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Abstract: As an essential basic function of grassland resource surveys, grassland-type recognition
is of great importance in both theoretical research and practical applications. For a long time,
grassland-type recognition has mainly relied on two methods: manual recognition and remote
sensing recognition. Among them, manual recognition is time-consuming and laborious, and easily
affected by the level of expertise of the investigator, whereas remote sensing recognition is limited by
the spatial resolution of satellite images, and is not suitable for use in field surveys. In recent years,
deep learning techniques have been widely used in the image recognition field, but the application
of deep learning in the field of grassland-type recognition needs to be further explored. Based
on a large number of field and web-crawled grassland images, grassland-type recognition models
are constructed using the PyTorch deep learning framework. During model construction, a large
amount of knowledge learned by the VGG-19 model on the ImageNet dataset is transferred to the
task of grassland-type recognition by the transfer learning method. By comparing the performances
of models with different initial learning rates and whether or not data augmentation is used, an
optimal grassland-type recognition model is established. Based on the optimal model, grassland
resource-type map, and meteorological data, PyQt5 is used to design and develop a grassland-type
recognition system that uses user-uploaded grassland images and the images’ location information
to comprehensively recognize grassland types. The results of this study showed that: (1) When
the initial learning rate was set to 0.01, the model recognition accuracy was better than that of the
models using initial learning rates of 0.1, 0.05, 0.005, and 0.001. Setting a reasonable initial learning
rate helps the model quickly reach optimal performance and can effectively avoid variations in
the model. (2) Data augmentation increases the diversity of data, reducing the overfitting of the
model; recognition accuracies of the models constructed using the augmented data can be improved
by 3.07–4.88%. (3) When the initial learning rate was 0.01, modeling with augmented data and
with a training epoch = 30, the model performance reached its peak—the TOP1 accuracy of the
model was 78.32% and the TOP5 accuracy of the model was 91.27%. (4) Among the 18 grassland
types, the recognition accuracy of each grassland type reached over 70.00%, and the probability of
misclassification among most of the grassland types was less than 5.00%. (5) The grassland-type
recognition system incorporates two reference grassland types to further improve the accuracy of
grassland-type recognition; the accuracy of the two reference grassland types was 72.82% and 75.01%,
respectively. The recognition system has the advantages of convenient information acquisition, good
visualization, easy operation, and high stability, which provides a new approach for the intelligent
recognition of grassland types using grassland images taken in a field survey.
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1. Introduction

China’s grassland resources are rich and diverse, with a total area of 265 × 104 km2

(https://mnr.gov.cn/dt/ywbb/202108/t20210826_2678340.html, accessed on 13 February
2023). As the largest terrestrial ecosystem in China [1,2], grassland ecosystems have a
variety of ecological functions, such as climate regulation, water conservation, soil and
water conservation, carbon and nitrogen fixation, and biodiversity maintenance. At the
same time, grasslands also provide a large number of production and living resources
for human beings, such as livestock products, plant resources, and tourism resources,
which are important for the sustainable development of human society [3,4]. Since China’s
reforms and opening-up in the 1980s, the utilization of grassland resources has been
increasing, and the irresponsible utilization phenomena of grassland, such as over-grazing
and over-cultivation, have existed for a long time in large areas [5,6]. By the beginning of
this century, the Chinese government had identified the problem and developed a series
of grassland conservation projects and policies; these grassland conservation measures
have effectively curbed the degradation of natural grassland in China and significantly
improved the grassland ecosystem in most areas of China [7,8].

As a basic tool for monitoring and evaluating grasslands, the grassland resource sur-
vey provides a comprehensive and systematic understanding of the basic conditions of
grasslands through the investigation of variables, such as natural resources, grassland types,
areas, spatial distribution ranges, and production and management status, etc., [7]. As-
sessing and developing reasonable and effective grassland use and conservation measures
helps maintain the health and stability of grassland ecosystems and promotes the sustain-
able use and development of grassland natural resources [9]. Among them, grassland-type
recognition, as an important part of the grassland resource survey, is an important ba-
sic function in understanding and studying the natural and economic characteristics of
grassland resources. Grassland-type recognition helps to understand the principles under
which grassland occurs, the development of grassland, and how to rationalize the use,
development, and cultivation of grassland resources [10].

Currently, the main methods of grassland-type recognition are manual recognition
and remote sensing image recognition. Manual recognition mainly relies on the experience
of professionals, through a combination of visual recognition and geographic location in-
formation to arrive at a comprehensive judgment. This method requires that investigators
have a high level of expertise and training on the techniques required, so there are a series
of disadvantages, such as low efficiency, high costs in money and time, and difficulty with
information sharing. In addition, due to the different knowledge bases of investigators,
there is some inevitable subjectivity in the recognition process. Remote sensing image
recognition mainly uses the spectral signatures of different types of grassland and the
difference in sensitivity to vegetation indices to construct a classification decision method
for grassland types that can be used to complete classification and recognition [11]. This
method has strengths such as easy data acquisition, wide coverage, and suitability for
grassland-type classification at a large scale. For example, Guo et al. (2011) used 23 MODIS
NDVI time series data in 2009 to complete the recognition of grassland types in northern
Tibet using an unsupervised classification method, which proved the feasibility of using
remote sensing images for grassland-type recognition in northern Tibet [12]. Sun et al.
(2012) used Landsat TM imagery and a decision tree classification method, based on the
wave characteristics of different grassland types, and used NDVI data to finally complete
the remote sensing recognition of grassland types in the Yarlung Tsangpo River source
area [13]. Although existing studies have confirmed the advantages of remote sensing
image recognition in large-scale grassland classification, the recognition accuracy based

https://mnr.gov.cn/dt/ywbb/202108/t20210826_2678340.html
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on the remote sensing method is greatly influenced by the spatial resolution of satellite
images. Low and medium-resolution remote sensing images are not suitable for the refined
recognition of grassland typing, and high-resolution satellite images are usually costly to
use, and the preprocessing is complicated and time-consuming. Additionally, the acquisi-
tion of satellite images often has a certain lag and cannot achieve real-time recognition of
grassland types. Therefore, this method is not suitable for use in field surveys.

Some existing studies have shown that deep learning technology applied to remote
sensing classification works [14,15]. With the continuous development of computer and
image processing technologies, deep learning technology can also be effectively applied to
the classification and recognition of images. Compared with traditional machine learning-
based image recognition, the advantage of deep learning is that it eliminates the step of
extracting image features artificially, with the algorithm automatically conducting feature
extraction, which reduces human interference, greatly reduces workload, and improves
recognition efficiency based on ensuring recognition accuracy [16]. Sun et al. (2017)
completed the recognition of 100 ornamental plants based on the improved ResNet model,
and the result showed that the recognition accuracy reached 91.78%; Liu et al. (2019)
completed the image recognition of 103 chrysanthemum species based on the VGG-16
model with a verified accuracy of 89.43%; Li et al. (2022) completed the recognition of
24 typical desert plant species based on the RegNetX_8GF model, and the result showed that
the recognition accuracy reached 78.33%; Mu et al. (2022) integrated the feature pyramid
network (FPN) and ResNeXt model to complete the image recognition of nine weeds in
farmland, and the verified accuracy was >95% [17–20]. Although deep learning algorithms
have made good progress in the field of plant image classification and recognition, deep
learning techniques are still in the preliminary exploration stage in the field of grassland-
type recognition research. In addition, most of the existing plant image classification
and recognition studies only focus on the predicted results of the model and lack other
auxiliary judgment criteria. For classification and recognition studies with a large number
of categories and a high degree of similarity between categories (e.g., grassland-type
recognition), it is difficult to guarantee the accuracy of recognition for the image type.
Therefore, research into the image recognition of grassland types based on deep learning
algorithms needs to be further explored, and in particular, a comprehensive classification
and recognition method for grassland types suitable for grassland resource field surveys is
urgently required.

Considering the above factors, this study is based on a large amount of grassland image
data taken in the field during the growing seasons of 2018–2021, with the grassland image
data augmented by web crawling and image transformation. This data was then processed
using the PyTorch deep learning framework, the VGG-19 model, and the transfer learning
method in order to construct a grassland-type recognition model and to evaluate the
accuracy of the model for each grassland type. On this basis, we designed and developed a
grassland-type recognition system that uses the recognition results of the model, grassland
resource-type map, and meteorological data to comprehensively identify grassland images
uploaded by users, providing a new approach and technical support for the intelligent
recognition of grassland types in grassland field surveys conveniently and reliably.

2. Materials and Methods
2.1. Principles of Grassland Classification

Currently, there are two major systems for classifying grassland in China: the habitat
classification system and the comprehensive sequential classification system [21–23]. This
study used the grassland habitat classification system, which classifies natural grassland
in China into 18 major categories, which is also the number adopted nationally in the
principles of grassland classification established by the Chinese Ministry of Agriculture
in 1987. This system first classifies natural grassland into zonal grassland and non-zonal
grassland. Zonal grasslands are divided into 16 categories according to moisture and heat
conditions and types of grassland vegetation (heat conditions and moisture conditions
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are divided according to climatic heat zones and Ivanov wetness index, respectively;
grassland vegetation is divided into five types: meadow, steppe, desert, wetland, and
shrub): temperate meadow steppe, temperate steppe, temperate desert steppe, temperate
steppe desert, temperate desert, mountain meadow, alpine meadow steppe, alpine steppe,
alpine meadow, alpine desert, alpine desert steppe, warm tussock, warm shrub tussock,
tropical tussock, tropical shrub tussock, and savanna. Non-zonal grasslands, which are
classified according to moisture condition and grassland vegetation type, are divided into
two categories: wetland and lowland meadows [24].

2.2. Grassland Image Data Acquisition and Preprocessing
2.2.1. Data Acquisition

The acquisition of grassland image data included both field photography and web
crawling. The field photography data were collected from July to September of 2018–2021,
and these data were photographed at an appropriate distance by digital camera or cell
phone. The acquired images are required to have grassland as the main subject, show the
full view of grassland, and have simple backgrounds. The images also need to be clear with
few interfering objects (examples are shown in Figure 1). After collating and analyzing
the data, a total of 3307 images taken in the field were obtained, covering the 18 types of
grassland mentioned in Section 2.1. Since the deep learning method relies heavily on a
large amount of labeled data for training, a further 4096 images of grassland were obtained
by web crawling, involving 16 types of grassland, with the aim of improving the model’s
prediction accuracy. In total, 7403 images of grassland were obtained. The data from field
photography and web crawling were uploaded to the Grassland Resource Monitoring and
Intelligent Analysis System, where experienced experts identified the grassland types of
the images in the background.

Figure 1. Grassland image data (examples): (a) alpine desert steppe, (b) mountain meadow, (c) tem-
perate steppe desert, (d) temperate desert steppe, (e) temperate meadow steppe, (f) tropical tussock,
(g) temperate steppe, (h) alpine meadow, (i) wetland, (j) lowland meadow, (k) savanna, (l) alpine
meadow steppe, (m) alpine steppe, (n) alpine desert, (o) warm tussock, (p) warm shrub tussock,
(q) tropical shrub tussock, and (r) temperate desert.

2.2.2. Data Cleaning and Segmentation

Data cleaning aims to address problems in the original data by filling in missing
values, smoothing noisy data, removing abnormal values, etc., and optimizing the data
structure [25]. Of these, removing abnormal values is the easiest to use. In the study, we
manually screened all acquired grassland image data and removed data that did not meet
the model training criteria. Finally, 400 images of each type of grassland were retained, for
a total of 7200 images of the 18 grassland types.
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In the cleaned grassland image data, each grassland type was randomly allocated
to the training set, the validation set, and the test set in a ratio of 8:1:1. The training set
had a total of 5760 images (320 images of each grassland type), the validation set a total
of 720 images (40 images of each grassland type), and the test set a total of 720 images
(40 images of each grassland type). The training set was used for creating the grassland-
type recognition model, the validation set was used to adjust the hyperparameters of the
model during training and to evaluate the overall recognition accuracy of the model, and
the test set was used to evaluate the recognition accuracy of the optimal model for each
grassland type.

2.2.3. Data Augmentation

Judging that the data set of grassland images that had been obtained was still not
large enough for a deep learning algorithm and aiming to improve the recognition accuracy
of the model, this study used data augmentation to supplement the grassland images in
the training set [26]. Using the transforms tool in the torchvision image processing library,
when data were inputted into the model, images were first adjusted to 256 × 256 pixels
and then randomly cropped to 224 × 224 pixels. This step is equivalent to expanding
the data set 32 × 32 = 1024 times. Then, images were randomly flipped horizontally,
flipped vertically, rotated, and transformed in brightness, contrast ratio, and saturation
(an example is shown in Figure 2). The above image transformation operations effectively
complement the grassland image training set, which can reduce overfitting in model
training and improve the generalization performance of the model. This study compared
the differences between modeling with the original data and modeling with the augmented
data to quantify the positive impact of data augmentation on model recognition accuracy.
For the original data without augmentation, the images needed to be centrally cropped to
224 × 224 pixels to meet the algorithm’s input image pixel requirements.

Figure 2. Examples of image augmentation.
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2.3. Reference Grassland Types

Because of the large number of grassland types involved in this study and the high sim-
ilarity between some grassland types, we chose two spatial distribution maps of grassland
types as auxiliary judgments for the recognition results of the grassland-type recognition
model: one is the reference grassland type 1 based on the Chinese grassland resource-type
map, and the other is the reference grassland type 2 based on the classification of grassland
according to meteorological data.

2.3.1. Chinese Grassland Resource-Type Map

The Chinese grassland resource-type map was downloaded from the Resource and
Environmental Science and Data Center of the Chinese Academy of Science (https://
www.resdc.cn, accessed on 16 March 2022) as 1:1,000,000 Chinese grassland resource-type
vector data. This data was obtained by digitizing the results of the field survey of Chinese
grassland resources from 1978 to 1985 [27]. The grassland classification principle of this data
also adopts the grassland habitat classification system, and its collation and digitization
process adopt the method of multiple checks by validators. The data are of good quality,
reliable accuracy, and accurately reflect the grassland types in China in the 1980s. However,
nearly 40 years have passed since the development of the Chinese grassland resource-type
map, and some grassland types have inevitably changed during this period; this data
cannot accurately reflect the natural grassland types in China in recent years, so it is only
used as an auxiliary judgment for the recognition results of the grassland-type recognition
model constructed in this study.

2.3.2. Classification of Grassland Based on Meteorological Data

Grassland types are significantly influenced by meteorological factors [28]; therefore,
the classification of grassland based on meteorological data was chosen as the second
reference for grassland types in this study (the specific classification principles are shown in
Table 1). The meteorological data used included average monthly temperatures, the average
temperature of the hottest month, annual precipitation, the average annual temperature,
the annual relative humidity, and >0 ◦C annual cumulative temperature for each year from
2018 to 2021, where the data for average monthly temperatures, the average temperature of
the hottest month, annual precipitation, the average annual temperature, and the annual
relative humidity were downloaded from the National Earth System Science Data Center
Shared Services Platform (http://www.geodata.cn, accessed on 16 March 2022), with a
spatial resolution of 1 km. The data for the >0 ◦C annual cumulative temperature was
calculated in ArcGIS 10.2 software based on the data of average monthly temperature from
2018 to 2021. The Ivanov wetness index was calculated from annual precipitation, average
annual temperatures, and annual relative humidity, using the formula [27]:

K =
r

E0
=

r
[0.0018 · (25 + t)2 · (100− f )]

(1)

where K is the Ivanov wetness index, r is the annual precipitation (mm), E0 is the evap-
oration force, t is the average annual temperature (◦C), and f is the annual relative
humidity (%).

https://www.resdc.cn
https://www.resdc.cn
http://www.geodata.cn
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Table 1. Meteorological classification indicators for grassland types.

Steppe Type
Average

Temperature of the
Hottest Month/◦C

>0 ◦C Annual
Cumulative

Temperature/◦C

Ivanov Wetness
Index

Temperate meadow steppe 10–22 1500–3900 0.60–1.00
Temperate steppe 10–22 1500–3900 0.30–0.60

Temperate desert steppe 10–22 1500–3900 0.20–0.30
Temperate steppe desert 10–22 1500–3900 0.13–0.20

Temperate desert 10–22 1500–3900 0–0.13
Mountain meadow 10–22 1500–3900 >1.00

Alpine meadow steppe 6–10 0–1500 0.60–1.00
Alpine steppe 6–10 0–1500 0.30–0.60

Alpine meadow 6–10 0–1500 >1.00
Alpine desert 6–10 0–1500 0–0.13

Alpine desert steppe 6–10 0–1500 0.20–0.30
Warm tussock 22–26 3900–4800 >1.00

Warm shrub tussock 22–26 3900–4800 >1.00
Tropical tussock 26–28 >4800 >1.00

Tropical shrub tussock 26–28 >4800 >1.00
Savanna 26–28 >4800 >1.00
Wetland — — —

Lowland meadow — — —
The above classification indicators are referenced from the “Rangeland Resources of China” prepared by the
Bureau of Animal Husbandry and Veterinary Medicine of the Ministry of Agriculture of the People’s Republic of
China [24].

To avoid encountering climate anomalies in a single year, all meteorological classifica-
tion indicators were averaged from 2018 to 2021.

2.4. Construction and Evaluation of Grassland-Type Recognition Model
2.4.1. Deep Learning Framework

The framework chosen for this study was PyTorch. PyTorch is a Python version of
Torch, an open-source neural network framework released by Facebook Inc. (San Francisco,
CA, USA). in 2017. Torch is a very classical tensor library for manipulating multidi-
mensional matrix data, which works well in deep learning and other math-intensive
applications; however, because Torch uses Lua as its programming language, it has a
limited audience. PyTorch is a deep learning framework using Python as the programming
language, with a well-supported system and usable interface. PyTorch is not a simple
encapsulation of Torch’s Python interface but refactors all modules on the tensor and adds
automatic derivation functions and has become the most popular dynamic neural network
today [29]. PyTorch’s design contains three abstract levels: tensor, variable, and module,
which are tightly linked and arranged sequentially; besides that, there are no other complex
and abstract concepts [30]. PyTorch’s code is simple and easy to understand; the amount of
source code is only about one-tenth of TensorFlow, making it easier for users to read. In
addition, because PyTorch’s object-oriented design is inherited from Torch, it continues to
be flexible and easy to use, especially the design of the interface, API, and other parts are
excellent. PyTorch is also more in line with the logical thinking of users, allowing them
to focus on their own ideas as much as possible during the development process without
being bound by too many frameworks. PyTorch can also support GPU acceleration, which
is significantly faster than mainstream frameworks such as Caffe and Keras under the same
algorithmic conditions [30].

The basic framework of PyTorch consists of four parts: the application layer, the opti-
mization layer, the network construction layer, and the data storage layer. The application
layer contains two modules, Dataset and Dataloader, which are responsible for reading
data and loading data, respectively. The optimization layer is responsible for optimizing
the network to move closer to the target network, where Autograd is responsible for the
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differentiation and Optimizer is responsible for optimizing the network parameters. The
core of the network construction layer is the nn module, where Containers are the main
body of the nn module, including two parts—the network layer and the functional module.
The network layer mainly includes the convolution layer, the pooling layer, and the fully
connected layer. The functional module contains a large number of functions. Init is respon-
sible for the initialization of various parameters, and the parameter is responsible for the
management of parameters in the network. In addition, there are many common network
models integrated into the nn module that can be easily invoked. The data storage layer
consists of the Tensor module and the Storage module, which define the data structure and
the storage structure for PyTorch operations [31].

2.4.2. VGG-19 Pretrained Model and Transfer Learning

VGG-Net is a convolutional neural network developed by the Visual Geometry Group
of Oxford with the participation of Google DeepMind. VGG-Net successfully constructs a
16–19-layer convolutional neural network by repeatedly using 3 × 3 small convolutional
kernels and 2 × 2 maximum pooling layers. This approach effectively enhances the depth
of the network and improves the effectiveness of the neural network to a certain extent
while ensuring the same perceptual field [32]. VGG-Net is often used for image feature
extraction because of its simple network structure and good generalization performance,
which transfers well to other image data. The trained model parameters of this network
have been made open source on its website and can be used for training image classification
tasks. It is very widely used because it provides good initialized weights. Research shows
that a greater number of layers of a convolutional neural network benefit the extraction of
image features, thus being more helpful for image recognition [33]. As the neural network
with the deepest number of layers in VGG-Net, VGG-19 can obtain better recognition
effects with the same data set. Therefore, in this study, the VGG-19 pretrained model was
chosen to construct the grassland-type recognition model. The structure of VGG-19 is
shown in Figure 3; it contains 16 convolutional layers and 3 fully connected layers. The
convolutional layers are divided into five segments, with each segment containing two to
four convolutional layers, and a max-pooling layer connected at the end of the segment.
The number of convolutional kernels in each segment is the same, and the closer to a fully
connected layer, the more convolutional kernels there are [34].

Figure 3. VGG-19 structure. Numbers 1-16 are the convolutional layers, numbers 17–19 are the fully
connected layers.

VGG-19 is a pretrained model based on the large image dataset, ImageNet, which can
be used for the classification and recognition of grassland types by transferring the large
amount of knowledge learned from the ImageNet dataset. There are two main transfer
learning methods: feature transfer and parameter transfer. Feature transfer firstly removes
the last layer of the pretraining model, treats the whole pretraining model as a feature
extractor, makes the image stop at the specified layer after passing through the input layer
and forward propagation, and extracts feature vectors obtained before that as features
of input images. Parameter transfer means fixing most of the layers of the pretrained
model (directly using the weight parameters of the original model) and only initializing the
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remaining few layers for the new classification and recognition task [35]. The first transfer
learning method is adopted in this study. Transfer learning with VGG-19 is accomplished
by reconstructing fully connected layers and fine-tuning them. This method can not only
significantly reduce training time but can also effectively reduce the overfitting of the model
in the training set and improve the accuracy of the model.

2.4.3. Setting of Main Training Parameters

In this study, the Adam optimizer is used for the optimization of the model, the weight
decay is set to the default value of 0.0005, the learning rate is dynamically adjusted using
the gradient decay method and combined with experience through a strategy of halving
the learning rate every three epochs when the loss decreases, and dynamic monitoring of
loss and accuracy during training is conducted using Meta’s visualization tool, Visdom.
With a reasonable initial learning rate, this method can shorten the training time of the
model to reach the optimal solution quickly and effectively avoid variations at the same
time [36,37]. The formula is expressed as:

lr = lr0 × 0.5ˆ(n/3) (2)

where lr0 is the initial learning rate, lr is the learning rate after decay, and n is the number
of training epochs.

The loss is calculated by the cross-entropy loss function, which is a common loss
function used in multi-classification problems to measure the difference between the true
value and the predicted value of the model. The formula is expressed as:

Loss = −
n

∑
i=1

yi log y′i (3)

where yi is the true distribution of the ith sample,
yi
′ is the model output’s distribution of the ith sample, and n is the number of cate-

gories.
The batch size is the number of samples fed into the model at each training of the

neural network. A large batch size usually leads to faster convergence of the network;
however, due to the limitation of memory resources, an overly-large batch size may lead
to a lack of memory or the program kernel crashing [38]. Considering the hardware
performance and training time, the batch size was set to 64 for both the training set and the
validation set. The number of epochs was the number of times the entire training set was
fed into the network for training. The maximum training epoch was preset to 60.

2.4.4. Model Preservation

As with TensorFlow, Keras, and other frameworks, PyTorch provides two ways to
save a model: either the parameters of the model can be saved or the complete model can
be saved. Both of these methods can be implemented by calling the pickle serialization
method. In this study, we used the method of saving the model’s parameters. As PyTorch’s
officially recommended model-saving method, it has the advantage of saving storage space
and having a fast loading speed. It can also effectively avoid errors and anomalies after the
model is adjusted or refactored.

2.4.5. Accuracy Evaluation

The overall recognition accuracy of the grassland-type recognition model was evalu-
ated using the data in the validation set using two evaluation indicators, TOP1 and TOP5.
These are monitored on Visdom, where TOP1 indicates the accuracy of the category with
the highest prediction result being the same as the real category, and TOP5 indicates the
accuracy of the top five categories of predicted results that contain the true category. The
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recognition accuracy of each grassland type is evaluated using the data in the test set. The
formula used to calculate this is:

Accuracy =
m
n

(4)

where Accuracy is the recognition accuracy of each grassland type, m is the number of
correctly predicted samples of a single grassland type in the test set, and n is the total
number of forecasting samples of a single grassland type in the test set (n = 40).

2.5. Design of Grassland-Type Recognition System

Since the deep learning framework used in this study is PyTorch, we used object-
oriented programming in Python to write a natural grassland-type recognition system, and
we integrated the functions of this system to facilitate the operation and ease of use for
users. Currently, the mainstream third-party libraries for program system development
in the Python programming language are wxPython, Tkinter, PyQt5, etc., and the library
we chose to use in this study was PyQt5. PyQt5 is a Python interface based on Digia’s
Qt5, which inherits the powerful features of Qt5 with more than 600 classes, 6000 functions
and methods, and can run on Windows, Mac OS, and many other platforms. In addition,
because of its powerful API, it is widely used in the development of program systems [39].

2.5.1. Design of System Architecture

The grassland-type recognition system consists of four main parts: the front-end
UI interface, the information database, the image recognition system, and the image
information acquisition system. The program architecture is shown in Figure 4. The
front-end UI interface is responsible for the interaction between users and the system,
such as loading a model, selecting and displaying images, displaying recognition results,
etc. The information database holds text and image explanations for each grassland type,
the grassland resource-type map, and the meteorological data (including the average
temperature of the hottest month, >0 ◦C annual cumulative temperature, Ivanov’s wetness
index, annual precipitation, average annual temperature, and annual relative humidity).
The image recognition system is mainly responsible for calling the saved recognition model,
classifying and identifying images selected by users, and returning the recognition results.
The image information acquisition system is responsible for extracting attribute information
for selected images (including size, time, location, latitude, longitude, and altitude) and
then extracting the grassland type and meteorological data of the corresponding location
from the database.

2.5.2. Design of System Functions

The front-end UI interface includes four functions: model loading, selection and dis-
play of images, display of recognition results and image information, and UI controls. A
model is loaded by calling the model.load_state_dict loading function. Image selection uses
the directory tree and file list built by connecting the QTreeView control to the QListView
control. Image display uses the QLabel component. The QTextEdit component is used
to display recognition results or image information. There are five function controls in
the main window of the system: “Load model”, “Identify”, “Clear”, “More info”, and
“Introduction”. Clicking the “Load model” button will call the file dialog box (QFileDia-
log.getOpenFileName) to obtain the path of the .pth file and pass the selected file’s path
to the load function as a parameter. Clicking the “Identify” button will invoke both the
image recognition and information acquisition methods defined in the system to recog-
nize selected images and extract attribute information from the images, and it will then
display these pieces of information in QTextEdit. Clicking the “Clear” button will call the
setVisible(False) method of QLabel and the clear method of QTextEdit to clear the display
of images and recognition results and image information, respectively. Clicking the “More
info” button will open a secondary window containing both reference grassland types and
meteorological data. Clicking the “Introduction” button will open a secondary window
containing text and image explanations for each grassland type.
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Figure 4. Architecture design of the grassland-type recognition system.

The information database is a MySQL database built with the QtSql module [40].
The text and image data for introducing each grassland type are stored directly in the
database table. Create Fishnet in the data management tools of ArcGIS 10.2 is used to
divide the national basic vector data into 1km × 1km grids, create label points and add
latitude and longitude values of each point, and then Extract Multi Values to Points in the
spatial analysis module is used to extract the values of the grassland resource-type map
and meteorological data at each label point to the corresponding point before the results
are finally exported to an Excel sheet and saved to the MySQL database. A connection
is established between the database and the front-end UI interface, and data queries are
performed with the help of the addDatabase method of the QSqlDatabase class, displaying
query results in the QTableView widget of the GUI through the QSqlTableModel class of
the UI operational layer. In terms of the database table’s design, the use cases are combined
with the needs of the system to query and display data conveniently and effectively. The
specific structure fields of the table are shown in Table 2.
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Table 2. Design of the database storage table structure.

Field Field Meaning Field Type Field Properties

Id Number INT Primary key, NOT
FULL

Longitude Longitude of grid center
point FLOAT NOT FULL

Latitude Latitude of grid center
point FLOAT NOT FULL

Hottest_temp Average temperature of
the hottest month FLOAT NOT FULL

Accumulated_temp >0 ◦C annual cumulative
temperature FLOAT NOT FULL

Wetness Ivanov wetness index FLOAT NOT FULL
Precipitation Annual precipitation FLOAT NOT FULL

Average_temp Annual average
temperature FLOAT NOT FULL

Humidity Annual relative humidity FLOAT NOT FULL
Class_1 Reference grassland type 1 VARCHAR2 /
Class_2 Reference grassland type 2 VARCHAR2 NOT FULL

Image_loca Storage path of image
explanations VARCHAR2 NOT FULL

Description Text explanations VARCHAR2 NOT FULL
Reference grassland type 1 is the reference grassland type obtained based on the grassland resource-type
map, and reference grassland type 2 is the reference grassland type obtained based on the classification of
meteorological data.

Image recognition firstly requires loading the trained grassland-type recognition
model and calling model.eval, reading the user-selected images with the PIL method, then
passing the images as parameters to the torch.max function to obtain the recognition results.
Image information acquisition is conducted with the help of Python’s exifread library to
obtain EXIF of the images, then the geopy library is used to decode EXIF to obtain the
attribute information of the images. A Pandas’ DataFrame is used to load the data from the
.xlsx file and find the row of the grid to which the longitude and latitude of each image
belong, then the values in this row are used for the location of where the image was taken.

2.6. Technical Route

Firstly, a series of preprocessing steps, such as data cleaning, are performed on the
collected grassland image data, and then based on the PyTorch deep learning framework,
a grassland-type recognition model is constructed using the VGG-19 pretraining model
and the transfer learning method, then the image recognition performance of the model
is comprehensively evaluated. Finally, the optimal grassland-type recognition model,
grassland resource-type map, and meteorological data are integrated into the grassland-
type recognition system, and on this basis, the system architecture and functions are
designed and implemented. The technology roadmap is shown in Figure 5.
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Figure 5. Technology roadmap.

3. Results and Analysis
3.1. Model Construction and Accuracy Evaluation

To construct grassland-type recognition models, both unaugmented data and aug-
mented data are used as the input data while combining different initial learning rates
(0.1, 0.05, 0.01, 0.005, and 0.001). The result of the accuracy evaluation of ten models is
shown in Table 3. Among them, model 6 (using data augmentation and a learning rate
of 0.01) has the highest classification accuracy with TOP1 and TOP5 accuracy reaching
78.32% and 91.27%, respectively. Model 5, model 4, model 3, model 8, model 7, model
10, model 9, and model 2 are ranked 2nd to 9th in terms of accuracy with TOP1 accuracy
rates of 73.45%, 71.61%, 66.73%, 57.68%, 53.46%, 28.75%, 24.92%, and 19.13%, respectively,
and TOP5 accuracy rates of 85.73%, 84.84%, 79.53%, 71.06%, 66.62%, 41.73%, 37.90%, and
32.12%, respectively. Model 1 has the lowest accuracy with TOP1 and TOP5 accuracies of
only 16.06% and 29.08%, respectively.
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Table 3. Comparison of classification accuracies for grassland-type recognition models.

Model
Whether or Not Data

Augmentation Is
Used

Learning Rate TOP1 Accuracy
%

TOP5 Accuracy
%

1 No
0.1

16.06 29.08
2 Yes 19.13 32.12

3 No
0.05

66.73 79.53
4 Yes 71.61 84.84

5 No
0.01

73.45 85.73
6 Yes 78.32 91.27

7 No
0.005

53.46 66.62
8 Yes 57.68 71.06

9 No
0.001

24.92 37.90
10 Yes 28.75 41.73

3.2. Recognition Accuracy of Optimal Model

The best recognition result of the model is achieved with an initial learning rate of 0.01
and using the data augmentation method (model 6). Figure 6 shows the change in model
recognition accuracy with the increase in training epoch. This shows that both TOP1 and
TOP5 accuracies of the model’s validation set increase with each increase in training epoch.
When the training epoch = 30, the TOP1 and TOP5 accuracies both reach their maxima,
78.32%, and 91.27%, respectively; thereafter, as the training epoch continues to increase, the
TOP1 and TOP5 accuracies no longer increase.

Figure 6. Change in trend for TOP1/TOP5 accuracy for the grassland-type recognition model.

3.3. Analysis of Factors Influencing Model Performance
3.3.1. Impact of Learning Rate on Model Performance

By observing the results of the ten models (Table 3), it is clear that different learning
rates have a large impact on the performance of the models. Taking model 1, model 3,
model 5, model 7, and model 9 (without data augmentation) as examples, the trends
in model accuracies and losses are shown in Figure 7a. When the initial learning rate
was set to 0.1, after 60 epochs of training, the model accuracy was only 16.06%, and the
corresponding loss was 0.259, both of which show significant variations. When the initial
learning rate was set to 0.05, the model accuracy showed an overall increasing trend but
fluctuated significantly. The maximum accuracy was 66.73% within 60 epochs, and the
corresponding loss was 0.056. When the initial learning rate was set to 0.005, the model
accuracy grew smoothly without too many fluctuations; however, the maximum accuracy
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within 60 epochs was only 53.46%, and the corresponding loss was 0.101. When the initial
learning rate was set to 0.001, increases in the model’s accuracy and decreases in the loss
were both slow, with the model accuracy being only 24.92% at the end of the 60th epoch and
the corresponding loss being 0.197. When the initial learning rate was set to 0.01, the overall
training effect of the model was good, with accuracy growing rapidly and fluctuating less
in the first period, the growth rate of accuracy slowed down and remained stable in the
second period, and the loss showed an overall change in the opposite direction. Eventually,
the accuracy reached a maximum of 73.45% in the 41st epoch, with a corresponding loss of
0.015. Thereafter, as the number of epochs continued to increase, the accuracy and loss no
longer changed.

Figure 7. Change in accuracy/loss for the grassland-type recognition model: (a) Under different initial
learning rates—the initial learning rates used in model 1, model 3, model 5, model 7, and model 9 are
0.1, 0.05, 0.01, 0.005, and 0.001, respectively. (b) With and without data augmentation—model 5 is
without augmented data; model 6 reflects data augmentation.

Since this study adopts the transfer learning method, which makes each layer of the
model learn a large amount of knowledge at the early stages of training, the excessive initial
learning rate makes it very easy to skip the optimal solution, thus making it difficult to
increase the accuracy of the model, which will also be accompanied by periodic variations.
However, if the initial learning rate is set too small, the training time will be greatly
prolonged and the model will easily fall into the local optimal solution, thus stalling the
training. In summary, only by setting a reasonable initial learning rate can it help to shorten
the training time of the model to reach the optimal solution quickly, and this can also
effectively avoid variation. Using model 2, model 4, model 6, model 8, and model 10 as
examples, we reach the same conclusion.

3.3.2. Impact of Data Augmentation on Model Performance

Observing the results of ten models (Table 3), we found that the accuracies of the
models with data augmentation increased to differing degrees from those without data
augmentation at the same learning rate. Taking model 5 and model 6 as examples, the
change trends in model accuracy and loss are shown in Figure 7b. Figure 7b shows that the
overall trends of the two are consistent, but the recognition accuracy of model 6 fluctuates
less and has higher accuracy and lower loss in the same epoch. For the model without data
augmentation, the accuracy was 73.45%, and the corresponding loss was 0.015. For the
model with data augmentation, the accuracy was 78.32%, and the corresponding loss was
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0.011. The differences between the two were 4.87% and 0.004, respectively. This shows
that the use of data augmentation can increase the diversity of data to a certain extent and
reduce overfitting in model training.

3.4. Recognition Accuracy of Each Grassland Type

The recognition results of each grassland type and confusion matrix based on the
test set are shown in Figure 8, which shows that there are large differences in recognition
accuracy and misclassification for different grassland types. The type with the highest
recognition accuracy was an alpine meadow, reaching 95.00%, followed by temperate
meadow steppe and mountain meadow, both reaching 92.50%, and the type with the lowest
recognition accuracy was warm tussock with an accuracy of 70.00%. Misclassifications were
more likely to occur among highly similar grassland types, for example, 12.50% of temperate
desert images were misclassified as temperate steppe desert, 10.00% of the temperate desert
steppe were misclassified as temperate steppe desert, 10.00% of alpine meadow steppe
were misclassified as alpine meadow, but the probabilities of misclassification were low or
even zero among the grassland types with large differences.

Figure 8. Confusion matrix for the recognition results for each grassland type.

The reasons for the above discrepancies may be due to the data quality of the training
set for each grassland type being different, such as image resolution, feature salience, etc.
All of these factors will affect the final recognition abilities of the model. In addition, due
to the high degree of similarity among some grassland types (such as temperate desert,
temperate steppe desert, etc.), it is sometimes difficult to distinguish even for professionals;
therefore, the model is more likely to confuse and misclassify during the recognition of
these types.

3.5. Implementation of the System
3.5.1. Implementation of System Functions

The system interface is shown in Figure 9. Double-clicking the icon enters the main
interface of the system. First, clicking the “Load model” button will load the recognition
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model into the system, then the target location and target image can be chosen by clicking
the directory tree and file list, and a preview of the image will be displayed in the main
interface. Clicking the “Identify” button after selecting the image will use the image
recognition model to identify the grassland type the image belongs to and obtain the image
attributes (size, time, location, latitude, longitude, and altitude), and then display the
results (TOP5) and attributes in the main interface. Clicking the “Introduction” button
will open a secondary window containing text and image explanations of the grassland
types corresponding to the recognition results. Since the apparent similarity between some
grassland types is high, it is difficult to distinguish them only by the recognition model,
so users can click the “More info” button to open another secondary window to view the
meteorological data and reference grassland types of the corresponding location of the
image. This method provides users with other reference results in addition to the model
recognition results, which can help in making a comprehensive judgment of the image and
thus improve the recognition accuracy. Clicking the “Clear” button will clear the recognition
results, image attribute information, and image display in the main interface. In addition,
the recognition results, attribute information in the main interface, and the content of two
secondary windows can be copied, which is convenient for users to extract information. In
addition, in terms of system logic, when the user does not operate the software properly, an
error will be raised, the process will be terminated, and a prompt window will be opened
to inform the user how to use the software correctly, which will effectively avoid abnormal
conditions, such as the program crashing in actual use (Figure 10).

Figure 9. The user interface for the grassland-type recognition system. Reference type 1 is the
reference grassland type obtained based on the grassland resource-type map, and reference type 2 is
the reference grassland type obtained based on the classification of meteorological data.
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Figure 10. Prompt window example in the grassland-type recognition system.

3.5.2. Comparison of Prediction Results between the Model’s TOP1 and Two Reference
Grassland Types

We identified the images with location information in the test set (320 images in total)
one by one, and the prediction results are shown in Table 4. We found that at least one of the
three results was consistent with the true category in 98.44% of the images (No. 1–No. 7).
Among them, the situation of all three results was correct: No.1 accounted for 42.81%, the
situation of model’s TOP1 prediction result, and one of the two reference grassland types
were correct; No. 2 and No. 3 accounted for 30.32%, with these two situations accounting
for 73.13%, i.e., nearly three-quarters of the total. Therefore, it is recommended to first refer
to the result that is consistent with the model’s prediction result when the system provides
two different results. In addition, the accuracies for the model’s TOP1 prediction result,
the reference grassland type 1, and the reference grassland type 2 were 78.44%, 72.82%,
and 75.01%, respectively. Therefore, when the system provides three different results, it is
recommended to refer to the model’s prediction result in priority, followed by the reference
grassland type 2, and finally the reference grassland type 1. If the user is still unable to
make an accurate judgment at that time, please ask an expert for advice.

Table 4. Statistics for the system’s prediction results for grassland images.

Number
Whether the Model’s TOP1

Prediction Result Is the Same
as the True Category

Whether the Reference
Grassland Type 1 Is the Same

as the True Category

Whether the Reference
Grassland Type 2 Is the Same

as the True Category
Percentage/%

1 Yes Yes Yes 42.81
2 Yes No Yes 15.94
3 Yes Yes No 14.38
4 Yes No No 5.31
5 No Yes Yes 11.88
6 No No Yes 4.38
7 No Yes No 3.75
8 No No No 1.56

Reference grassland type 1 is the reference grassland type obtained based on the grassland resource-type
map, and reference grassland type 2 is the reference grassland type obtained based on the classification of
meteorological data.
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3.5.3. Evaluation of System Stability

The operating hardware of the system running the software was an AMD Ryzen
R5-4600H running at 3.0 GHz but overclocked to 4.0 GHz, 16 GB RAM, a GTX 1650Ti
graphics card, and the Windows 10 operating system. The system’s CPU utilization and
memory usage for each step are shown in Table 5. The system started with 0% CPU
utilization and 0.38% memory usage, and loading the model and selecting an image did not
consume additional CPU or memory. The CPU utilization and memory usage during image
recognition reached their highest at 8.60% and 14.70%, respectively, but the CPU cache was
quickly released after the recognition was completed, and the utilization dropped to 0%, but
the memory usage did not change much as it then remained at around 14%. CPU utilization
was 1.00% when viewing the grassland-type explanations and 1.50% when viewing more
information, both would also release the CPU cache quickly after the information was
loaded. During the entire use process, the response time of the system was fast, with no
obvious lag. The above situation shows that the system is relatively stable and can meet
most of the usage requirements.

Table 5. CPU and memory utilization at each stage of system usage.

Operation Step CPU Utilization/% Memory Usage/%

Start 0 0.38
Load the model 0 0.38
Select an image 0 0.38

Recognize 8.60 14.70
View explanations 1.00 14.00

View more information 1.50 14.00

4. Discussion
4.1. Shortcomings and Prospects of Grassland-Type Recognition Model

Since deep learning relies heavily on a large amount of labeled data, this study supple-
ments image data by web crawling and data augmentation based on grassland image data
taken in the field, since this can avoid model overfitting and improve model recognition
performance to a certain extent [41,42]. After parameter adjustment and comparison analy-
sis of the models, the TOP1 accuracy of the constructed optimal grassland-type recognition
model was 78.32%, and the TOP5 accuracy was 91.27%. The recognition accuracy for each
of the 18 grassland types reached over 70.00%, and the overall recognition effect of the
model was good, which can meet the recognition requirements in most cases; however, the
model still has some shortcomings. Firstly, although this study adopted a transfer learning
approach and supplemented the image data with web crawling and data augmentation,
which do improve the recognition effect of the model, for deep learning algorithms, the
amount of current training samples is still not large enough, which limits the recognition
performance of the model to some extent. Secondly, the high similarity among some of
the grassland types makes the model misclassify easily when recognizing these grassland
types. Thirdly, the field photography data were collected from July to September, but
the grassland phenotype may change with the temporal condition, and the model cannot
guarantee the recognition accuracy of grassland images collected in other seasons. There-
fore, in future research, we need to continue to obtain more grassland image data by field
photography and consider combining generative adversarial networks and other methods
to supplement and expand the samples to further improve the recognition accuracy of the
existing model. The existing model needs to be optimized and improved to reduce the
misclassification of similar grassland types by setting weight decay for some categories, etc.
In addition, we must collect images of the 18 grassland types in various seasons to enable
the use of the recognition model in different seasons, which will pose new challenges for
the grassland-type recognition task in the future.
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4.2. Advantages and Disadvantages of the Grassland-Type Recognition System

To facilitate the use of a grassland-type recognition model for users, this study also de-
signs the grassland-type recognition system based on PyQt5. The system simplifies model
calls and standardizes the process of grassland-type recognition, which can effectively
avoid program exceptions that occur during use. At the same time, the system can analyze
the relevant parameters returned by the model, which helps to show the recognition results
to users more clearly and easily [43]. In addition, the system also integrates a module to
assist in judging the grassland types to which the images belong based on the grassland
resource-type map and meteorological data, which will provide users with references in
addition to the model recognition results and will help improve the accuracy of grassland-
type recognition. However, the grassland-type recognition system does not support use
over the internet or on cell phones yet, since the software currently has a limited usage
scope. Therefore, in the future, it will be necessary to publish the recognition system
on the web with accessibility for cell phones to expand the user population and make
grassland-type recognition more convenient and make it possible to identify grassland
types in field surveys simply by taking images with a digital camera or cell phone.

5. Conclusions

The continuous development of deep learning techniques provides new approaches
for image recognition in many fields; this study is a practical attempt to recognize grassland
types in this context. Compared with traditional manual recognition and remote sensing
recognition, the deep learning-based grassland image recognition method can not only
achieve real-time and fast recognition but also significantly reduce the difficulty and com-
plexity of grassland recognition, which simplifies the recognition process and improves
efficiency. Using the PyTorch deep learning framework, this study constructed the natural
grassland-type recognition models based on the transfer learning method and the VGG-19
model as well as comparing the effects of different initial learning rates and the use of data
augmentation on model recognition performance. The main results were: (1) Different
initial learning rates have a large impact on model performance. When the impact of data
augmentation was not considered, the model accuracies corresponding to initial learning
rates of 0.1, 0.05, 0.01, 0.005, and 0.001 were 16.06%, 66.73%, 73.45%, 53.46%, and 24.92%,
respectively. (2) Data augmentation has a positive impact on model performance. The
model accuracies with data augmentation increased by 3.07%, 4.88%, 4.87%, 4.22%, and
3.83% over the model accuracies without data augmentation at initial learning rates of 0.1,
0.05, 0.01, 0.005, and 0.001, respectively. (3) The accuracy of the grassland-type recognition
model increased with the increase in training epoch, and the model performance reached
its optimum with training epoch = 30, after which it remained stable and unchanged.
At this time, the TOP1 accuracy of the optimal model was 78.32%, and the TOP5 accu-
racy was 91.27%. (4) The recognition accuracy of each grassland type was above 70.00%,
misclassifications mainly occurred among the grassland types with high similarity, and
the probabilities of misclassification among most of the grassland types were less than
5.00%. (5) Using the optimal grassland-type recognition model, this study designed a
grassland-type recognition system through PyQt5. Two reference grassland types based on
the Chinese grassland resource-type map and meteorological data are integrated into the
system for auxiliary judgments of model recognition results, and the prediction accuracy of
reference grassland type 2 was 2.19% higher than that of reference grassland type 1. This
helps to improve the accuracy of grassland-type recognition.

We will continue to optimize and improve the existing model and system for grassland-
type recognition to provide a new approach and technical support to carry out grassland
field surveys easily and reliably.
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