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Abstract: Analysis of urban area function is crucial for urban development. Urban area function
features can help to conduct better urban planning and transportation planning. With development of
urbanization, urban area function becomes complex. In order to accurately extract function features,
researchers have proposed multisource data mining methods that combine urban remote sensing
and other data. Therefore, the research of efficient multisource data analysis tools has become a new
hot topic. In this paper, a novel urban data analysis method combining spatiotemporal wireless
network data and remote sensing data was proposed. First, a Voronoi-diagram-based method was
used to divide the urban remote sensing images into zones. Second, we combined period and trend
components of wireless network traffic data to mine urban function structure. Third, for multisource
supported urban simulation, we designed a novel spatiotemporal city computing method combining
graph attention network (GAT) and gated recurrent unit (GRU) to analyze spatiotemporal urban
data. The final results prove that our method performs better than other commonly used methods. In
addition, we calculated the commuting index of each zone by wireless network data. Combined with
the urban simulation conducted in this paper, the dynamic changes of urban area features can be
sensed in advance for a better sustainable urban development.

Keywords: urban simulation; spatiotemporal big data; wireless traffic; deep learning; urban remote
sensing; city computing

1. Introduction

Urbanization has led to a large number of people gathering in cities, and cities are
environments in which people work, study, and live. Additionally, in the process of urban-
ization, the functions provided by urban areas became complex, which raises challenges
for urban area functions analysis. The complexity [1–3] of urban area function is reflected
in the following ways. First, the basic unit of urban activity is people. People in an area
assemble into communities. The difference among crowd behaviors of communities leads
to functional heterogeneity of urban areas [4,5], and, as urbanization progresses deeper,
the migration and mobility of people among areas lead to dynamic changes in area func-
tion [6]. Secondly, there is heterogeneity in geographical environment among areas, such as
topography [7], vegetation coverage [8], and building density and type [9]. However, area
functions play a crucial role in sustainable urban development [10]. Therefore, in recent
years, the characterization of urban function areas has become a hot research topic.

Traditional urban function features analysis is mainly based on survey statistics or
expert judgments [11], in which main data involved are topographic maps, building-permit
data [12], land use maps, and administrative boundary maps. This method relies on expert
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experience and survey results, so its effectiveness is limited by many subjective factors [13].
In recent years, with the rise of big data research, studies on urban function feature analysis
have increasingly turned to data-driven approaches, and, from the perspective of data,
urban remote sensing data is the main data source utilized for urban study [14–16]. For ex-
ample, Zhou [17] proposed a function feature recognition method based on convolutional
neural network (CNN) for urban area. The method first classified very-high-resolution
(VHR) remote sensing images into basic function areas based on geographic information.
Then, a trained CNN model was used to extract area function features. Ref. [18] applied
remote sensing nighttime light for function characterization of urban area. This article
proposed that intense night lighting is highly correlated with commercial (or industrial)
areas. Conversely, areas of low light intensity are more likely to be residential. In addition
to articles [17,18], many studies [19–21] have worked on the application of urban remote
sensing data to urban function characterization, and good results have been achieved. How-
ever, as the process of urbanization deepens, functions assumed by urban areas change
from singular to multiple. This complex urban system raises new challenges in the method
of characterizing urban areas using only remote sensing data [22]. Facing this challenge,
researchers proposed data fusion methods [23].

Urban areas are complex systems that involve both human activities and geographic
environments. Human activities have a significant impact on the functions of urban ar-
eas [24]. Remote sensing data lack information on human activities [25], so the above
methods cannot comprehensively analyze the functions of complex urban areas. To over-
come this shortcoming, spatiotemporal data analysis was added to urban studies on the
basis of urban remote sensing data [26]. The commonly used spatiotemporal data are
location-based social perception data [27]. Ref. [28] proposed a hierarchical semantic recog-
nition approach that maps urban zone by remote sensing images and point of interest (POI)
data. Ref. [29] designed a new architecture to integrate remote sensing images and POI
data for analyzing urban area function and provided open-source data for other researchers.
POI data can reflect characteristics of human activities; however, it cannot directly provide
information on the scale of human activities [30,31]. The rapid development of telecommu-
nications and mobile technology in the past decade has fundamentally changed human
activities. Therefore, researchers tend to analyze the scale of human activities by location-
based cell phone data [32,33]. Ref. [34] extracted features of multiple source data which
include remote sensing images and cell phone positioning data. Function features analysis
of urban areas was conducted through cross-correlations. Ref. [35] first utilized cell phone
signal data to extract temporal feature of human activities. Then, remote sensing images
were combined for area feature identification in Changchun, China. However, most current
spatiotemporal data used in urban studies were human features, which rely on expert
experience and are laborious [23]. This problem was alleviated through the emergence of
social media and smartphones [36]. However, location-based cell phone data raised the
issue of user data privacy protection [37,38].

In this paper, in order to accurately extract function features of urban areas without
using private information involving the user’s location, we adopted base-station-level
wireless network traffic data. Since they reflect the crowd behavior of users served by a
base station (BS), user privacy is not involved [39,40]. Wireless network data represent
function features of urban area at a temporal scale; on the other hand, BS location data
combined with remote sensing images provide the possibility to analyze function features
of urban areas at a spatial scale. Further, we analyze causal relationships [41,42] among
different urban zones and model urban function structure as causal directed graphs. The
graphs reflect cross-zone movement features of human activities and provide valuable
information for urban simulation. In summary, the contributions of this paper can be
summarized as follows:

• We adopt Voronoi diagrams to zone urban areas by combining BS locations data and
remote sensing images. The Voronoi-diagram-based method can accurately identify
activity areas of the users served by BSs.



Remote Sens. 2023, 15, 1041 3 of 19

• We employ an ensemble empirical mode decomposition (EEMD) method to extract
period component and trend component of wireless network data, which represent
human behavior and activity level, and we use transfer-entropy-based causal structure
learning to model urban function structure as a causal directed graph.

• We design a novel spatiotemporal city computing method based on graph attention
network to mine features of urban function structure. The goal of our city computing
research is to find an accurate prediction method for urban wireless traffic, which is an
important topic in city simulation. Combined with commuting index calculation, the
method can provide guidance for urban planning, transportation planning, and urban
energy saving. Experimental results prove that the proposed method outperforms
other common methods.

2. Materials and Methods
2.1. Dataset and Study Area

In this study, we selected Xushui District, Baoding City, Hebei Province, China, as
the study area. Specifically, as shown in Figure 1, the study area ranges from longi-
tude 115.609◦E to 115.695◦E and latitude 38.994◦N to 39.044◦N, covering approximately
39.057 km2. The study area belongs to Baoding city, which has a complex function. More-
over, there is no clear division of function zones in area, and a zone often contains many
urban facilities, such as government agencies, investment enterprises, factories, schools, su-
permarkets, etc. It is a challenge to analyze urban function features in such a complex area.

Figure 1. Study area.

The base-station-level wireless network data used in this paper were provided by a
local mobile network operator. In total, we collected 62 days of downlink traffic data from
52 BSs in the study area. The temporal granularity of the data is 1 h, which means that one
BS can generate 24 downlink traffic records data in a day. To make the presentation more
concise, we show the data fields and partial contents in Table 1. The fields TimeStamp,
eNodeBID, and Downlink Traffic represent the data collection time, the BS ID, and the
sum of downlink traffic at a BS within 1 hour, respectively. For example, the second line of
Table 1 means that the sum of downlink traffic volume at BS 1 is 0.9914 GB during 1 July
2019 00:00 and 1 July 2019 01:00.
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Table 1. Structure of wireless network data.

Time Stamp eNodeBID Downlink Traffic (GB)

1 July 2019 00:00 1 2.429
1 July 2019 01:00 1 0.9914

1 July 2019 02:00 2 2.045
1 July 2019 03:00 2 0.2787

...

To demonstrate spatial and temporal variation of the data, we plotted the temporal
domain and spatial distribution of downlink traffic for partial BSs, as shown in Figures 2 and 3.
From Figure 2, we can see that the traffic variation trends of different BSs are generally similar
within a day, but differ significantly at some time points. For example, from 14:00 to 16:00, the
traffic trends of the two BSs are opposite. Figure 3 shows the variation of the traffic spatial
distribution at different time points, where the square represents a BS, and the color of a
square represents the volume of base-station-level (BS-level) downlink traffic. It can be
seen that the spatial distribution of traffic also varies with time.

Figure 2. Downlink traffic of two BSs.

(a) (b)

Figure 3. Spatial distribution of downlink traffic at different times. (a) 8:00 a.m.; (b) 10:00 p.m. (the
square represents a BS, and the color of a square represents the volume of BS-level downlink traffic).

2.2. General Structure of Proposed Method

In order to make the presentation more concise, we describe the overall process of
the proposed method before presenting the details. As shown in Figure 4, this article first
analyzes city function structure and proposes a spatiotemporal city computing method
based on city function structure. Modules of the process include urban area zoning,
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wireless network data decomposition, urban structure learning, and urban computing.
Their functions are described as follows.

Figure 4. General process of proposed method.

• Urban areas zoning: The motivation of this paper is to analyze city functions through
BS-level wireless network traffic data. Therefore, the first task is to accurately zone
BS coverage areas. As a result, an urban remote sensing image is divided into a
collection of coverage areas anchored by BSs. To achieve this objective, we propose a
Voronoi-diagram-based method, which is detailed in Section 2.3.

• Wireless network data decomposition: A challenge of analyzing urban function
structure through wireless network data is the nonstationarity of the data. Therefore, as
preparation for urban function structure learning, we propose an EEMD-based method
for decomposing wireless network traffic data. The method decomposes nonstationary
traffic time series of each BS into three components (i.e., random component, periodic
component, and trend component). Each component represents human behavior at
different scales within the BS coverage area. The specific process of the method is
described in Section 2.4.1.

• Urban structure learning: In this module, we model the impacts among different
coverage areas as directed causal relationships, and we adopt a VLTE-based causal
structure learning method to mine the causal relationships among coverage areas at
three components (the specific algorithm is described in Section 2.4.2). As a result,
urban function structures at three component scales are modeled as causal directed
graphs. This enables visualization of urban function structure.

• Urban computing: The above three modules provide the possibility for structured
city simulation. To deal with complex causal directed graphs of urban areas, this
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paper introduces advanced graph neural network technology to implement spatiotem-
poral city computing, and we perform wireless network traffic prediction to verify
the method. The spatiotemporal city computing method and simulation results are
presented in Sections 2.5 and 3.

2.3. Urban Area Zoning

In recent years, with the advancement of telecommunication technology, wireless data
traffic services have become an essential part of people’s work and life. Therefore, in this
paper, we analyze human activities in urban areas by using wireless traffic data. For user
privacy protection, the data we selected are at BS-level. Thus, it is necessary to combine BS
location, BS coverage, and remote sensing images to zone an urban area. Moreover, the
zoning requires that all users in the zone are served by a single BS in the same zone. In
order to achieve this requirement, we designed a zoning method for urban area based on a
Voronoi diagram.

The service BS of wireless network users is generally the BS with the highest signal
strength. The strength of a wireless signal is proportional to the distance from the user to
the BS. Consider the BS as the control point of a Voroni diagram. The Voronoi diagram has a
characteristic that the distance from any point within a Voronoi diagram to the control point
of the diagram is smaller than the distance to control points of other diagrams. Therefore,
the Voronoi diagram is a commonly used method to evaluate coverage of wireless networks.
Considering the BS set B = {b1, b2, . . . , bN} as control points, the Voronoi diagram of bi can
be expressed as:

v(bi) =
{

x | ‖x− bi‖ ≤
∥∥x− bj

∥∥forj 6= i, j ∈ {1, 2, . . . , N}} (1)

where ‖·‖ means distance calculation, x means the point in the remote sensing image, and
the set of Voronoi diagrams is described by V = {v(b1), v(b2), . . . , v(bN)}.

According to articles [43,44], we use the Delaunay triangulation [45] based method to
generate Voronoi diagrams. The specific steps are as follows.

• Construct the Delaunay triangle network T = {t1, t2, · · · } according to control points
set B and record the three control points that construct the triangle in T;

• Generate an adjacent triangle set a(bi) for each control point bi, that is, a(bi) is the set
of triangles whose vertices have control point bi; then sort the triangles in a(bi) into a
clockwise or counterclockwise direction;

• Calculate the external circle center of each triangle in T. Record it as c(t), t ∈ T;
• According to adjacent triangles of each control point, the Voronoi diagram set V are

obtained by connecting outer circle centers of these adjacent triangles. The vertices
of v(bi) can be represented by Formula (2). For Voronoi diagrams at the edges of the
triangular network, a vertical bisector can be made to intersect with the outline of the
figure and form a Voronoi diagram together with the outline.

vertices[v(bi)] = {c(t) | t ∈ a(bi)} (2)

The Voronoi diagram offers the possibility of using BS-level data for urban function analysis.
Compared with popular grid-level data, BS-level data can provide better protection of user
privacy, because the construction of grid-level data often requires collecting user location
information, and BS-level data aggregate all user data within coverage area, which avoids
involving sensitive location information of users. On the other hand, many users often do
not give third-party location permission or do not upload location information to protect
privacy. Thus, grid-level data may miss the relevant information on human activities.

After zoning the remote sensing image by the Voronoi-diagram-based method, we
can analyze urban area function features by the wireless network downlink traffic data of
control points (i.e., BSs) within zones. In this study, we introduce zone commuting index
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Iv(bi)
to analyze urban function features [46], which indicates the bias of zone v(bi) in terms

of work and residence attributes, as shown in Equation (3).

Iv(bi)
=


Dmi(bi)−Dci(bi)

maxbj∈B(Dmi(bj)−Dci(bj))
, Dmi(bi)− Dci(bi) > 0

Dmi(bi)−Dei(bi)
minbj∈B(Dei(bi)−Dmi(bi))

, Dmi(bj)− Dcj(bi) < 0
(3)

where Dmi(bi) denotes average hourly traffic increment of zone v(bi) in morning peak
(i.e., 7:00 to 9:00), and Dei(bi) denotes average hourly traffic increment of zone v(bi) in
evening peak (i.e., 18:00 to 20:00). From Equation (3), it can be seen that Iv(bi)

takes values in
the range [−1, 1]. As Iv(bi)

is close to −1, zone v(bi) prefers to be considered as a residence.
As Iv(bi)

is close to 1, zone v(bi) prefers to be considered as a working place.

2.4. Urban Function Structure Learning

In the previous section, we used a Voronoi-diagram-based method for urban area
zoning and introduced commuting index to analyze zone function feature. In this section,
in order to further analyze function features of urban areas, we perform urban function
structure learning based on the area zoning results in the previous section. Urban function
structure learning aims at mining the relationship among urban remote sensing image
zones by analyzing human-activity-related data. In this paper, human-activity-related data
are BS-level wireless network downlink data, and we design an urban function structure
learning method based on signal decomposition. First, the method decomposes wireless
network data into three components, which represent different features of human activity.
Second, a causal structure learning method is used to mine the relationship among different
zones, and then model urban function structure as a causal directed graph.

2.4.1. Wireless Network Data Decomposition

Wireless network traffic data often show the characteristics of complex and nonstation-
ary [47]. It is difficult to mine human activity information from the raw data. Therefore, in
this paper, we introduced EEMD [48,49] to decompose traffic data into three components,
which are random component, period component, and trend component. The random com-
ponent represents the random actions of humans. The period component represents regular
periodic productive activities of humans in urban life. The trend component represents the
level of human activity in the zone.

EEMD is an improved method of empirical mode decomposition (EMD). EMD was
originally proposed by N.E. Huang to adaptive analyze nonlinear and nonstationary
signals [50]. Compared with EMD, EEMD eliminates the problem of mode mixing by
adding white noise to the original signal. This technique is feasible for wireless network
traffic data decomposition [51]. To comprehensively describe EEMD, we first introduce the
concept of intrinsic mode functions (IMF). IMF is a series that satisfies two conditions:

• The number of extreme and zero crossings must either equal or differ by 1 or 2;
• The envelopes defined by the local maxima and the local minima are symmetrical.

The EEMD algorithm assumes that time series data generally contain multiple volatility
components which can be expressed by the IMF function, and the motivation for adding
white noise is to make the signals of different scales reside in the corresponding IMFs.

We denote the traffic data of BS i by Si and the total wireless network traffic data
by S = [S1, S2, . . . Si . . . SN ], where N is the number of BSs. The process of EEMD based
decomposition for each Si is described as follows:

1. Initialize l = 1 and r0(t) = Si.
2. Generate M white noises nj(t), m = 1, 2, . . . , M.
3. Perform the jth decomposition on the signal added white noise.
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a As shown in Formula (4), add a white noise to rl−1(t).

xj(t) = rl−1(t) + nj(t) (4)

b Set k = 1, and initialize hj,k−1 = xj(t).
c Extract the upper envelope Mu and lower envelope Ml of hj,k−1, and hj,k can

be obtained by (5),
hj,k(t) = hj,k−1 −mj(t) (5)

where mj(t) = (Mu + Ml)/2.
d If hj,k is an IMF, then set IMFj = hj,k, otherwise go to step (c) with k = k + 1.

4. Set j = j + 1 then repeat step 2 if j <= M.
5. Calculate the mean of IMFs by Formula (6).

IMFl =
1
M

M

∑
j=1

IMFj (6)

Due to the zero mean property of white noise, Formula (6) removes the effect of the
added noise volume on the original signal.

6. Report IMFl then separate IMFl from rl−1 to obtain rl(t).

rl(t) = rl−1(t)− IMFl (7)

7. If rl(t) still has least 2 extremes then set l = l + 1 and repeat the operations from step
2 to step 6, otherwise the decomposition process is finished.

After decomposition, we cluster the IMF set {IMF1, IMF2, . . . } of each Si into three com-
ponents by K-nearest neighbor (KNN) algorithm, where sample entropy [52] and mean
period [53] are used to represent the features of each IMF.

The frequency of IMF decreases with the increase of decomposition times j [53]. Ac-
cording to N.E. Huang’s research, the low-order and high-frequency IMFs can be regarded
as noise. In cellular traffic data, noise represents the random component due to user service
requests. The trend component which consists of high-order IMFs represents the growth or
decline trend of traffic. The frequency of period component is between random and period
component, which stands for the tidal characteristic of cellular traffic.

2.4.2. Causal Structure Learning

In this section, we analyze urban area function structure by learning the structure of
period component and trend component. Causality is utilized to model the relationship
among different zones. The causality describes how one time series impacts another time
series, and many researchers have demonstrated its effectiveness [39,54]. In this study, the
function feature of each zone is represented by time series (i.e., wireless network data),
so the relationship among time series mined by causal structure learning describes the
influence of human activities among different zones.

At present, the common causality test algorithms mainly include Granger causality
and transfer entropy. The Granger causality test is a statistical hypothesis test which is
used to determine whether one time series is valuable for predicting another [55], but the
linear regression model in Granger causality test may not be able to capture the nonlinear
process dynamics and may miss the causal connection [56]. The transfer entropy (TE) is a
nonlinear extension of Granger causality [57]. They assume that a time series is influenced
by a combination of other series with a fixed time delay. This assumption is too strong for
many applications.

To mine causal relation deeply, we introduced the variable-lag transfer entropy (VLTE)
method to learn the causal structure. Compared with the TE-based method, VLTE adap-
tively aligns two time series and mines the causal relationship between them [58,59]. This
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overcomes the problem of fixed time delay assumption. The calculation method of VLTE
from time series X to Y is described by Formula (8):

T VL
X→Y = H

(
Y(t) | Y(k)

t−1

)
− H

(
Y(t) | Y(k)

t−1, X̃(l)
t−1

)
(8)

where H(· | ·) is a conditional entropy, Y(k)
t−1 = {Y(t − 1), . . . , Y(t − k)}, and X̃(l)

t−1 =
{X(t− 1− ∆t−1), . . . , X(t− l − ∆t−l)}. The entropy used in this paper is Shannon entropy.

H(X) = −∑
t

p(X(t)) log2(p(X(t))) (9)

Now, our task is to find an appropriate series {∆t−1, ∆t−2, . . . } to reconstitute X(l)
t−1 =

{X(t − 1), . . . , X(t − l)} into X̃(l)
t−1 = {X(t − 1− ∆t−1), . . . , X(t − l − ∆t−l)}. According

to [59], dynamic time wrapping (DTW) is used for accomplishing this task. Then, we can
obtain the causal relationship from X to Y by Formula (10):

CSX,Y =

{
true T VL

X→Y/T VL
Y→X > 1

false T VL
X→Y/T VL

Y→X < 1
(10)

The random component, period component, and trend component are denoted by
Xr = {xr

i | i ∈ {1, 2, . . . , N}}, Xp = {xp
i | i ∈ {1, 2, . . . , N}}, and Xt = {xt

i | i ∈
{1, 2, . . . , N}}. x∗i (∗ = r, p, or t) is the corresponding component time series of zone v(bi),
which is obtained in Section 2.4.1. In this study, we analyze the function structure of urban
area at three levels: random structure Dr = (Xr, Er), periodic structure Dp = (Xp, Ep),
and trend structure Dt = (Xt, Et). D∗ = (X∗, E∗) (∗ = r, p, or t) is a directed graph
where the vertices are the corresponding component of zones, and the directed edges
represent the influence among zones. The specific generation steps of edge E∗ are shown in
Algorithm 1. These three structures not only describe the influence among zones but also
assist in city computing to improve the performance of the method, which is described in
the next section.

Algorithm 1 Causal structure learning.

1: Input X∗ = {x∗i | i ∈ {1, 2, . . . , N}} (∗ = r, p, or t)
2: Initialize E∗ = [e∗i,j]N×N to identity matrix
3: for i = 1, 2, . . . , N do
4: for j = 1, 2, . . . , N and j 6= i do
5: X ← x∗i
6: Y ← x∗j
7: Calculate T VL

X→Y by Equation (8)
8: Calculate T VL

Y→X by Equation (8)
9: Calculate CSX,Y by Equation (10)

10: e∗i,j ← CSX,Y
11: end for
12: end for
13: Output E∗

Finally, we obtain the directed causal graph of each component, which can be ex-
pressed as follows: DT = (Xt, Et), DP = (Xp, Ep), and DR = (Xr, Er). Taking the trend
component as an example, Xt = {xt

i | i ∈ BS set} is the node set, xt
i is the trend com-

ponent obtained by Section 2.1, and Et is the set of edges indicated by adjacency matrix
At = [CSxt

i ,x
t
j
]N∗N , where N is the number of BSs.
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2.5. Spatiotemporal City Computing

For urban simulation, this section proposes a spatiotemporal city computing process
based on the previous analysis of urban area function, as shown in Figure 4. The method ex-
tracts spatial and temporal features of time-series-like urban data and performs prediction.
The prediction results can help urban planners perceive changes in urban development
and realize advanced planning. The data preprocessing part of this method is the same as
the data decomposition and structure learning introduced in Sections 2.3 and 2.4. The data
decomposition can be considered as temporal feature extraction, and the structure learning
can be considered as spatial feature extraction. A deep learning method based on GAT is
introduced in the urban computing part for deeper spatiotemporal features mining and
predicting. To make the presentation more concise, the following will introduce the deep
learning method from the perspective of wireless network traffic prediction.

Recently, the rise of graph neural networks has successfully promoted the research
of data mining. It makes up for the shortcomings of neural networks in dealing with
non-Euclidean spatial data (graph data), so GAT [60] is used to extract features from the
graph data generated in the previous section. The attention mechanism in GAT learns
different weights for different neighbor nodes, which greatly improves the expression
ability of graph neural network models by aggregating the causality between nodes into
the prediction model.

Specifically, the input of GAT is h = {h1, . . . , hi, hN}, where hi represents the compo-
nent series of BS i.

Specifically, the input of GAT is D∗ = (X∗, E∗ = [e∗i,j]N×N) (∗ = r, p, or t). zi represents
the embedding of nodes i (i.e., zone v(bi)), which is calculated by Formula (11).

zi = Wx∗i (11)

where W is a parameter that needs to be learned. The attention mechanism is described in
Figure 5. αij is the normalized attention coefficient which represents the effect of neighbor
node j to target node i. The calculation process of αij can be written as Formulas (12) and (13).

Figure 5. Attention mechanism.

pij = LeakyReLU
(
~aT(zi‖zj

))
(12)

αij = softmax
(

pij
)
=

exp
(

pij
)

∑e∗j,i 6=0 exp(pik)
(13)

where~aT is a feedforward neural network whose parameters need to be learned. LeakyReLU(·)
is nonlinear activation function, so f tmax(·) is normalization function, and ‖ means con-
catenated. GAT extracts the feature of each node depending on the nodes which have a
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causal correlation with the target node. Therefore, directed causal structure is embedded
into the neural network and used for prediction, and corresponding formulas are (14).

~hi = σ

 ∑
e∗j,i 6=0

αijzj

 (14)

After graph feature extraction, we input the features~hi into the GRU to obtain compo-
nent prediction result X∗. As a variant of LSTM, GRU has a similar concept [61], which
uses the reset gate and the update gate to capture the temporal dependence. Finally, we
obtain the prediction result of wireless network traffic by summing up the prediction of
each component, as shown in Equation (15).

S = Xt + Xp + Xr (15)

3. Results
3.1. Urban Area Zoning

As introduced in Section 2.2, we propose an urban area zoning method based on
remote sensing image and wireless network data. The remote sensing image of the study
area is shown in Figure 1. Wireless network BS locations are provided by local operators.
The zoning result is shown in Figure 6, where the red dots are the BS locations and the blue
lines are zone segmentation lines. Further, we calculate the commuting index for each zone
by using Equation (3). The results are shown in Table 2.

Figure 6. Urban area zoning.

Table 2. Commuting index.

Zone Id Commuting
Index Zone Id Commuting

Index Zone Id Commuting
Index

1 0.14713343 18 0.6250174 35 −0.905465
2 0.003361332 19 −0.055667 36 −0.970327
3 −0.504959471 20 −0.550208 37 −0.576254
4 −0.487725772 21 −0.949675 38 −0.860672
5 −0.894548963 22 −0.165399 39 −0.561098
6 0.250310568 23 −0.79184 40 −0.558165
7 0.462387708 24 0.1178097 41 −0.658584
8 −0.490481698 25 −0.434763 42 −0.626709
9 −0.819941458 26 −0.922275 43 −0.805434
10 1 27 −0.661987 44 −0.33808
11 0.062685314 28 −0.727245 45 −0.621166
12 −0.335140768 29 −0.940734 46 0.0613054
13 −0.155702131 30 −0.610347 47 −0.689869
14 −0.368456079 31 −0.191953 48 −0.868152
15 −0.155143688 32 −0.902722 49 0.7691417
16 −0.66856836 33 −0.444718 50 −0.316654
17 −0.669408032 34 −0.55769 51 −0.028517

52 −0.541641
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3.2. Urban Function Structure

As introduced in Section 2.3, we propose an urban function structure learning method
based on time series decomposition and causal structure learning. A certain zone is taken
as an example. EEMD-based time series decomposition decomposes the base-station-level
downlink traffic data in a zone (shown in Figure 7) into 10 IMF time series, as shown in
Figure 8.

Figure 7. BS-level downlink traffic.

Figure 8. IMF series.

After that, we use the KNN algorithm to cluster IMF series into three components
based on their sample entropy and average period. The random component, the period
component, and the trend component are represented in Figures 9–11, respectively.
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Figure 9. Random component.

Figure 10. Period component.

Figure 11. Trend component.

Finally, we use causal structure learning to model urban function structure as period
and trend structures, as shown in Figures 12 and 13. Due to the complexity of the study
area, the structure of the directed graph is complex. For better presentation, we amplify the
graph of some neighboring zones, as shown in Figure 12b,c and Figure 13b,c. The nodes in
Figures 12 and 13 represent zone IDs, and the directed edges represent influence among
zones. For example, in Figure 12b, the directed edge between zones 0 and 5 represents the
impact of zone 0 on zone 5.
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Figure 12. Period structure.

Figure 13. Trend structure.

3.3. Spatiotemporal City Computing

In this section, we verify the effectiveness and efficiency of the proposed city com-
puting process from the perspective of wireless network traffic prediction. We compare
the experimental results with other common methods. The granularity of traffic data is
1 hour, and a total of 62 days are counted (July 2019 to August 2019). Actual traffic data
were collected at 52 BSs in the study area. We use the data of 4 hours to predict the traffic
for the next hour. In model training, the ratio of the training set is 0.87, and the training
parameters are shown in Table 3. Since three components have different patterns and jitter
levels, the training parameters for them are also different. The parameters in Table 3 are the
optimal parameters obtained through extensive experiments. In order to clearly describe
the performance of different algorithms, RMSE and MAPE are calculated. To verify the
performance of the proposed method, we compare it with three advanced methods.

• GCN: GCN is a convolutional neural network for graph data [10]. In the simulation
of this method, the used graph structure is generated by the urban function structure
learning module proposed in this paper.

• LSTM: LSTM is a recurrent neural network with long- and short-term memory capa-
bility. In recent years, it is often used to perform time series prediction with the spread
of machine learning applications [62].

• ARIMA: ARIMA is a differentially integrated moving average autoregressive model,
which is a statistical method commonly used for time series prediction.
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The comparison result is presented in Table 4. It is obvious that the performance of our
proposed DIVC-GAT is the best. To better show the performance of the proposed method,
the prediction result of a certain BS is used as an example, as shown in Figure 14.

Table 3. Training parameters.

Component Learning Rate Batch Size Iterations

Trend 0.08 128 800
Period 0.007 64 800

Random 0.01 128 800

Table 4. Performance comparison.

Method RMSE MAPE

Proposed method 1.535814 45.895
GCN 1.603046 55.4792
LSTM 2.0889 55.5947

ARIMA 3.020975 87.8763

Figure 14. Prediction comparison of a certain BS.

4. Discussion

As can be seen from Figure 6, the zone density is high in the urban center and low
around the town. This is because operators deploy a large number of BSs in urban centers to
guarantee the user experience of a dense population. From the perspective of city function
analysis, the dense population and complex functions of city centers require fine-grained
area zoning. Fine-grained zoning can improve the accuracy of urban function analysis.
Conversely, in the sparsely populated areas around urban areas, we can expand the size of
zones. It can be seen that the introduction of wireless network data can help in function
analysis of urban areas. Table 2 shows zone commuting indices calculated from wireless
network data. It can be seen that 10 zones have a commuting index greater than 0, 29 zones
have a commuting index less than −0.5, and 14 zones have a commuting index greater
than −0.5 and less than 0. This indicates that the urban area consists of a few commercial
centers, some mixed zones, and mostly residential areas.

The time series in Figure 8 are arranged from top to bottom by the order of decompo-
sition. It can be seen that IMF series are more smooth with higher order. This is because
the EEMD algorithm can be regarded as a filter, and as order increases, the filtered series
is more stable. Further, IMF series can be clustered into three components by the KNN
algorithm, as shown in Figures 9–11. The IMF series with lower order are summed to
obtain a jittered random component. The higher-order ones are summed to obtain a trend
component. The rest of them are summed to form a period component. The period compo-
nent and trend component represent human behavior and activity, respectively, so their
structures are not the same, as shown in Figures 12 and 13, and by enlarging the structure
graph of the neighboring area, urban planners can gain insight into the changes of people’s
behavior and activity across zones. Taking Figure 13b as an example, we can see that the
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development of area is proceeding to zone 3 and zone 0. This is because all edges of both
zones point to themselves.

From Figures 12 and 13, we can see that the function structure of the study area is
very complex. For urban simulation, the city computing method proposed in Section 2.4
adopts GAT to handle complex graph structure data. We verify the urban simulation by
performing wireless network traffic prediction. As shown in Table 4, the performance of
GCN and the proposed method is significantly better than that of LSTM and ARIMA. This
proves that the incorporation of urban structured information can effectively improve the
performance of urban computing. Further, our proposed method is better than GNN. The
attention mechanism in GAT embeds the direction of causality into city computing and
enhances the depth of spatial relation mining among different coverage areas.

Compared with LSTM and ARIMA, which cannot handle structural information, the
proposed method achieves joint processing of multiple zones through attention mechanism
and improves the performance of city computing.

Moreover, as shown in Figure 14, the proposed method has a higher performance gain
at inflection points where traffic changes drastically. This further demonstrates superiority
of the spatiotemporal urban computing method.

With the above analysis, our proposed method achieves extraction of human activity
features and visualization of urban function structure while ensuring user privacy. Com-
bined with spatiotemporal urban computing, relevant authorities can make active sense of
urban areas and predict the evolution of urban human activity. This provides structured
information and human activity trend information for urban planning, which improves the
effectiveness and science of planning decisions.

5. Conclusions

In this paper, we studied the application of remote sensing image and wireless network
data to urban function analysis and proposed a spatiotemporal city computing method.
Combining remote sensing images, we introduced the Voronoi diagram for urban area
zoning, which is commonly used in network coverage analysis, and the function feature of
each zone was evaluated by wireless network data. Further, we used causality to evaluate
influence among zones and modeled urban function structure as causal directed graphs.

Urban simulation and prediction supported by remote sensing and wireless big data
can realize the mining of urban dynamic changes. This paper proposes a novel spatiotem-
poral city computing method using remote sensing and wireless big data in urban research.
The results show that this method can be used in urban planning, urban simulation, and
other research fields. In addition, the resource consumption problem caused by the deploy-
ment of 5G can also be achieved through the analysis method of combining remote sensing
information with wireless data to achieve environmentally friendly and sustainable urban
development. In the future, our research will expand the scope of multisource data, such as
city light data, road traffic data, and so on. Moreover, we will introduce gridded wireless
network data for more detailed analysis of urban area function.
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