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Abstract: Global land cover dynamics alter energy, water, and greenhouse gas exchange between
land and atmosphere, affecting local to global weather and climate change. Although reforestation
can provide localized cooling, ongoing land use land cover (LULC) shifts are expected to exacerbate
urban heat island impacts. In this study, we monitored spatiotemporal changes in green cover in
response to land use transformation associated with the Khyber Pakhtunkhwa (KPK) provincial
government’s Billion Tree Tsunami Project (BTTP) and the Ravi Urban Development Plan (RUDP)
initiated by the provincial government of Punjab, both in Pakistan. The land change modeler (LCM)
was used to assess the land cover changes and transformations between 2000 and 2020 across Punjab
and KPK. Furthermore, a curve fit linear regression model (CFLRM) and sensitivity analysis were
employed to analyze the impacts of land cover dynamics on land surface temperature (LST) and
carbon emissions (CE). Results indicated a significant increase in green fraction of +5.35% under
the BTTP, achieved by utilizing the bare land with an effective transition of 4375.87 km2. However,
across the Punjab province, an alarming reduction in green fraction cover by −1.77% and increase
in artificial surfaces by +1.26% was noted. A significant decrease in mean monthly LST by −4.3 ◦C
was noted in response to the BTTP policy, while an increase of 5.3 ◦C was observed associated with
the RUDP. A substantial increase in LST by 0.17 ◦C was observed associated with transformation
of vegetation to artificial surfaces. An effective decrease in LST by −0.21 ◦C was observed over the
opposite transition. Furthermore, sensitivity analysis suggested that LST fluctuations are affecting
the % of CO2 emission. The current findings can assist policymakers in revisiting their policies to
promote ecological conservation and sustainability in urban planning.

Keywords: Google Earth Engine (GEE); LULC transitions; vegetation dynamics; CFLR model; land
use policies; Billion Tree Tsunami Project (BTTP); Ravi Urban Development Plan (RUDP); Master
Plan 2050

1. Introduction

In the 21st century, increased urbanization is intrinsically linked to the phenomenon
of global warming (GW) [1,2], which is primarily associated with rapid urbanization [3,4].
With further urbanization, the percentage of the global population residing in cities is
projected to grow from 56% to 66% by the year 2050 [5–7]. Rapid urbanization produces
significant land use change from forest cover and agricultural landscapes to impermeable
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surfaces [8–11] to meet the urban population’s needs, a crucial variable affecting local
to global climate [12]. These transformations have led to ecological and environmental
challenges, such as compromising urban ecosystem sustainability [13–15], influencing land
surface temperature (LST) [16–18], and contributing to anthropogenic-induced carbon
emissions (CE) [19,20]. For example, evapotranspiration, albedo, energy radiation, and
other biochemical and biophysical parameters are affected by the surface reflectance and
roughness of various LULC types in distinct ways [21,22]. Due to increased urbanization,
forest cover is rapidly decreasing and this is boosting global warming trends [19,23]. Forests
are a billion-dollar economic treasure that absorbs about 30% of the world’s yearly carbon
dioxide emissions [6,23,24]. In addition, this transition is responsible for about a third
of the CE produced by human activities [25,26], mainly due to the shift from forested to
developed land [25–27].

According to the Intergovernmental Panel on Climate Change’s (IPCC) latest report
(2019), human shifts in LULC lead to a depletion of natural resources as well as an increase
in atmospheric CO2 concentrations and nitrogen deposition [28–30]. From 1750 to the
present, CO2 emissions associated with deforestation have contributed ~180 ± 80 PgC to
the cumulative anthropogenic CO2 emission [31]. Moreover, several studies at both the
national [32,33] and regional [32,34,35] scales have already demonstrated the phenomenon
that LULC transitions affect the carbon balance [36–38]. It is estimated that global forest
cover decreased by 7.8 million hectares per year between 1990 and 2000, 5.2 million hectares
per year between 2000 and 2010, and 4.7 million hectares per year between 2010 and
2020 [39], and led to a rise in CE by 12.5% [40]. According to Statista [41], the atmospheric
level of carbon dioxide had increased from 354.45 ppm in 1990 to 414.24 ppm by 2020
(1.99 ppm per year) [42,43].

The 2017 Atlas of Sustainable Development Goals (SDGs) reports that the growth in
CO2 emissions and other greenhouse gases has caused an increase of around 0.8 degrees
Celsius in the mean global temperature over pre-industrial times [44]. According to the
Intergovernmental Panel on Climate Change (IPCC) Assessment Report 6 (AR6) A.1.2, the
global average temperature in the first two decades of the 21st century (2001–2020) was 0.99
(0.84–1.10) ◦C higher than in the period 1850–1900. The increase rate across land surfaces
(1.59 (1.34 to 1.83) ◦C) was higher than the temperature increase over the ocean (0.88 (0.68 to
1.01) ◦C) [45]. The Paris Agreement, adopted in 2015 under the United Nations Framework
Convention on Climate Change (UNFCCC), was signed by 195 countries to reduce global
warming to below 2 ◦C and, preferably, 1.5 ◦C [46].

In the context of national and global warming, one of the most pressing challenges
is determining the impact of urban land cover transition on climate change [17]. Several
studies [32–38] have mainly focused on carbon fluctuation over a specific ecosystem by
applying the bookkeeping [47–49] and processing models [50,51] to analyze the dynamics
of carbon emissions in response to land cover transition over a specific ecosystem. However,
a comparison of different ecosystem interactions was lacking. Zhu E. et al. [52] indicated
that it would be difficult to precisely determine the spatiotemporal scales of LULC and
the corresponding induced carbon emissions. Nevertheless, carbon levels can be reduced
through artificial adjustments of land cover patterns [53,54]. The development of conserva-
tion management plans and strategies to ensure the long-term sustainability of ecosystems
can be significantly assisted by evidence collected through observing changes in land use
and land cover (LULC) [18].

Since 1972, Landsat satellites have continually provided remote sensing (RS) data for
diverse applications regarding metropolitan areas’ social, economic, and environmental
aspects [55]. RS technology has tremendously facilitated data collection by eliminating
the previous hassles and limitations of traditional field surveys and methods [6]. Re-
mote sensing for forest biomass and carbon stock estimation can be implemented with
acceptable accuracy [56]. RS combined with geographic information systems (GISs) is a
valuable tool for investigating LULC classification changes, ecological monitoring, and
management [21,57]. Developing a baseline and reference levels for Reducing Emissions
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from Deforestation and Forest Degradation (REDD+) implementation highly depends on
accurate carbon stock assessment, which is possible using the combined data of RS and the
National Forest Inventory (NFI) [58].

According to the Global Climate Risk Index (2021) published by Germanwatch, Pak-
istan is eighth on the list of countries most affected by climate change in the past two
decades [59]. Pakistan (a country of roughly 220 million people) is one of the world’s
least wooded countries, with forest covering only 5% of its total land area [60–62], mostly
in its northern region [14,16]. According to the forest department of Pakistan, the forest
cover, which was 4,981,163 (ha) in 2004, had decreased to 4,786,831 (ha) by 2012 [63]. The
BTT project was initiated in 2013 by the interim administration of KPK Province (northern
Pakistan) to combat deforestation in the region [64], and one billion trees had been planted
in the province by 2017 [65]. This was an excellent effort toward mitigating deforestation’s
adverse impacts [6]. In contrast, over the past two decades, the capital city of Punjab
province in Pakistan (Lahore) has experienced substantial urban expansion and a decrease
in its green proportion [66]. The local developers and government authorities (e.g., the
Lahore Development Authority (LDA)) are continuously expanding the urban settlements
through various housing communities and other projects [6,67,68] which require clearing
part of the green fraction [6]. In addition, in 2014, the Government of Punjab (Pakistan)
initiated an urban project called the “Ravi Urban Development Project” (RUDP) close to the
interim capital for up to 35 million residents on an area of 40,000 hectares, most of which
was farmland. The local farmers protested against such plans by visiting the Lahore High
Court (LHC). Later the rulings of the LHC found “gross irregularities” in the development
process, along with concerns about the environmental impact, and ordered work on this
project to stop [69]. However, the government still intends to complete this project in the
future (Master Plan 2050; included in the Supplementary Materials). According to the
population census of 2017, 36.4% of the population of Pakistan lives in urban areas. The
UN Population Division estimates that, by 2025, nearly half the country’s population will
live in cities.

Considering the above developments and the literature on rapid urbanization and its
associated problems, this study aimed to (1) monitor and compare the land cover dynamics
in scenarios from 2000–2020, (2) determine the contribution rates of LULC transitions to
LST change by utilizing the cutting-edge CFLRM method, (3) determine changes in the
carbon stock in response to green fraction transitions, and (4) determine the sensitivity
between CO2 variation (%) and LST under the Khyber Pakhtunkhwa (KPK) government’s
Billion Tree Tsunami Project (BTTP) (forestation) and for urbanization reshaping scenarios
in Punjab as a consequence of the RUDP.

2. Materials and Methods
2.1. Study Area

To achieve the research objectives, we choose two provinces of Pakistan, (i) KPK,
where the provisional government started a forestation project, the BTTP, in 2013 to reduce
the impact of deforestation, and (ii) Punjab, which is experiencing urban growth reshaping
scenarios and losing its vegetation cover. The three sample sites included (a) Peshawar
(capital of KPK Province and located in northern Pakistan), which belonged to the “Central-
Southern Forest Region-I Peshawar” in the BTTP. It is geographically located at 44◦15′N,
71◦42′E at 330 m (amsl) and covers an area of 1264 km2. In terms of climatic characteristics,
the region is classified as “dry-summer subtropical” (“Csa” in Koppen climate classification).
The average temperature is about 23.9 ◦C, with a minimum of 17.4 ◦C and a maximum
of 30.5 ◦C, but which can drop to 12 ◦C on cold nights (https://en.climate-data.org/asia/
pakistan) (accessed on 18 November 2022). According to the 2017 census, Peshawar had
1.97 million people (http://www.pbs.gov.pk/) (accessed on 2 June 2022). The second
site was (b) the Swat District, which lies in “Northern Forest Region-III Malakand” in
the BTTP. Geographically, Swat is located at 35◦22◦N′, 72◦42′E, with a total population
of 2.31 million (2017) and an area of 5337 km2. The regional climate passes through four

https://en.climate-data.org/asia/pakistan
https://en.climate-data.org/asia/pakistan
http://www.pbs.gov.pk/
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seasons: a cool winter from November through February; a mild spring from March through
May; the summer season from June through September; and the retreating monsoon
period of October and November in autumn (https://aboutkp.kp.gov.pk/page/climate)
(accessed on 12 July 2021). Finally, the third site was (c) Lahore, located at 31◦15′N, 74◦10′E,
and covering 1842 km2. The 2017 census showed 11.13 million people living in Lahore
(http://www.pbs.gov.pk/) (accessed on 24 July 2021). In the last few decades, the city has
been experiencing massive urbanization at the cost of losing green fraction. It contains
a semi-arid climate (“BSh” in the Köppen climate classification). The city’s maximum
temperature was 48.3 ◦C, recorded on 30 May 1944, with 48 ◦C recorded on 9 June 2007.
Spatial location of the study area, including the sample sites, is presented in Figure 1.
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Figure 1. Maps showing the locations of study sites in the KPK and Punjab provinces, Pakistan.

2.2. Data Sets and Pre-Processing
2.2.1. Land Use Land Cover Maps

To achieve the set objectives, this study utilized high-resolution datasets, including “Global
land cover—GLC30” (http://www.globeland30.org/) (accessed on 2 June 2022), which provides
30 m multispectral images based on TM, ETM+, OLI Landsat (USA), HJ-1 (China Environment
and Disaster Reduction Satellite), and 16 m resolution Gaofen (GF)-1 (China High-Resolution
Satellite). The product provided data for the years 2000, 2010, and 2020. GlobeLand30 product
data has already been submitted to the United Nations [70–72]. The data of GlobeLand30 were
reclassified and divided into six types according to the first-level classification standard of Land
Use Status Classification (GB/T2010-2017). Details regarding the LULC class divisions are
included in the Supplementary Materials for reference. The GlobeLand30 provided data with
an overall accuracy of 83.50–85.72%, and a Kappa coefficient of 0.78–0.82. Furthermore, for
cross-validation, the accuracy of the LULC classifications (obtained with the LCM30m product)
was reconfirmed using ground truth data obtained from Google Earth, and this indicated an
overall accuracy of >80% for all LULC classes.

https://aboutkp.kp.gov.pk/page/climate
http://www.pbs.gov.pk/
http://www.globeland30.org/
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2.2.2. LULC Transition Analysis

After acquiring the LULC maps, the cross-tabulation was performed using Terreset
2020 (https://clarklabs.org/terrset/land-change-modeler/) (accessed on 4 August 2022) to
quantify the net change by category in km2, patterns of aerial exchanges, and the gain and
loss for each LULC class between 2000 and 2020. The Markov Chain model (MCM) was
utilized to determine the transition probabilities. MCM can be mathematically expressed
as follows [6,73]:

S (t + 1) = Pij ∗ S(t) (1)

where S represents the land-use status at time t, and S (t + 1) is the land-use status at
time t + 1, while Pij is the transition probability matrix in a state which is calculated as
follows [6,74]

‖Pij‖ =

∣∣∣∣∣∣
∣∣∣∣∣∣

P1,1 P1,2 P1, N
P2,1 P2,2 P2, N
PN,1 PN,2 PN, N

∣∣∣∣∣∣
∣∣∣∣∣∣ (2)

(0 ≤ Pij ≤ 1) (3)

P is the transition probability, Pij stands for the likelihood of converting from current
state i to another state j next time, and PN is the state probability of any time. The low
transition will have a chance near 0, and high growth has possibilities near 1 [6,74].

2.2.3. Land Surface Temperature (LST) Maps

Mean LST (for the March-June months) was retrieved from all possible cloud-free
imagery of Landsat TM and OLI. Considering the operational time of Landsat, we used
Landsat-5 TM for 2000 and 2010 and Landsat-8 TIRS for 2020 (imagery details are mentioned
in Table S1—Supplementary Materials). Band6 (thermal band) of Landsat-5 TM was
utilized to retrieve LST by using a mono-window algorithm [75]. On the other hand,
Landsat-8 TIRS contains two thermal bands (10 and 11), but USGS (United States Geological
Survey) discourages the use of the split-window algorithm to obtain the LST because of
the instabilities with the participation of band 11 (https://www.usgs.gov/faqs) (accessed
on 23 July 2021). Therefore, considering the accuracy and feasibility, we decided on the
single-channel algorithm [76], for which all the necessary atmospheric corrections were
performed [77,78]. Additionally, it should be noted that there is a 15 min time lag between
Equatorial Crossing Time for Landsat OLI and Landsat TM, because of which it is necessary
to be sure that time lag is not an obstacle to the analysis.

2.2.4. Retrieval of Normalized Difference Vegetation Index (NDVI)

NDVI facilitates identification of the relationship between land use type and estimated
surface temperature quantitatively (Schmidt, et al., 2000). NDVI is derived using following
mathematical expressions:

NDVI =
NIR− RED
NIR + RED

(4)

The NIR band represents band 4 with wavelength (λ = 0.76–0.90 µm) of Landsat5
(T.M.), while RED corresponds to band 3 with wavelength (λ = 0.63–0.69 µm). On the
other hand, in Landsat8 (OLI/TIRS), the NIR band depicts band5 with (λ = 0.85–0.87 µm),
and RED represents band 4 with wavelength (λ = 0.63–0.67 µm) (Landsat Project Science
Office 2016).

2.2.5. Correlation Analysis between LST and LULC Transitions

The relationships between LST and LULC transitions were calculated by using the
land change modeler (LCM) and the curve fit linear regression model—CFLRM (an external
extension for GIS) [79], which allows users to run regression analysis on a series of raster
datasets. The equation of linear regression is described as follows:

Y = aX + b (5)

https://clarklabs.org/terrset/land-change-modeler/
https://www.usgs.gov/faqs
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where Y is the dependent variable, X is the independent variable, b is the slope of the line,
and a is the y-intercept. Furthermore, zonal statistics as a table were applied using ArcGIS
10.8 to get zonal values of the LST trend for each land transition category.

2.2.6. Carbon Emission (CE) Estimation

The carbon emission from different LULC classes over the study period was estimated
by biomass carbon stock assessment (BCSA) using the forestry inventory (FI) data collected
by the Ministry of Climate Change of Pakistan (http://www.mocc.gov.pk/) (accessed
on 2 June 2022) and the Pakistan Forest Institute Peshawar (https://www.pfi.gov.pk/)
(accessed on 2 June 2022). In addition, we collected the biomass and carbon stock estimation
data under the Reducing Emissions from Deforestation and Forest Degradation REDD+
project [63] using the tools presented in Table 1 (details about the REDD+ Project are
included in the Supplementary Materials). Furthermore, for the estimation of carbon
emission from different LULC classes, zonal statistical analysis was carried out in Arc
GIS10.4 [29].

Table 1. Tools used in field sampling.

Materials Purpose

Diameter Caliper (120 cm) Diameter Measurement
Haga Altimeter Height Measurement

Sunnto Clinometer Slope and Height Measurement
Measuring Tape (100 m) Measuring Distance

Ranging Rods Plot Center and Other Location
Garmin GPS Navigation

Landsat Images Computation of Vegetation Indices and Carbon
Stock Assessment

Tree height and DBH ≥ 5 cm were measured in all plots to calculate aboveground
biomass [80,81] by using a diameter caliper of 100 cm in length. As per UNFCCC guide-
lines regarding tree measurement, forked and defective trees were also subjected to size
measurement as they are believed to have a quantity of carbon stock. The Haga Altimeter
used for height measurement is a gravity-oriented pointer device for height measurement
within a fixed range of distances (20, 25, and 30 m). As height measurement is difficult
and time-consuming for variable distances and viewpoints, height was only measured
for dominant trees in the plots. A Sunnto Clinometer was used for slope estimation, the
distance was measured with the help of a measuring tape (100 m), and GPS was used
for location identification or navigation purposes. In contrast, a compass was used for
the proper direction of plot selection in the area for aspect identification. Aboveground
biomass (AGB) was estimated using Equation (6)

AGB (kg) = 0.0673× (

1 
 

 DBH2H)
0.976

(6)

where DBH is the diameter in millimeters at breast height, H is the height of a tree, and
the standard wood specific gravity was 1.54 g cm−3 [29,82]. Furthermore, the carbon stock
was estimated by data conversion from aboveground biomass to carbon stock [83] using
Equation (7).

Carbon (kg) = 0.5× biomass (7)

The carbon stock data was superimposed on the LULC and LST data to determine
the carbon concentration for each LULC and LST and to calculate the carbon emission
according to zonal statistics [29]. Furthermore, the relationship between CE and LST was
explored using the sensitivity analysis [29] in R.

http://www.mocc.gov.pk/
https://www.pfi.gov.pk/


Remote Sens. 2023, 15, 859 7 of 24

2.2.7. Carbon Stock Data Validity

This study’s estimated carbon stock maps were compared with ORNL CBD data [84,85]
and WCMC CBD data (https://data-gis.unep-wcmc.org/portal/home/item.html?id=8a8
d4e24683a46e6b039aea78c8af20f (accessed on 18 November 2022)). The overall Kappa
Statistic was 0.92, indicating that the carbon stock maps are reasonable and can be used for
further applications. A detailed methodology flowchart is attached as Figure 2.
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3. Results
3.1. Spatial Patterns of LULC under BTTP and Urbanization in Punjab

The patterns of the LULC scenarios from 2000–2020, obtained from GLC30, were
divided into six classes (the details are presented in the Supplementary Materials); the
scenarios over KPK Province are shown in Figure 3A, while Figure 3B illustrates the LULC
scenarios over Punjab Province. Furthermore, Table 2 elaborates on the dynamics of LULC
from 2000–2020 for both Punjab and KPK provinces.
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Table 2. Trends of LULC in KPK (top) and Punjab (bottom) provinces between 2000 and 2020 (km2).

2000 % 2010 % 2020 %

KPK

Cultivated
land 25,956.87 33.71 25,714.37 33.39 25,781.15 33.48

Vegetation 29,337.59 38.10 30,257.76 39.29 33,458.05 43.45

Water bodies 727.82 0.95 842.2 1.09 695.58 0.90

Artificial
surface 664.18 0.86 1196.17 1.55 1375.82 1.79

Bare land 14,598.18 18.96 13,285.62 17.25 10,346.19 13.44

Ice and snow 5724.44 7.43 5712.96 7.42 5352.29 6.95

Total 77,009.08 100 77,009.08 100 77,009.08 100

Punjab

Cultivated
land 136,014.21 64.91 137,125.65 65.44 137,244.7 65.50

Vegetation 21,250.54 10.14 21,303.2 10.17 19,634.2 9.37

Water surface 2459.14 1.17 2325.64 1.11 2240.43 1.07

Artificial
surface 3846.3 1.84 4065.38 1.94 6497.6 3.10

Bare land 45,960.09 21.93 44,710.43 21.34 43,913.37 20.96

Total 209,530.30 100 209,530.30 100 209,530.30 100

By combining the findings from Figure 3A and Table 2, it can be seen that over the
last two decades, in the KPK province, a significant increase in artificial surfaces has taken
place, increasing from 0.86% in 2000 to 1.79% in 2020. On the other hand, the percentage of
vegetated land appears to be on the rise, growing from 38.10 percent in 2000 to 43.45 percent
in 2020; this increase was relatively modest until 2010 (38.10 percent to 39.29 percent), but it
was boosted during the period 2010–2020 when the provisional government initiated the
BTTP. That increase in artificial surfaces and vegetation mainly came from bare land, which
decreased from 18.96% (in 2000) to 17.25% in 2010 and 13.44% in 2020.

Figure 3B shows an opposite trend for the Punjab province, where the percentage
of vegetated land decreased from 10.17% in 2000 to 10.10% in 2010, and then to 9.37% in
2020, while the percentage of bare land was reduced from 21.93% in 2000 to 21.34% by
2010, and then to 20.96% in 2020. Figure 4 further reveals this loss of vegetation and that
artificial surfaces occupied the former bare land, with an increase from 1.84% in 2000 to
1.94% by 2010, and an apparent rise to 3.10% by 2020. Similar findings were observed
over the sample sites a, b, and c, with an evident increase in vegetation land from 25.6% in
2000 to 37.02% in 2010 and 52.07% in 2020, and a decrease in bare land of −17% by 2010
and −25.3% by 2020 being noted. In contrast, for site (c), the trends were opposite, with a
significant loss of vegetation land of −1.50% by 2010 being noted, which then accelerated
from 2010–2020 with a loss of −2.90%, and a similar decrease in bare land (2000–2010
(−3.6%) and 2010–2020 (−5.2%)). Artificial surfaces mostly replaced the lost vegetation
and barren land.

3.1.1. LULC Transitions over the Period 2000–2020

Furthermore, LCM was utilized to analyze the transitions of LULC from 2000–2020 to
understand the transitions among the land cover classes. The results in Table 3 and Figure 4
present the KPK and Punjab Province scenarios over two decades, along with sample sites
a, b, and c (Supplementary Materials, Tables S2 and S3). It was observed that a significant
portion of the bare land in KPK province, along with sites (a) and (b), was transformed into
vegetation and artificial surfaces, with a significant transition from bare land to vegetation
(4375.87 km2) from 2010–2020, which supported the BTTP’s main objective and indicated
a better use of bare land by the KPK government. On the other hand, over the Punjab
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province, along with site (c), the scenarios were alarming, with the transition of 1619.9 km2

of cultivated land to artificial surfaces and 2263.5 km2 of vegetation land to bare land. This
indicates clearly contradictory policies for bare land use in the two provinces.
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Table 3. LULC transitions in KPK and Punjab province between 2000 and 2020 (area in sq. km).

Cultivated
Land Vegetation Water Bodies Artificial

Surfaces Bare Land Permanent
Snow and Ice

KPK

Cultivated land 24,674.29 705 72.94 466.51 38.07 NA

Vegetation 685.04 26,541.1 198.82 33.79 1711.54 167.24

Water bodies 57.02 108.02 508.49 1.42 51.35 1.5

Artificial surfaces 66.92 6.71 0.72 589.22 0.59 NA

Bare land 231.05 4375.87 60.97 5.21 9750.15 174.9

Permanent snow
and ice NA 520.97 0.22 NA 233.89 4969.31

Punjab

Cultivated land 13,2359.4 698.7 1072.7 1619.9 256.0 NA

Vegetation 1067.0 16,655.6 1187.0 1074.9 2263.5 NA

Water bodies 422.7 626.0 1332.3 4.2 73.6 NA

Artificial surfaces 584.1 14.1 5.7 3227.0 15.3 NA

Bare Land 1211.3 58.7 242.3 1840.3 41,605.0 NA

NA (Not Applicable) was utilized for the LULC classes where “Permanent Snow and Ice” was not
present/applicable. Additionally, LULC transitions for all 3 sample sites (a), (b), and (c) are presented in
the Supplementary Materials (Tables S2 and S3).

The Markov Chain model was used to explore the transition probabilities of LULC
classes from 2000–2020. The results are presented in Table S3 (Supplementary Materials).
The highest transition probability was found to be for the artificial surfaces in Punjab
province and for vegetation in KPK province.
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3.1.2. Gain and Loss between LULC Classes over the Period 2000–2020

We employed a “Land Change modeler (LCM) for ecological sustainability” after
assessing LULC trends, transitions, and probabilities to pinpoint precisely where the LULC
shifts will occur (TerrSet 2020). Results are presented in Figure 5A,B (Provisional Scenarios),
and Figure 5C (sample sites) for the last two decades.
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land, (b) vegetation, (c) water bodies, (d) artificial surfaces, and (e) bare land. (C) Gain and loss for all
LULC classes over 2000–2020: sites (a) Peshawar (top), (b) Swat (middle), and (c) Lahore (bottom).

Analysis indicated a significant change in the vegetation and barren land for KPK
province, where a total of 4375.87 sq. km area was changed from bare land to vegetation
(Table 3). Further results for the sample sites (a, b, and c) in Figure 5C indicate significant
gains for vegetation cover of 5716.6 km2 and 506.9 km2 for artificial surfaces, mainly coming
from the apparent loss of bare land of 2035 km2 (Table S4, Supplementary Materials). This
also supports and validates our above results about the spatial patterns of LULC and
transitions over KPK province.

In contrast, for the Punjab province, a significant loss was observed in both vegetation
(−4592.4 km2) and bare land (−4352.6 km2), with a gain in artificial surfaces (1757.6 km2).
This also validated our transitions and probabilities analysis; similar trends were observed
over site (c) Lahore, with a significant loss of bare land and vegetation land and substantial
gain in artificial surfaces (Table S5 in the Supplementary Materials). Meanwhile, the
scenarios (Figure 5C) highlighted apparent improvements in vegetation area over the
sample sites (a) and (b). In contrast, site (c) indicated a significant loss of bare land and
green fraction cover with a dominant gain in artificial surfaces.

3.2. Land Surface Temperature (LST) Variations

Spatial patterns of the monthly (March-June) mean LST (Figure 6) indicated a sig-
nificant decrease of −4.3 ◦C from 2000–2020 over sites (a) and (b). The fluctuation in the
LST (increase/decrease) was dominant over the areas of green fraction transitions. Several
studies have already indicated the vegetation fraction in this phenomenon [86–92]. Over
sites (a) and (b), apparent changes can be observed, especially after 2010 in (a3) and (b3)
when they increased their vegetation cover under the BTTP, as compared to (a1) and (b1)
for both high and low LST. On the other hand, site (c) indicated an opposite trend, with



Remote Sens. 2023, 15, 859 13 of 24

an increase of 5.3 ◦C from 2000–2020, with a significant fluctuation over the central and
southern parts, where it lost the green fraction cover (Figure 5C).
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relation of the green fraction with LST; the results are presented in Figure 7.

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 25 
 

 

 
Figure 7. Spatial patterns of normalized difference vegetation index (NDVI) over sites a, b, and c 
from 2000–2020. Note: (a1) Peshawar 2000, (a2) Peshawar 2010, (a3) Peshawar 2020; (b1) Swat 2000, 
(b2) Swat 2010, (b3) Swat 2020; (c1) Lahore 2000, (c2) Lahore 2010, and (c3) Lahore 2020. 

Correlation statistics revealed a strong relationship for sites (a) and (c) with overall 
values of 0.70 or above for R2 (Table 4). For site (c) Lahore, a decreasing trend for NDVI 
produced R2 values of (c1) 0.83, (c2) 0.72, and (c3) 0.59, with a significant decrease over the 
central and southern parts of the area. Similarly, for sites (a) Peshawar and (b) Swat, an 
increasing trend and strong correlation was found for the R2 at (a1) 0.78, (a2) 0.70, (a3) 
0.84, (b1) 0.58, (b2) 0.61, and (b3) 0.69.  

Table 4. Linear regression analysis over the sites (a, b, and c). 

Peshawar 

Equation y = a + b × x y = a + b × x y = a + b × x 
Plot NDVI 2000 NDVI 2010 NDVI 2020 

Weight No Weighting No Weighting No Weighting 
Intercept 1.20 ± 0.01 1.92479 ± 0.02 1.89 ± 0.02 

Slope −0.03 ± 4.24 −0.06 ± 0.00 −0.06 ± 8.20 
Residual sum of 

squares 4.74 5.56 6.27 

Pearson’s r −0.88 −0.83 −0.89 
R2 (COD)/ 0.78 0.70 0.80 

Swat 

Equation y = a + b × x y = a + b × x y = a + b × x 
Plot NDVI 2000 NDVI 2010 NDVI 2020 

Weight No Weighting No Weighting No Weighting 
Intercept 1.38 ± 0.02 2.02 ± 0.03 1.70 ± 0.04 

Slope −0.04 ± 9.85 −0.06 ± 0.00 −0.05 ± 0.00 
Residual sum of 

squares 
2.88 3.80 4.43 

Pearson’s r −0.78 −0.83 −0.68 
R2 (COD) 0.58 0.61 0.69 

Figure 7. Spatial patterns of normalized difference vegetation index (NDVI) over sites a, b, and c
from 2000–2020. Note: (a1) Peshawar 2000, (a2) Peshawar 2010, (a3) Peshawar 2020; (b1) Swat 2000,
(b2) Swat 2010, (b3) Swat 2020; (c1) Lahore 2000, (c2) Lahore 2010, and (c3) Lahore 2020.
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3.3. Spatial Patterns of Normalized Difference Vegetation Index (NDVI)

To further analyze the relationship between LST and NDVI, we calculated the spatial
patterns of NDVI (Figure 7) to build a linear regression between LST and NDVI (Figure 8;
Table 4) over the sites (a, b, and c).
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Figure 8. Correlation between LST and NDVI over the sample sites (a, b, and c). Note: (a1) Peshawar
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(c1) Lahore 2000, (c2) Lahore 2010, and (c3) Lahore 2020.

Correlation statistics revealed a strong relationship for sites (a) and (c) with overall
values of 0.70 or above for R2 (Table 4). For site (c) Lahore, a decreasing trend for NDVI
produced R2 values of (c1) 0.83, (c2) 0.72, and (c3) 0.59, with a significant decrease over the
central and southern parts of the area. Similarly, for sites (a) Peshawar and (b) Swat, an
increasing trend and strong correlation was found for the R2 at (a1) 0.78, (a2) 0.70, (a3) 0.84,
(b1) 0.58, (b2) 0.61, and (b3) 0.69.

Table 4. Linear regression analysis over the sites (a, b, and c).

Peshawar

Equation y = a + b × x y = a + b × x y = a + b × x

Plot NDVI 2000 NDVI 2010 NDVI 2020

Weight No Weighting No Weighting No Weighting

Intercept 1.20 ± 0.01 1.92479 ± 0.02 1.89 ± 0.02

Slope −0.03 ± 4.24 −0.06 ± 0.00 −0.06 ± 8.20

Residual sum of squares 4.74 5.56 6.27

Pearson’s r −0.88 −0.83 −0.89

R2 (COD)/ 0.78 0.70 0.80
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Table 4. Cont.

Swat

Equation y = a + b × x y = a + b × x y = a + b × x

Plot NDVI 2000 NDVI 2010 NDVI 2020

Weight No Weighting No Weighting No Weighting

Intercept 1.38 ± 0.02 2.02 ± 0.03 1.70 ± 0.04

Slope −0.04 ± 9.85 −0.06 ± 0.00 −0.05 ± 0.00

Residual sum of squares 2.88 3.80 4.43

Pearson’s r −0.78 −0.83 −0.68

R2 (COD) 0.58 0.61 0.69

Lahore

Equation y = a + b × x y = a + b × x y = a + b × x

Plot NDVI 2000 NDVI 2010 NDVI 2020

Weight No Weighting No Weighting No Weighting

Intercept 1.99 ± 0.02 1.32 ± 0.02 0.77 ± 0.01

Slope −0.07 ± 8.53 −0.04 ± 8.42 −0.02 ± 3.32

Residual sum of squares 3.35 1.66 0.75

Pearson’s r −0.89 −0.84 −0.84

R2 (COD) 0.83 0.72 0.59

3.4. Relationship between LULC Transitions and LST

After evaluating the relationship between NDVI and LST, we further analyzed the
impacts of LULC transitions on LST (Table 5) using CFLRM. Results from Table 5 indicated
a decreasing trend for LST over the LULC classes associated with land transformation from
bare or built-up land to vegetation and cultivated land. Over site (c), a significant gain of
LST (0.17 ◦C) was noted in response to the transformation of VG to BU. In contrast, sub-
stantial reductions were seen in LST (−0.21 ◦C) after transition from built-up land/artificial
surfaces (BU) to vegetation (VG), (−0.19 ◦C) after transition from BU to CL (cultivated
land), and (−0.22 ◦C) after transition from bare land (BR) to CL.

Table 5. CFLRM-based average contribution rate of LULC class transition to LST (◦C) from 2000
to 2020.

Cultivated
Land Vegetation Water

Bodies
Artificial
Surfaces Bare Land Permanent

Snow and Ice

Peshawar

Cultivated land −0.01 −0.05 0.07 0.11 0.16 NA

Vegetation 0.03 −0.01 0.06 0.18 0.13 −0.1

Water bodies −0.2 −0.13 0.01 0.14 0.17 0.1

Artificial surfaces −0.18 −0.15 −0.1 0.01 0.09 NA

Bare land −0.08 −0.24 −0.1 0.12 0.01 −0.14

Swat

Cultivated land −0.02 −0.04 0.05 0.09 0.14 −0.01

Vegetation 0.02 −0.02 0.04 0.13 0.16 −0.03

Water bodies 0.1 0.06 0.02 0.1 0.15 −0.1

Artificial surfaces −0.12 0.16 −0.2 0 0.1 −0.09

Bare land −0.05 −0.19 −0.02 0.14 0 −0.17
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Table 5. Cont.

Cultivated
Land Vegetation Water

Bodies
Artificial
Surfaces Bare Land Permanent

Snow and Ice

Lahore

Cultivated land −0.01 −0.03 0.1 0.13 0.14 NA

Vegetation 0.02 −0.01 −0.09 0.17 0.16 NA

Water −0.02 0.06 0.1 0.13 0.14 NA

Artificial surfaces −0.19 −0.21 −0.11 0.19 0.17 NA

Bare land −0.22 −0.18 −0.01 0.16 0.06 NA

NA = Not applicable.

3.5. Carbon Stock Maps and Analysis between Carbon Emission and LST

Using the CFLRM, we analyzed the scenarios of land cover dynamics and LULC tran-
sitions, including the geographical locations of gain and loss, variations in LST throughout
the research period, and the contribution rates of LULC transitions to LST.

The results shown in Figure 9 indicated low carbon stock over bare land/water,
medium over built-up land, and high stock over vegetation-covered areas, which were in
line with previous studies in this domain [93–96]. Furthermore, the sensitivity analysis [29]
of the relationship between LST and CO2 variation (%), shown in Figure 10, indicated that
CO2 emission variation (%) was highly sensitive to LST. Results suggested that fluctuations
in LST are affecting the % of emission. Over Lahore, we noticed a growing LST and
a corresponding increase in the percent of CO2 flux. In contrast, the study indicated a
decreasing LST and a definite drop in the percentage of CO2 variation over Peshawar and
Swat. Studies have highlighted the fact that green fraction cover fluctuation affects the LST
and the CE, as a decrease in vegetation fraction results in a massive reduction of carbon
sink from the environment and traps CO2 in the atmosphere, which also contributes to
fluctuations in the LST [97–104].
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4. Discussion

This research was carried out to monitor and compare scenarios of land cover dynam-
ics from 2000–2020 associated with the different land-use policies of local governments and
to analyze their impacts on LST in the Punjab and KPK provinces of Pakistan. Furthermore,
carbon stock maps were prepared, and the linkage between CE and LST was explored.
Findings indicated a significant increase in artificial surfaces over KPK from 664.18 km2 in
2000 to 1196.17 km2 in 2010 and 1375.82 km2 in 2020. A significant part of the increase in
artificial surfaces was due to the mass migration of people from Afghanistan toward the
KPK [105]. In addition, the same trends were observed over Punjab province and site “c”,
where a significant increase in artificial surfaces from 3846.3 km2 in 2000 to 4065.38 km2

in 2010 and 6497.6 km2 by 2020 were noted. This was mainly because of the develop-
ment of new housing communities in response to a growing urban population [50,51],
mega-development projects (including Metro Bus, Orange Train) [50,51,106], and the RUDP
(designed for up to approximately 35 million inhabitants and using an area of 40,000 ha).
Furthermore, our results indicated that the increase in artificial surfaces was mainly at the
cost of losing green fraction, which is essential for equilibrium between the land surface
and atmospheric parameters [66,107]. An increase in population required new commercial
and residential areas, as well as public utilities and transportation infrastructure, which
also caused a decrease in green vegetation [108,109].

Previous studies [53,64,110–113] also reported that transitions in LULC, especially an
increase in artificial surfaces, affect the LST and carbon emission and profoundly impact
local and regional climates. As a result of variations in surface roughness and reflectance
among the LULC categories, the amount of energy radiated and absorbed by these objects
can vary significantly [21,22]. Our study explored these conclusions by evaluating the
spatio-temporal changes in LST associated with the historical transitions of each LULC
category. We concluded that there was a significant decrease in LST by 4.3 ◦C from
2000–2020 over sites (a) and (b), while an increase of 5.3 ◦C over site (c) was observed. To
further understand the relationship of LST with vegetation cover, we utilized the linear
regression between LST and NDVI [87,92] and found a strong positive correlation. Results
indicated a significant gain in LST (0.17 ◦C) in response to the transformation of VG to
BU. In contrast, there was a significant decrease in LST (−0.21 ◦C) over the transition from
built-up land/artificial surfaces (BU) to vegetation (VG), (−0.19 ◦C) over the transition
from BU to CL (cultivated land), and (−0.22 ◦C) over the transition from bare land (BR) to
CL was noted.

The decreasing trend of LST can be seen after 2010, when the provisional government
initialized the BTTP project to minimize the effects of green fraction loss [64], and then
achieved its goals in 2017 [65]. Several pieces of research have already indicated the impor-
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tance of the vegetation fraction in this phenomenon; e.g., [86] reported that safeguarding
biodiversity and vegetation such as forests, agricultural land, and dense or sparse vegeta-
tion, is necessary to maintain the soil cover and balance in the ecosystem, hydrological cycle,
surface temperatures, and air because each land-use category has a different magnitude of
surface reflectance and roughness [114,115]. Research findings indicated that in response to
the increase in vegetation land under the BTTP, the LST of the area saw a decreasing trend.
In contrast, Lahore, in the Punjab province of Pakistan, has shown a decreasing trend for
vegetation and an increasing trend for artificial surfaces since 2000, which significantly
alter the LST and carbon emission [98,101–104].

We next examined the carbon stock and carbon emission over the research region
after determining the LULC dynamics, LST pattern, and the contribution rate of each
LULC transition on LST. Several studies [97–100] have reported that transitions in LULC,
especially the loss/gain of green fraction, impact the LST, carbon stocks, and CE [93–96].
Our results indicated low carbon stock over bare land/water, medium over built-up land,
and high stock over vegetation-covered areas. Kafy et al. [29] also reported the same
results in Bangladesh. Green portion conversion to high-rise infrastructure boosts carbon
emissions [27]. The primary driver of carbon emissions is the expansion of artificial
surfaces [116], which has been a primary concern since the industrial revolution [26].
Updated LULC information is essential for understanding environmental pressures such
as carbon emissions, biosafety, resource depletion, and climate change [9,117,118], and it
is crucial for mesoscale dynamic understanding [119–121]. For example, climate models
specify that the Paris Agreement’s purpose can be achieved by efficient and sustainable
policies relating to low carbon emissions [46,52]. Depleting carbon levels can be reduced
through artificial adjustments of land cover patterns [53,54].

5. Conclusions

The study findings confirmed that over the study period, the KPK province, along
with sites (a) Peshawar and (b) Swat, was predominantly gaining vegetation cover by
+5.35%. A 1.13% increase was noted between 2000–2010, but the ratio accelerated to +4.16%
from 2010–2020 under the BTTP project with an effective transition of bare land totalling
4375.87 km2 to vegetation. On the other hand, the scenarios were alarming for the Punjab
province, along with site (c) Lahore, where there was an increase in artificial surfaces from
1.83% in 2000 to 3.10% in 2020 at the cost of vegetation and bare land loss, amounting to a
significant transition of 1074.9 km2 of vegetation land and 1840.3 km2 of bare ground to
artificial surfaces. Shifts in LULC can alter LST. This study reported an increase of 5.3 ◦C
LST over Lahore, Punjab, whereas a significant drop in LST by −4.3 ◦C was detected over
KPK province. Furthermore, a significant association was found between the LST and
NDVI with R2 > 0.70.

The contribution rate of LULC transitions to LST suggested a considerable influence
of land cover transitions on LST, with a 0.17 ◦C increase seen across regions transformed
from vegetation to artificial surfaces, whereas there was an effective decrease of −0.21 ◦C
in LST over artificial surfaces transformed to vegetation, −0.19 ◦C over artificial surfaces
transformed to cultivated land, and−0.22 ◦C over bare land transformed to cultivated land.
The results for carbon stock indicated a low carbon stock over bare land/water, medium
over built-up land, and high stock over the vegetation-covered areas for both Punjab
and KPK provinces. The sensitivity analysis between LST and carbon emission indicated
that CO2 emission variation (%) was highly sensitive to LST. The results suggested that
fluctuations in LST are affecting the % of emission.

The research indicated that the boost in vegetation cover at the cost of bare land in
response to the BTTP project produced a positive and robust environmental impact. On
the other hand, the site (c) scenarios indicated dangerous trends which not only assisted in
increasing LST but also caused a high carbon emission rate. The findings of this research
and several previous studies have already highlighted the importance of vegetation fraction
for the urban environment and the consequences of rapid urban development. Therefore,
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the government of Punjab should revisit its LULC policies, especially, in the context of
the Master Plan 2050, the plans to build a new city (RUDP) adjacent to site (c) by acquir-
ing farming land and transforming it into artificial surfaces, which would accelerate the
negative consequences for the environment and local communities. Instead of converting
farmland to artificial surfaces, authorities might follow KPK’s policies (e.g., the BTTP) to
boost the green proportion.
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area Master Plan 2021; (b). Lahore metropolitan area Master Plan 2050.
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