X [136]), and C: a constant independent of all other parameters [136]; see Section 3.1 for details.
Note that all steps are quasilinear with respect to n, implying that D-VIC scales well to large HSI
datasets. We remark that the spectral unmixing step (indicated with a blue box) is quite modular, and
other approaches may be used in future work [12,90,93,94,130,133,134].

3.2. Comparison with Learning by Unsupervised Nonlinear Diffusion

An important point of comparison for D-VIC is the Learning by Unsupervised Nonlin-
ear Diffusion (LUND) algorithm [18,42], which follows a similar procedure to D-VIC but
crucially uses the KDE p(x) in place of ζ(x). To give some motivation for why we advocate
for ζ instead of p for material clustering, we remark that for any one cluster, there may be
multiple reasonable choices for cluster modes: pixels that are exemplary of the underlying
cluster structure. In LUND, cluster modes are selected to be high-density pixels that are far
in diffusion distance from other high-density pixels. However, not all high-density pixels
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necessarily correspond to the underlying material structure. A maximizer of p(x) could,
for example, correspond to a spatial region containing a group of commonly co-occurring
materials (rather than a single material). By weighting pixel purity and density equally,
D-VIC avoids selecting such a pixel as cluster mode; thus, D-VIC modes will both indicate
the underlying material structure and be modal, making these points better exemplars of
underlying material structure than the modes selected by LUND.

We demonstrate this key difference between LUND and D-VIC by implementing both
algorithms on a simple dataset (visualized in Figure 3) built to illustrate the idealized
scenario where D-VIC outperforms LUND due to its incorporation of pixel purity. This
dataset was generated by sampling n = 5000 points from an equilateral triangle in R2

centered at the origin with edge length
√

2; the K = 3 vertices of this triangle served as
ground truth endmembers. We sampled 1000 data points from a Gaussian distribution
with a standard deviation of 0.175 centered at each endmember, keeping only the samples
lying within the convex hull of the ground truth endmember set. In addition, 2000 data
points were sampled from a Gaussian distribution with zero mean and a smaller standard
deviation of 0.0175. As such, high-purity points indicative of latent material structure were
also relatively low-density, and density maximizers were engineered not to be indicative of
latent material structure. Each point was assigned a ground truth label corresponding to its
highest-abundance ground truth endmember.
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Figure 3. Ground truth labels and pixel purity of synthetic dataset sampled from a triangle in R2; the
K = 3 vertices of this triangle served as ground truth endmembers. Notice that empirical density
maximizers near the origin are also the lowest-purity data points.

For both LUND and D-VIC, overall accuracy (OA), defined to be the fraction of
correctly labeled pixels, was optimized for across the same grid of relevant hyperparameter
values (see Appendix A). The optimal clusterings and their corresponding OA values are
provided in Figure 4. These results illustrate a fundamental limitation of relying solely on
empirical density to select cluster modes in spectrally mixed HSI data. Because empirical
density maximizers are not representative of the underlying material structure in this
synthetic dataset, LUND cannot accurately cluster data points within the high-density, low-
purity region near the origin, resulting in poor performance and an OA of 0.739. In contrast,
D-VIC downweights high-density points that are not also high-purity and, therefore, selects
points that are more representative of the dataset’s underlying material structure as cluster
modes. As a result, D-VIC correctly separates the high-density, low-purity region into
three segments, yielding a substantially higher OA of 0.905, a difference of 0.166 when
compared to LUND. We note that both LUND and D-VIC are related to classical spectral
graph clustering methods [41,68,137] in their use of a diffusion process on the graph to
learn the intrinsic geometry in the high-dimensional data, but differ in their use of data
density (LUND) and data purity (D-VIC) in identifying cluster modes as well as in their
use of an iterative labeling scheme.
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Figure 4. Optimal LUND (OA = 0.739) and D-VIC (OA = 0.905) clusterings of the synthetic dataset
(Figure 3). D-VIC explicitly incorporates data purity into its labeling procedure, resulting in better
clustering performance than LUND in the high-density, low-purity region near the origin.

4. Experiments and Discussion

This section contains a series of experiments indicating the efficacy of D-VIC. First,
in Section 4.1, classical and state-of-the-art clustering algorithms were implemented on
three real benchmark HSIs. D-VIC was compared against classical algorithms [17]: K-
Means, K-Means applied to the first principal components of the HSI (K-Means+PCA),
and GMM applied to the first principal components of the HSI (GMM+PCA). D-VIC was
also compared against several state-of-the-art HSI clustering algorithms: Density Peak
Clustering (DPC) [135], Spectral Clustering (SC) [41,137], Symmetric Nonnegative Matrix
Factorization (SymNMF) [21], K-Nearest Neighbors Sparse Subspace Clustering (KNN-
SSC) [19,20], Fast Self-Supervised Clustering (FSSC) [46] and LUND [18,42]. Our second
set of experiments appears in Section 4.2, where D-VIC and other clustering algorithms
were implemented on a remote sensing HSI generated over deciduous forest containing
both healthy and dieback-infected ash trees in Madingley Village near Cambridge, United
Kingdom [40,138].

In all experiments, the number of clusters was set equal to the ground truth K. Com-
parisons were made using OA and Cohen’s κ coefficient: κ = po−pe

1−pe
, where po is the relative

observed agreement between a clustering and the ground truth labels and pe is the proba-
bility that a clustering agrees with the ground truth labels by chance [139]. OA is a standard
metric that, in some ways, captures the best sense of overall performance, as each pixel
is considered of equal importance. However, it is biased in favor of correctly labeling
large clusters at the expense of small clusters and can be misleading when a dataset has
many small clusters of importance. To address this, we also consider κ; we note that in
our experimental results, performance with respect to OA and κ were highly correlated.
OA was optimized for across hyperparameters ranging a grid of relevant values for each
algorithm (see Appendix A). We report the median OA across 100 trials for K-Means, GMM,
SymNMF, FSSC, and D-VIC to account for the stochasticity associated with random initial
conditions. Diffusion distances were computed using only the first 10 eigenvectors of P in
LUND and D-VIC. For D-VIC, AVMAX was run 100 times in parallel, and the endmember
set that formed the largest-volume simplex was selected for later cluster analysis.

4.1. Analysis of Benchmark HSI Datasets

To illustrate the efficacy of D-VIC, we analyzed three publicly available, real HSIs often
used as benchmarks for new HSI clustering algorithms; see Table 1 and Figure 5. Water
absorption bands were discarded, and pixel reflectance spectra were standardized before
analysis [140]. We clustered entire images but discarded unlabeled pixels when comparing
clusterings to the ground truth labels. Below, each benchmark HSI analyzed in this section
is overviewed in detail; see Table 1 for summary statistics on these benchmark HSIs.



Remote Sens. 2023, 15, 1053 11 of 25

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) Salinas A

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

(b) Jasper Ridge

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

(c) Indian Pines
Figure 5. Ground truth labels and first principal component scores for the real benchmark HSIs
analyzed in this article: Salinas A (a), Jasper Ridge (b), and Indian Pines (c).

Table 1. Summary of benchmark HSI datasets analyzed in Section 4.1.

Dataset Spatial Resolution Spectral Range Spatial Dimensions Num. Pixels Num. Spectral Bands Num. Clusters

Salinas A 1.3 m 380–2500 nm 83× 86 n = 7138 D = 224 K = 6
Jasper Ridge 5.0 m 380–2500 nm 100× 100 n = 10,000 D = 224 K = 4
Indian Pines 20 m 400–2500 nm 145× 145 n = 21,025 D = 224 K = 16

1. Salinas A (Figure 5a) was recorded by the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS) sensor over farmland in Salinas Valley, California, USA, in 1998 at a
spatial resolution of 1.3 m. Spectral signatures, ranging in recorded wavelength from
380 nm to 2500 nm across 224 spectral bands, were recorded across 83× 86 pixels
(n = 7138). Gaussian noise (with mean 0 and standard deviation = 10−7) was added
to each pixel to differentiate two pixels with identical spectral signatures. The Salinas
A scene contains K = 6 ground truth classes corresponding to crop types.

2. Jasper Ridge (Figure 5b) was recorded by the AVIRIS sensor over the Jasper Ridge
Biological Preserve, California, USA, in 1989 at a spatial resolution of 5 m. Spectral
signatures, ranging in recorded wavelength from 380 nm to 2500 nm across 224 spec-
tral bands, were recorded across spatial dimensions of 100× 100 pixels (n = 10,000).
The Jasper Ridge scene contains K = 4 ground truth endmembers: road, soil, water,
and trees. Ground truth labels were recovered by selecting the material of the highest
ground truth abundance for each pixel.

3. Indian Pines (Figure 5c) was recorded by the AVIRIS sensor over farmland in north-
west Indiana, USA, in 1992 at a low spatial resolution of 20 m. Spectral signatures,
ranging in recorded wavelength from 400 nm to 2500 nm across 224 spectral bands,
were recorded across spatial dimensions of 145× 145 pixels (n = 21,025). The Indian
Pines scene contains K = 16 ground truth classes (e.g., crop types and manufactured
structures) and many unlabeled pixels.
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4.1.1. Discussion of Benchmark HSI Experiments

This section compares clusterings produced by D-VIC against those of related al-
gorithms (Table 2). On each of the three benchmark HSIs analyzed, D-VIC produces a
clustering closer to the ground truth labels than those produced by related algorithms.
In the Indian Pines (Figure 5c) scene, pixels from the same class exist in multiple seg-
ments of the image, and the size of ground truth clusters varies substantially across the
K = 16 classes. As such, though supervised and semi-supervised HSI classification algo-
rithms may output highly-accurate classifications of the Indian Pines HSI [141–145], this
image is expected to be challenging for fully-unsupervised clustering algorithms that rely
on no ground truth labels. Nevertheless, D-VIC achieves higher performance than all
other algorithms on this challenging dataset. Notably, though all other algorithms (in-
cluding state-of-the-art algorithms, such as LUND) achieve κ-statistics in the same narrow
range of 0.271 to 0.316, D-VIC achieves a substantially higher κ-statistic of 0.350. As such,
incorporating pixel purity in D-VIC enables superior detection even in this difficult setting.

As visualized in Figure 6, D-VIC achieved nearly perfect recovery of the ground truth
labels for Salinas A. Most notably, though all comparison methods erroneously separate the
ground truth cluster indicated in yellow in Figure 5a (corresponding to 8-week maturity
romaine), D-VIC correctly groups the pixels in this cluster, resulting in performance that
was 0.089 higher in OA and 0.110 in κ than the that of LUND, its closest competitor in
Table 2. As such, downweighting high-density points that are not also exemplary of the
latent material structure improves not only modal but also non-modal labeling. Moreover,
what error does exist in the D-VIC clustering of Salinas A could likely be remedied through
spatial regularization or smoothing post-processing [146,147].

Table 2. Performances of D-VIC and related algorithms on benchmark HSIs. The highest and
second-highest performances are bolded and underlined, respectively. D-VIC offers substantially
higher performance on all datasets evaluated.

Salinas A Jasper Ridge Indian Pines
OA κ OA κ OA κ

K-Means 0.764 0.703 0.784 0.703 0.383 0.315
K-Means + PCA 0.764 0.703 0.785 0.703 0.382 0.316
GMM + PCA 0.611 0.512 0.789 0.701 0.364 0.292
DPC 0.629 0.529 0.809 0.727 0.410 0.271
SC 0.834 0.797 0.760 0.670 0.382 0.314
SymNMF 0.828 0.791 0.662 0.542 0.365 0.304
KNN-SSC 0.844 0.809 0.726 0.629 0.371 0.308
FSSC 0.830 0.793 0.780 0.691 0.396 0.281
LUND 0.887 0.860 0.815 0.737 0.404 0.312
D-VIC 0.976 0.970 0.865 0.805 0.445 0.350

D-VIC similarly achieved much higher performance than related state-of-the-art graph-
based clustering algorithms on Jasper Ridge (as visualized in Figure 7). This difference in
performance was substantially driven by the superior separation of the classes indicated in dark
blue (corresponding to tree cover) and green (corresponding to soil) in Figure 5b. Indeed, though
LUND groups most tree cover pixels with soil pixels in Figure 7, D-VIC correctly separates much
of the latent structure for this class. The difference between LUND’s and D-VIC’s clusterings
indicates that the pixels corresponding to the tree cover class, though lower density than pixels
corresponding to the soil class have relatively high pixel purity.
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Figure 6. Comparison of clusterings produced by D-VIC and related algorithms on the Salinas A HSI.
Unlike any comparison method, D-VIC correctly groups pixels corresponding to 8-week maturity
romaine (indicated in yellow), resulting in the near-perfect recovery of the ground truth labels.

Figure 7. Comparison of clusterings produced by D-VIC and related algorithms on the Jasper Ridge
HSI. D-VIC outperforms all other algorithms, largely due to superior performance among pixels
corresponding to tree and soil classes (indicated in dark blue and green, respectively).
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4.1.2. Runtime Analysis

This section compares runtimes of the algorithms implemented in Section 4.1.1, where
hyperparameters were set to be those which produced the results in Table 2. All experiments
were run in MATLAB on the same environment: a macOS Big Sur system with an 8-core
Apple® M1™ Processor and 8 GB of RAM. Each core had a processor base frequency of
3.20 GHz. Runtimes are provided in Table 3. All classical algorithms have smaller runtimes
than D-VIC, but the performances reported in Table 2 for these algorithms are substantially
less than those reported for D-VIC. On the other hand, though KNN-SSC and SymNMF
achieve performances competitive to D-VIC, unlike D-VIC, these algorithms appear to
scale poorly to large datasets. DPC, which relies on Euclidean distances between high-
dimensional pixel spectra, has lower runtimes on Salinas A than D-VIC but scales poorly to
the larger Indian Pines image. In addition, D-VIC outperforms FSSC and operates at lower
runtimes across HSI datasets. Finally, D-VIC outperforms LUND at the cost of only a small
increase in runtime (associated with the spectral unmixing step).

Table 3. Runtimes (seconds) of D-VIC and related algorithms. D-VIC achieves runtimes comparable
to state-of-the-art algorithms and scales well to the larger Indian Pines dataset.

Salinas A Jasper Ridge Indian Pines

K-Means 0.04 0.10 1.04
K-Means + PCA 0.10 0.14 0.58
GMM + PCA 0.13 0.23 2.19
DPC 3.20 6.41 25.77
SC 1.82 3.15 14.54
SymNMF 3.50 4.42 48.29
KNN-SSC 4.11 7.91 103.05
FSSC 13.53 30.40 130.72
LUND 2.35 4.14 14.74
D-VIC 4.95 7.64 23.70

4.1.3. Robustness to Hyperparameter Selection

This section analyzes the robustness of D-VIC’s performance to hyperparameter
selection. For each node in a grid of (N, σ0), D-VIC was implemented 50 times, and the
median OA value across these 50 trials was stored. Performance degraded as N increased
substantially past 100, and such a choice is not advised. In Figure 8, we visualize how the
performance of D-VIC varies with N and σ0. The relatively small range in nominal values
of σ0 in our grid reflects that pixels from the HSIs analyzed in this article are relatively
close to their `2-nearest neighbors on average. As is described in Appendix A—where
our hyperparameter optimization is discussed in greater detail—the range of σ0 used for
each grid search is data-dependent, ranging the distribution of `2-distances between pixel
spectra and their 1000 `2-nearest neighbors.
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Figure 8. Visualization of D-VIC’s median OA across 50 trials as hyperparameters N and σ0 are
varied. D-VIC achieves high performance across a large set of hyperparameters.
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It is clear from Figure 8 that D-VIC can achieve high performance across a broad
range of hyperparameters on each HSI. Thus, given little hyperparameter tuning, D-VIC is
likely to output a partition that is competitive with clusterings reported in Table 2. Figure 8
also motivates recommendations for hyperparameter selection to optimize the OA of D-
VIC. Larger datasets (e.g., Indian Pines) tend to require larger values of N for D-VIC to
achieve high OA, corresponding with recommendations in the literature that N should
grow logarithmically with n [42]. Additionally, D-VIC achieves the highest OA for datasets
with high-purity material classes (e.g., Salinas A) using large σ0. This reflects that, as σ0
increases, the KDE p(x) becomes more constant across the HSI and ζ(x) ≈ η(x). Since
purity is an excellent indicator of material class structure for Salinas A, D-VIC becomes
better able to recover the latent material structure with larger σ0.

We also analyze the robustness of D-VIC’s performance to selection of the diffusion
time parameter t. Using the optimal values of N and σ0, D-VIC was evaluated 100 times at
t-values ranging {10, 20, . . . , 200}. Figure 9, which visualizes the results of this analysis,
indicates D-VIC achieves high OA values across a broad range of t; for each t ∈ [90, 200],
D-VIC outputs a clustering with OA equal to or very close to those reported in Table 2.
These results indicate that D-VIC is well-equipped to provide high-quality clusterings
given little or no tuning of t. Indeed, a simple choice of t = 100 works exceptionally well
across all datasets.
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Figure 9. Analysis of D-VIC’s performance as t varies across [10, 200]. Values are the median OA
across 100 implementations of D-VIC with the optimal N and σ0 values. Generally, t appears to have
little impact on the OA of D-VIC, and D-VIC achieves performances comparable to those reported in
Table 2 across t ∈ [90, 200], uniformly across all data sets.

4.2. Analysis of the Madingley HSI Dataset

This section presents implementations of D-VIC and other clustering algorithms on
real HSI data to illustrate that unsupervised clustering algorithms may be used to generate
ash dieback disease mappings from remotely-sensed HSI data, even when no ground truth
labels are available. Algorithms were evaluated on the Madingley HSI dataset, which was
collected by a manned aircraft in August 2018 over a 512 m× 356 m region of temperate
deciduous forest in Madingley Village near Cambridge, United Kingdom [40]. This HSI
was recorded by a Norsk Elektro Optikk hyperspectral camera (Hyspex VNIR 1800) at
a high spatial resolution of 0.32 m. Spectral signatures, ranging in recorded wavelength
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from 410 nm to 1001 nm across 186 spectral bands, were recorded across 1601× 1113 pixels
(n = 1,816,835). The Madingley HSI was preprocessed using QUick Atmospheric Correc-
tion [1] (to remove atmospheric effects on pixel spectra) and standardization of spectral
signatures (to mitigate differences in illumination across pixels) [40].

Healthy and dieback-infected ash trees were identified in the Madingley scene using a
pair of supervised classifiers [40]. First, to isolate ash tree crowns in the scene, a supervised
Partial Least Squares Discriminant Analysis (PLSDA) classifier was trained to predict tree
species using manually-collected ground truth labels for 166 tree crowns in the Madingley
scene and 256 tree crowns in three other forest regions near Cambridge [40]. Labeled
tree crowns were split into training (70%) and validation (30%) sets. The trained PLSDA
classifier generalized well to the validation set, achieving an OA of 85.3% on those data [40].
Next, a supervised ash dieback disease map was generated for trees in the Madingley
scene classified as ash by the PLSDA [40]. Specifically, a supervised random forest (RF)
classifier was trained to classify a tree crown as one of three disease classes—healthy,
infected, and severely infected—using the average pixel spectra from pixels corresponding
to that tree crown. The RF was trained using manually-labeled tree crowns across the four
aforementioned scenes and evaluated on a validation set consisting of 16 tree crowns from
each disease class. The trained RF classifier was highly successful at identifying ash dieback
disease, with an OA of 77.1% on its validation set [40]. Visualizations of the Madingley HSI
and the RF disease mapping are provided in Figure 10.
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(b) Principal Component Scores
Figure 10. Visualizations of the Madingley HSI. The RF disease mapping is visualized in (a) and
the Madingley HSI’s first principal component scores are visualized in (b). In (a), yellow indicates
severely-infected ash, green indicates infected ash, and light blue indicates healthy ash.

Dieback-infected ash trees tend to have a mosaic of healthy and dead branches, so
bicubic interpolation [148] was implemented on the Madingley HSI before cluster analysis
to downsample pixels to a 1.28 m spatial resolution [148]. Thus, each pixel covered a spatial
region containing multiple branches, leading to a more holistic characterization of tree
health (rather than of individual branches) [138]. Unsupervised clustering algorithms were
evaluated on the n = 72,775 pixels in the resulting 401× 279 scene corresponding to ash
trees in the down-sampled PLSDA species mapping [40]. For each clustering algorithm,
we set K = 2 so that clusters of pixels corresponded to healthy and dieback-infected trees.
Unsupervised clusterings were evaluated by comparing against the supervised RF disease
mapping after combining the “infected” and “severely infected” classes and aligning labels
using the Hungarian algorithm.

Discussion of Madingley Experiments

Table 4 summarizes the overlap of D-VIC’s and other algorithms’ clusterings of the
Madingley HSI with the RF disease mapping. Notably, four algorithms—SC, KNN-SSC,
LUND, and D-VIC—achieved comparably high OA and κ values. We remark that the RF
disease mapping used for validation results from a supervised learning algorithm trained on a
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small set of labels. Because it is an imperfect labeling of the Madingley HSI, small differences
in OA or κ values between SC, KNN-SSC, LUND, and D-VIC should not be taken as an
indication that one of these clustering methods is better or worse than another. Nevertheless,
these algorithms’ high levels of overlap with the RF disease mapping indicate that graph-
based unsupervised clustering algorithms like D-VIC may be applied to remotely-sensed HSI
data to assess forest health even when ground truth labels are unavailable.

Table 4. Performances of D-VIC and related algorithms on the Madingley HSI. The highest and second-
highest performances are bolded and underlined, respectively. Many graph-based algorithms—SC,
KNN-SSC, LUND, and D-VIC—achieved approximately the same high performance on the Madingley
HSI, indicating that graph-based HSI clustering algorithms may be used for unsupervised ash dieback
disease mapping, even when no ground truth labels exist. KM denotes K-Means.

KM KM + PCA GMM + PCA DPC SC SymNMF KNN-SSC FSSC LUND D-VIC

OA 0.570 0.570 0.477 0.555 0.595 0.630 0.651 0.608 0.648 0.645
κ 0.245 0.245 0.099 0.000 0.300 0.243 0.328 0.262 0.296 0.287

Though many graph-based HSI clustering algorithms exhibited similar levels of over-
lap with the supervised RF disease mapping, substantial differences exist between the
unsupervised disease mappings obtained by different clustering algorithms, as can be
observed in Figure 11. Indeed, LUND and D-VIC tended to predict ash dieback disease
in regions considered healthy according to the RF disease map [40]. On the other hand,
other similarly-performing graph-based clustering algorithms (SC and KNN-SSC) tended
to label trees as healthy even in regions where the RF disease map indicates substantial
dieback disease infection [40]. All clusterings exhibit salt-and-pepper error, indicating that
spatial regularization [146,147] or majority voting within tree crowns [40,138] may improve
overlap between unsupervised clusterings and the RF labeling even further.

Figure 11. Comparison of clusterings produced by D-VIC and related algorithms on the Madingley
HSI. Labels were aligned so that yellow indicates dieback-infected ash and teal indicates healthy ash.
Though the performance of many graph-based algorithms (SC, KNN-SSC, LUND, and D-VIC) was
similar in Table 4, qualitative differences exist between these algorithms’ clusterings.
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5. Conclusions

This article introduces the D-VIC clustering algorithm for unsupervised material classi-
fication in HSIs. D-VIC assigns modal labels to high-density, high-purity pixels within the
HSI that are far in diffusion distance from other high-density, high-purity pixels [32,42,70].
We have argued that these cluster modes are highly indicative of underlying material struc-
ture, leading to more interpretable and accurate clusterings than those produced by related
algorithms [18,42]. Indeed, experiments presented in Section 4 show that incorporating pixel
purity into D-VIC results in clusterings closer to the ground truth labels on three benchmark
real HSI datasets of varying sizes and complexities and enables high-fidelity unsupervised
ash dieback disease detection on remotely-sensed HSI data. As such, D-VIC is equipped to
perform efficient material clustering on broad ranges of spectrally mixed HSI datasets.

Future work includes modifying the spectral unmixing step in D-VIC. To demonstrate
the effect of including a pixel purity estimate in a diffusion-based HSI clustering algorithm,
we have chosen a simple, standard linear unmixing procedure to generate the pixel purity
estimate in D-VIC: using HySime to estimate the number of endmembers in an HSI [128],
AVMAX to estimate those endmembers [70], and a nonlinear least squares solver [132]
to calculate abundances. The spectral unmixing procedure in D-VIC is quite modular,
however, and improvements to D-VIC’s clustering performance may be gained through
improvements to this procedure; for example, by explicitly constraining abundances to
sum to one [134] or accounting for nonlinear mixing of endmembers [123–125]. Linear
endmember extraction is computationally inexpensive [70,128,132], and it results in a strong
performance in D-VIC, but recent years have brought significant advances in algorithms
for the nonlinear spectral unmixing of HSIs [123–125]. Modifying the spectral unmixing
step in D-VIC may improve performance, especially for HSIs in which assumptions on
linear mixing do not hold [123–125].

Additionally, much of the error in D-VIC’s clusterings may be corrected by incorpo-
rating spatial information into its labeling. Such a modification of D-VIC may improve
performance on datasets with spatially homogeneous clusters [60,146,149–154]. Moreover,
it is likely that varying the diffusion time parameter t in D-VIC may enable the detec-
tion of multiple scales of latent cluster structure, a problem we would like to consider
further in future work [28,52,60,155]. Additionally, we expect D-VIC may be modified
for active learning, wherein ground truth labels for a small number of carefully selected
pixels are queried and propagated across the image [147,156]. Finally, we expect that
D-VIC (or one of the extensions described above) may be modified for change detection in
remotely-sensed scenes [86].
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Appendix A. Hyperparameter Optimization

This appendix describes the hyperparameter optimization performed to generate
numerical results. The parameter grids used for each algorithm are summarized in Table A1.
For K-Means + PCA and GMM + PCA, we clustered the first z principal components of the
HSI, where z was chosen so that 99% of the variation in the HSI was maintained after PCA
dimensionality reduction. Thus, K-Means, K-Means + PCA, and GMM + PCA required
no hyperparameter inputs. For stochastic algorithms with hyperparameter inputs (SC,
SymNMF, FSSC, and D-VIC), we optimized for the median OA across 10 trials at each node
in the hyperparameter grids described below.

Table A1. Hyperparameter grids for algorithms. The number of nearest neighbors N took values
in N : an exponential sampling of the set [10, 900]. The set A is a grid of values ranging from 0 to 1
used as FSSC regularization parameters. The set D contains `2-distances between data points and
their 1000 `2-nearest neighbors. The set T is an exponential sampling of the diffusion process:
T = {0, 1, 2, . . . , 22, . . . , 2T}. A “—” indicates a lack of a hyperparameter input.

Parameter 1 Grid Parameter 2 Grid Parameter 3 Grid

K-Means — — —
K-Means + PCA — — —

GMM + PCA — — —
DPC [135] N ∈ N σ0 ∈ D —

SC [41] N ∈ N — —
SymNMF [21] N ∈ N — —

KNN-SSC [19,20] N ∈ N λ = 10 —
FSSC [46] N ∈ N αu ∈ A ` = 211

LUND [42] N ∈ N σ0 ∈ D t ∈ T
D-VIC N ∈ N σ0 ∈ D t ∈ T

All graph-based algorithms relied on adjacency matrices built from sparse KNN
graphs. The number of nearest neighbors was optimized for each algorithm across N : an
exponential sampling of the set [10, 900]. KNN-SSC’s regularization parameter was set
to λ = 10, motivated by prior work with this parameter [19]. FSSC was evaluated using
regularization parameters αu ∈ A = {0, 10−5, 10−3, 10−1, 0.5, 0.99, 0.999, 0.9999}, as was
suggested in [46]. FSSC, as an anchor-based clustering algorithm, requires the number of
anchor pixels m as input. We set ` = 211, as this `-value is greater than all N ∈ N [46]. We
used the same KDE and hyperparameter ranges of σ0 for DPC, LUND, and D-VIC. In our
grid searches, σ0 ranged D : a sampling of the distribution of `2-distances between data
points and their 1000 `2-nearest neighbors. Both LUND and D-VIC were implemented at
time steps t ∈ T = {0, 1, 2, 22, . . . , 2T}, where T = dlog2[logλ2(P)(

2×10−5

min(π)
)]e. Searches end

at time t = 2T because maxx,y∈X Dt(x, y) ≤ 10−5 for t ≥ 2T [52,60]. For each dataset, we
chose the t ∈ {0, 1, 2, 22, . . . , 2T} resulting in maximal OA. As is described in Section 4.1.3,
D-VIC is quite robust to this choice of parameter.
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