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Abstract: In recent years, convolutional neural networks (CNNs) have been introduced for pixel-
wise hyperspectral image (HSI) classification tasks. However, some problems of the CNNs are still
insufficiently addressed, such as the receptive field problem, small sample problem, and feature
fusion problem. To tackle the above problems, we proposed a two-branch convolutional neural
network with a polarized full attention mechanism for HSI classification. In the proposed network,
two-branch CNNs are implemented to efficiently extract the spectral and spatial features, respectively.
The kernel sizes of the convolutional layers are simplified to reduce the complexity of the network.
This approach can make the network easier to be trained and fit the network to small sample
size conditions. The one-shot connection technique is applied to improve the efficiency of feature
extraction. An improved full attention block, named polarized full attention, is exploited to fuse the
feature maps and provide global contextual information. Experimental results on several public HSI
datasets confirm the effectiveness of the proposed network.

Keywords: hyperspectral image (HSI) classification; remote sensing; convolutional neural network (CNN);
attention mechanism; small sample problem

1. Introduction

Hyperspectral image (HSI) is collected by the remote sensor on the surface of the earth,
which consists of hundreds of narrow electromagnetic spectrums from the visible to the
near-infrared wavelength ranges. Since the HSI can distinguish subtle variations from
the spectral signatures of the land cover object, it has been widely applied in many fields,
such as urban planning [1], fine agriculture [2], and mineral exploration [3]. However, the
complex statistical and geometrical properties of HSI datasets prevent the direct utilization
of traditional analysis techniques for multispectral images to extract meaningful informa-
tion from hyperspectral ones. As a result, many scholars focus on developing analysis
techniques of artificial intelligence specifically for HSI datasets.

HSI classification is an important analysis technique in the hyperspectral community,
which assigns each pixel of HSI to one certain class based on its spectral signatures [4].
Traditional HSI classification techniques focus on exploring the shallow characteristics of the
HSI dataset to extract discriminable information, such as the principal component analysis
(PCA) [5], independent component analysis (ICA) [6], and linear discriminate analysis
(LDA) [7]). After that, machine learning techniques are used to classify the discriminable
information of the HSI dataset, such as the support vector machines (SVMs) [8], multinomial
logistic regression [9], and extreme learning machines (ELMs) [10,11]. These methods
design hand-crafted descriptors for specific tasks to explore features, which depends on
expert knowledge in the parameter setup phase. However, the expert knowledge is difficult
to access in practice, which limits the applicability of these methods to process a large
amount of heterogeneous HSI datasets in a consistent end-to-end manner.
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In recent years, deep learning techniques have shown great potential in computer
vision tasks, such as image classification [12], object detection [13], and semantic segmen-
tation [14]. Motivated by those successful applications, deep learning techniques have
been introduced to HSI classification tasks. Different from the traditional HSI classification
approaches, the deep learning techniques adaptively and hierarchically explore information
from the original HSI dataset and obtain the shallow texture features and deep semantic
features via different neural network layers. The parameters of the deep learning tech-
niques can be learned automatically, which makes these approaches more suitable to deal
with complex situations of HSI classification without expert knowledge and solve problems
in a consistent manner.

Recently, many deep learning frameworks have been proposed, such as stacked auto-
encoders (SAEs) [15], deep belief networks (DBNs) [16], convolutional neural networks
(CNNs) [17], recurrent neural networks (RNNs) [18], and generative adversarial networks
(GANs) [19]. Among these frameworks, CNNs have achieved good performance in HSI
classification and received great favor from scholars. The CNNs use convolutional layers
to extract discriminable information from HSI and apply the weight-share mechanism to
reduce the complexity of the network. According to the extracted features, the CNNs can be
divided into spectral-based CNNs, spatial-based CNNs, and spectral–spatial-based CNNs.
Specifically, the spectral-based CNNs focus on extracting informative features from the
spectral signatures of HSI, whose input data are always a 1-dimensional (1D) vector. For
example, Li et al. [20] propose a pixel-pair method that is used to construct the testing pixel
and make deep CNN learn pixel-pair features for more discriminative power. Gao et al. [21]
propose a CNN architecture for fully utilizing the spectral information of HSI data. Each
1D spectral vector that corresponds to a pixel is transformed into a 2-dimensional (2D)
spectral feature matrix. The convolutional layers with 1× 1 and 3× 3 window sizes are
used to extract the spectral features jointly. It can extract high-level features from HSI
data meticulously and comprehensively solve the overfitting problem. The spatial-based
CNNs are adept at extracting spatial information of HSI, and the input data are always a
2D matrix. For example, Zhao et al. [22] propose a CNN framework to classify the HSI.
Dimension reduction and deep learning techniques are used in the method. A convolutional
neural network is utilized to automatically find spatial-related features at high levels.
In [23], a CNN system embedded with an extracted hashing feature is proposed for HSI
classification. The spectral–spatial CNNs explore either spectral information or spatial
information and can extract joint spectral–spatial-based information from the HSI dataset.
The input data of the spectral–spatial-based CNN is always a 3-dimensional (3D) tensor.
3D convolutional layers are implemented to extract the discriminative information. For
example, Li et al. [24] propose a 3D-CNN framework that views the HSI cube data altogether
without relying on any preprocessing or post-processing, extracting the deep spectral–
spatial features. Paoletti et al. [25] propose a 3D network to extract spectral and spatial
information. The proposed network implements a border mirroring strategy to effectively
process border areas in the image and can be efficiently implemented using graphics
processing units. Roy et al. [26] propose a bilinear fusion CNN network named FuSENet
that fuses SENet with the residual unit. Jia et al. [27] propose a lightweight CNN for HSI
classification. Spatial–spectral Schrodinger eigenmaps and dual-scale convolution modules
are implemented to extract spatial–spectral features. These CNN-based methods have
achieved more positive classification results than the traditional hand-craft classification
methods. However, CNNs suffer from gradient vanishing/exploding [28] and network
degradation [29] when the networks are designed to be deeper. In addition, the CNNs
are also restricted by the window size of the convolutional layers, also known as the
receptive field problem, which makes the CNNs to be deficient in the ability to acquire
global contextual information.

To solve the gradient vanishing/exploding and network degradation problems, resid-
ual connection [30] and dense connection [31,32] are proposed to improve the CNNs. For
example, Song et al. [33] propose a deep feature fusion network for HSI classification. The
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residual learning is introduced to optimize the convolutional layers to make the network
easy to be trained. In [34], a new deep CNN architecture is presented specially designed for
HSI data. The residual-based approach is used to group the pyramidal bottleneck residual
blocks to involve more locations as the network depth increases and balances the workload
among all convolutional units. Li et al. [35] propose a two-branch CNN framework, and a
dense connection is introduced to maintain the shallow features in the network. In addition,
Batch Normalization (BN) [36] and ReLU [37] are applied to suppress the gradient vanish-
ing/exploding problems. For instance, a high-performance two-stream spectral–spatial
residual network is proposed for HSI classification in [38]. The network employs a spec-
tral residual network stream to extract spectral characteristics and uses a spatial residual
network stream to extract spatial features. The BN layer is used to speed up the training
process and improve accuracy. Experiments show that the proposed architecture can be
trained with small-size datasets and outperforms the state-of-the-art methods in terms of
overall accuracy. Banerjee et al. [39] propose a 3D convolutional neural network together
with BN layers to extract the spectral–spatial features from the HSI dataset. The shortcut
connections and BN layers are added to get rid of the vanishing gradient problem. Sun et al.
propose an improved 3D CNN to solve the problems of overfitting the in-sample training
process and the difficulty in highlighting the role of discriminant features. The ReLU is
used as a nonlinear activation function to suppress the gradient exploding problem.

To address the receptive field problem, the non-local self-attention methods are invited
to capture long-range dependencies of feature maps as global contextual information. For
example, Shi et al. [40] propose a double-branch network with pyramidal convolution and
iterative attention for HSI classification. In the architecture, the pyramidal convolution
and iterative attention mechanism are applied to obtain finer spectral–spatial features
to improve the classification performance. Experimental results demonstrate that the
proposed model can yield a competitive performance compared to other state-of-the-
art models. Li et al. [41] present a spectral–spatial network with channel and position
global context attention to capture discriminative features. Two novel global context
attentions are proposed to optimize the spectral and spatial features, respectively, for
feature enhancement. Experimental results demonstrate that the spectral–spatial network
with global context attentions outperforms other related methods. Zhang et al. [42] propose
a spectral–spatial self-attention network for HSI classification. The network can adaptively
integrate local features with long-range dependencies related to the pixel to be classified.
The above approaches effectively improve the CNNs and enhance the ability of CNNs to
extract spectral and spatial features from the HSI dataset. However, how to better fuse
the extracted spectral and spatial features is still a worthy question to be investigated.
Furthermore, the problem of a small sample, which is caused by difficulties in obtaining
labeled samples from the HSI dataset, is also a question of concern.

For the multi-feature fusion problem, most of the existing approaches try to feed
the features extracted by multiple methods as input data to a fusion model. By fusing
the multiple features, the models can extract finer discriminative information, which can
help the model to improve the classification capability for HSI classification tasks. For
example, Du et al. [43] use the pre-trained CNN models as feature extractors and focus on
investigating the performances of different CNN models. The multi-layer feature fusion
framework is proposed to integrate multiple level features extracted by a pre-trained CNN
model to improve the performance of HSI classification. In [44], several different features
are extracted for each pixel of HSI. Then, these features are fed to a deep random forest
classifier. With a multiple-layer structure, the outputs of preceding layers will be used as
the inputs of the subsequent layers. After the final layer, the classification probability will
be computed. Zhang et al. [45] propose a novel method named a specific two-dimensional-
tree-dimensional fusion strategy. In the proposed method, two-dimensional convolutional
layers and three-dimensional convolutional layers are used to extract rich features of the
HSI dataset to keep the spectral and spatial information intact. Then, the spectral and
spatial features are fused to classify the HSI dataset. Ma et al. [46] propose a double-branch
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multi-attention mechanism network for HSI classification. The branches with two types
of attention mechanisms are applied to extract multiple features from the HSI dataset.
After that, the extracted features are fused for the classification tasks. Li et al. [47] propose
an HSI classification method based on octave convolution and multi-scale feature fusion.
The octave convolution and attention mechanism are introduced to extract multi-scale
features of the HSI dataset. Then, the spectral–spatial fusion features are fused for the
classification task.

To address the problem of the small sample, many meaningful efforts have been
done in this field. For example, Wang et al. [48] propose to use the ResNet model to
extract the ground scene semantics features from high-resolution remote sensing maps
with abundant ground objects information, and then classify the GF-2 scene dataset with a
small GF-2 data sample through transmigration. Zou et al. [49] propose a graph induction
learning method, which has a small parameter space, to solve the problem of a small
sample in HSI classification. It treats each pixel of the HSI as a graph node and learns the
aggregation function of adjacent vertices through graph sampling and graph aggregation
operations to generate the embedding vector of the target vertex. The embedding vectors
are used to classify the pixels of the HSI dataset. Wang et al. [50] propose a modified
depth-wise separable relational network to deeply capture the similarity between samples.
The depth-wise separable convolution is introduced to reduce the computational cost of the
model. The Leaky ReLU function is used to improve the training efficiency of the model.
The cosine annealing learning rate adjustment strategy is introduced to avoid the model
falling into the local optimal solution and enhance the robustness of the model. In [35],
a double-branch dual-attention mechanism network is proposed for HSI classification
to improve the accuracy and reduce the training samples. Two branches are designed
to capture plenty of spectral and spatial features contained in HSI. A channel attention
block and a spatial attention block are applied to refine and optimize the extracted feature
maps. Pan et al. [51] propose a novel one-shot dense network with polarized attention for
HSI classification. In this method, two independent branches are implemented to extract
spectral and spatial features, respectively. A channel-only polarized attention mechanism
and a spatial-only polarized attention mechanism are applied in the two branches. The
polarized attention mechanisms can use a specially designed filtering method to reduce the
complexity of the model while maintaining high internal resolution in both channel and
spatial dimensions. The above methods solve the small sample problem by pre-training
techniques or by reducing the complexity of the classification model. Moreover, data
augmentation techniques are also introduced to solve the problem of a small sample.
For example, Yu et al. [52] proposed a method to generate labeled samples using the
correlation of spectral bands for HSI classification to overcome the small sample problem.
In the method, the correlation of spectral bands is fully utilized to generate multiple
new sub-samples from each original sample. The number of labeled training samples is
thus increased several times. In [53], an auxiliary classifier-based Wasserstein generative
adversarial network with gradient penalty is proposed. The framework includes an online
generation mechanism and a sample selection algorithm to generate samples that are
similar to real data. Experiments on three public HSI datasets show that the proposed
framework achieved better classification accuracy with a small number of labeled samples.
It is worth noting that the aggressive improvements effectively enhance the performance of
the spectral–spatial convolutional neural network frameworks, and the improvements of
the convolutional networks are not limited to the above-mentioned methods.

In the proposed framework, a two-branch structure is used to extract the spectral
and spatial information of HSI, respectively. By simplifying the window sizes of the 3D
convolutional layers, the complexity of the network is reduced to fit the small sample
environments. Moreover, a one-shot connection [51] is applied to connect the convolutional
layers of the network. This approach allows the shallow features to be maintained in
the deeper layers while these features are extracted again jointly with the deep semantic
features. The one-shot connection can improve the efficiency of the network in extracting
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feature maps of different layers and adequately extract the features of the training sample.
BN layers and PReLU [54] activation function are implemented in the convolutional layers
to suppress the gradient vanishing/exploding problem and network degradation problem.
In the proposed architecture, we try to introduce the attention mechanism to solve the
problem of feature fusion. We hope to use the attention mechanism to find discriminative
abstract features that are worthy of attention. As a result, an improved full attention
(FLA) mechanism [55], named polarized full attention (PFLA), is implemented after the
two-branch convolutional neural network to extract global contextual information and
fuse the spectral and spatial features obtained from the two-branch network. The main
contributions are summarized as follows.

(1) A two-branch neural network is proposed for HSI classification. The two-branch
structure is applied to separately extract the spectral and spatial features of HSI. The
one-shot connection is used to maintain the shallow features and make the network
easy to be trained. The polarized full attention mechanism is implemented to provide
global contextual information and fuse the spectral–spatial features.

(2) An improved full attention mechanism is presented. Sigmoid operation is introduced
to obtain the attention weights. This approach can provide polarizability for full atten-
tion to keep a high internal resolution when fusing the spectral and spatial features.

(3) We explore a method that combines the CNN framework and self-attention mecha-
nism for HSI classification and tries to use the attention mechanism to fuse the feature
maps. The experimental results on four publicly published HSI datasets are reported.

The rest of the paper is organized as follows. Section 2 introduces the related work
of the proposed method. Section 3 gives the details of PTCN. Section 4 collects the experi-
mental results. Section 5 makes some discussions and Section 6 gives the conclusions and
future works.

2. Related Work
2.1. Cube-Based Methods for HSI Classification

Traditional pixel-based classification methods only explore the spectral signatures of
the HSI dataset and ignore the spatial correlation between pixels. To address this issue,
the cube-based method [56,57] is proposed to exploit both spectral and spatial information
by constructing cubic samples. To be specific, the input size of the cube-based method
is C× H ×W, where H ×W represents the number of neighboring pixels (spatial patch
size) and C denotes the number of spectral bands. The cube-based input data is cropped
and centered on the corresponding pixel, and its label is determined by its central pixel.
The labels of adjacent central pixels are not fed into the network, and we only explore the
spatial contextual information around the target pixel.

2.2. Residual Connection, Dense Connection and One-Shot Connection

Deep neural networks have emerged as a powerful tool for HSI classification. From the
empirical results of experiments, the deeper network models can better extract the abstract
features of the HSI dataset to help to improve the classification accuracy. Therefore, scholars
tend to design neural network models with more layers. However, with the increase of the
depth of the network, the gradient vanishing problem and gradient exploding problem
tend to be worse. ResNet [58] first proposes a residual connection to solve this issue. By
adding skip connections between different layers, the network can train deeper models to
achieve higher accuracy. The ResNet uses a summation operator to combine features to
allow the input features to be passed to the subsequent layer. Given H as a hidden layer,
F as a feature map, + as a summation operator, the output feature map of the lth hidden
layer can be expressed as

Fl = Hl(Fl−1) + Fl−1 (1)

However, experiments show that information carried by early feature maps would
be washed out as it is summed with others. To better maintain the previous feature
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maps, DenseNet [59] inherits the concept of skip connection of the ResNet and uses the
concatenation operator to combine features in the channel dimension. This approach can
preserve the input feature maps in their original forms. All previous feature maps are used
to construct the output of the lth hidden layer and can be expressed as

Fl = Hl [F0, F1, . . . , Fl−1] (2)

Experiments [60] show that the dense connection demonstrates spending more mem-
ory and time, and not all connections between layers are positive. Based on the above
understanding, methods for connecting between layers are proposed to replace dense
connection, such as Log-DenseNet [61], SparseNet [62], HarDNet [63], ThreshNet [64], and
VoVnet [65]. In this paper, the one-shot connection is introduced to combine the feature
maps, which is proposed by VoVnet. The one-shot connection designs a sparse approach to
reduce the number of connections from L2 to L while aggregating all features only once in
the last feature maps. This approach outperforms dense connection-based networks with
2× faster speed and 1.6×–4.1× energy consumption while providing similar performance.
The illustration of the residual connection, dense connection, and one-shot connection is
shown in Figure 1.
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2.3. Full Attention Mechanism

In recent years, Non-Local (NL) [66]-based methods have achieved great progress by
capturing long-range dependencies of feature maps in classification models. They utilize
a self-attention mechanism [67–69] to explore the interdependencies of the feature maps
and obtain linear weights to represent the contributions of the features to reweight the
input feature maps. The self-attention mechanism [70] can address the receptive field
problem of the standard convolutional network and has shown great potential in HSI
classification tasks.

The existing self-attention mechanisms explore the dependencies along the channel or
spatial dimensions to obtain corresponding attention weights. However, the integrity of
3D contextual information is missed along the unilateral processing and thus, both channel
and spatial NL variants can only benefit partially in a complementary way. To efficiently
retain attention in all dimensions in a single attention unit, a non-local block, namely, the
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Fully Attentional block, is proposed. It utilizes global contextual information to receive
spatial responses when computing the channel attention map. The workflow of FLA is
shown in Figure 2a.
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Given an input feature map Fin ∈ RC×H×W , where C is the number of channels, H×W
is the spatial size of the input feature map and H equals W. First, the feature maps V are
generated by reshape, cut, and merge operations. The Fin is cut along the H dimension
to obtain a group of H slices with the size of RC×W . Similarly, the Fin is cut along the
W dimension and obtains a group of W slices with the size of RC×H . Then, these two
groups are merged to form the feature maps V ∈ R(H+W)×S×C, where S equals H and W.
Second, the feature maps K ∈ R(H+W)×C×S are generated in the same way. Third, the Fin
is fed into the Construction operation to generate the feature maps Q. The workflow of
the construction operation is shown in Figure 2b. The construction operation contains two
parallel pathways, each of which contains a global average pooling layer followed by a
Linear layer. The sizes of the pooling windows are set to H × 1 and 1×W in these two
pathways, respectively. By these pooling windows, Q̂w ∈ RC×1×W and Q̂h ∈ RC×H×1 are
obtained. After that, Q̂w and Q̂h are repeated to form global features Qw ∈ RC×H×W and
Qh ∈ RC×H×W . We can see that the Qw and Qh represent the global priors in the horizontal
and vertical directions, respectively. They can be used to achieve spatial interactions in the
corresponding dimension. Next, we cut the Qw and Qh along the H and W dimension and
merge these slices to form the final global contexts Q ∈ R(H+W)×C×S.

After that, K and Q are used to capture the full attentions A ∈ R(H+W)×C×C via the
Affinity operation. The Affinity operation is defined as follows:

Ai,j =
exp

(
Qi·Kj

)
∑C

i=1 exp
(
Qi·Kj

) (3)
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where Ai,j ∈ A denotes the degree of correlation between the ith and jth channel at a specific
spatial position. Then, the full attentions A are used to update the channel maps V via
matrix multiplication. After that, FLA reshapes the result into two groups and these two
groups are summed to form the long-range contextual information. Finally, the output
Fo ∈ RC×H×W is obtained by an element-wise sum operation between the input feature
map Fin and the contextual information by multiplying with a scale parameter γ. The
formula can be expressed as follows:

Foj = γ ∑C
i=1 Ai,j·Vj + Finj (4)

where Foj is a feature vector in the output feature map Fo at the jth channel map.

3. Methodology

In this paper, we propose a two-branch deep neural network to extract the abundant
spectral and spatial information of HSI. The workflow of the proposed network is shown
in Figure 3a. We can see that the proposed network is composed of two components: the
two-branch spectral–spatial convolutional feature extraction network and the polarized
full attention feature fusion network.
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In the two-branch spectral–spatial convolutional feature extraction network, a two-
branch structure is used to individually extract the spectral and spatial information along
the spectral and spatial dimensions, respectively. Given an input dataset Xi ∈ RD×C×H×W ,
where Xi is the cube-based HSI data of the ith pixel, D is the number of feature maps (D is
set to 1 when initializing the input dataset), C is the number of spectral dimensions, H×W
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is the size of the spatial dimensions, the output of the network is y′i ∈ R1×m, where m is
the number of land cover categories. The spectral feature extraction branch contains eight
convolutional layers with the BN layer and PReLU activation function layer. First, we
employ a convolutional layer with window size 7× 1× 1 to reduce the spectral dimension
and increase the number of feature maps. After that, five convolutional layers with a
7× 1× 1 window size are used to further extract the spectral information. A one-shot
connection is implemented among these convolutional layers to maintain the previous
feature maps. Next, a convolutional layer with a 1× 1× 1 window size is deployed to
compress the feature maps. Furthermore, a convolutional layer with a C× 1× 1 window
size and reshape operation are used to squeeze the spectral dimension. Similarly, the
spatial feature extraction branch employs eight convolutional layers with BN and PReLU
to extract the spatial information. First, a convolutional layer with a 7× 1× 1 window
size is implemented to reduce the spectral dimension and increase the number of feature
maps. After that, a convolutional layer with a C× 1× 1 window size is used to compress
the spectral dimension. Next, five convolutional layers with a 1× 3× 3 window size are
applied to extract the spatial information. A one-shot connection is carried out among
these convolutional layers to maintain the information. After that, a convolutional layer
with a 1× 1× 1 window size and reshape operation are conducted to compress the number
of feature maps and squeeze the spectral dimension. Finally, the outputs of the spectral
branch and spatial branch are concatenated to form the final feature maps.

The polarized full attention feature fusion network is deployed after the two-branch
spectral–spatial convolutional feature extraction network and is used to fuse the previous
feature maps to generate the final classification results. From Figure 3a, we can see that the
polarized full attention feature fusion network is composed of PFLA, an average pooling
layer with a BN layer, PReLU activation function layer, reshape operation, and Linear layer.
First, the PFLA is implemented to further extract interesting information from the feature
maps extracted by the previous two-branch network by the self-attention mechanism.
Different from the traditional FLA, the proposed PFLA employs a convolutional layer with
a 1× 1 window size to generate the global contextual information and use the Sigmoid
operation to provide polarizability to keep high internal resolution when fusing the channel-
wise attentions. The workflow of the PFLA is shown in Figure 3b. We can see that most of
the processes of PFLA are the same as the FLA, with the difference that the convolutional
layer and Sigmoid operation are deployed after the matrix multiplication of V and A. Next,
an average pooling layer with BN layer and PReLU activation function layer is conducted
to compress the spatial dimension and fuse the features. Finally, a reshape operation is
used to squeeze the spatial dimension, and a Linear layer is used to generate the final
classification results. To illustrate the details of the proposed network, the dataflows of
the two-branch spectral–spatial convolutional feature extraction network and polarized
full attention feature fusion network are shown in Tables 1–3, when the input data are set
to Xi ∈ R1×103×9×9. Cross entropy loss is applied to train the proposed network and is
expressed as follows:

Li = −[yilogy′i + (1− yi)log(1− y′i)] (5)

where yi is the land cover label of the ith pixel.

Table 1. The dataflow of the spectral feature extraction branch.

Input Size Layer
Name Kernel Stride Padding Filters Output Size

(1, 103, 9, 9) Conv (7, 1, 1) (3, 1, 1) (0, 0, 0) 24 (24, 49, 9, 9)
(24, 49, 9, 9) Conv (7, 1, 1) (1, 1, 1) (3, 0, 0) 24 (24, 49, 9, 9)
(24, 49, 9, 9) Conv (7, 1, 1) (1, 1, 1) (3, 0, 0) 24 (24, 49, 9, 9)
(24, 49, 9, 9) Conv (7, 1, 1) (1, 1, 1) (3, 0, 0) 24 (24, 49, 9, 9)
(24, 49, 9, 9) Conv (7, 1, 1) (1, 1, 1) (3, 0, 0) 24 (24, 49, 9, 9)
(24, 49, 9, 9) Conv (7, 1, 1) (1, 1, 1) (3, 0, 0) 24 (120, 49, 9, 9)
(120, 49, 9, 9) Conv (1, 1, 1) (1, 1, 1) (0, 0, 0) 24 (24, 49, 9, 9)
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Table 1. Cont.

Input Size Layer
Name Kernel Stride Padding Filters Output Size

(24, 49, 9, 9) Conv (49, 1, 1) (1, 1, 1) (0, 0, 0) 24 (24, 1, 9, 9)
(24, 1, 9, 9) Reshape - - - - (24, 9, 9)

Table 2. The dataflow of the spatial feature extraction branch.

Input Size Layer
Name Kernel Stride Padding Filters Output Size

(1, 103, 9, 9) Conv (7, 1, 1) (3, 1, 1) (0, 0, 0) 24 (24, 49, 9, 9)
(24, 49, 9, 9) Conv (49, 1, 1) (1, 1, 1) (0, 0, 0) 24 (24, 1, 9, 9)
(24, 1, 9, 9) Conv (1, 3, 3) (1, 1, 1) (0, 1, 1) 24 (24, 1, 9, 9)
(24, 1, 9, 9) Conv (1, 3, 3) (1, 1, 1) (0, 1, 1) 24 (24, 1, 9, 9)
(24, 1, 9, 9) Conv (1, 3, 3) (1, 1, 1) (0, 1, 1) 24 (24, 1, 9, 9)
(24, 1, 9, 9) Conv (1, 3, 3) (1, 1, 1) (0, 1, 1) 24 (24, 1, 9, 9)
(24, 1, 9, 9) Conv (1, 3, 3) (1, 1, 1) (0, 1, 1) 24 (120, 1, 9, 9)
(120, 1, 9, 9) Conv (1, 1, 1) (1, 1, 1) (0, 0, 0) 24 (24, 1, 9, 9)
(24, 1, 9, 9) Reshape - - - - (24, 9, 9)

Table 3. The dataflow of the polarized full attention feature fusion network.

Input Size Layer
Name Kernel Stride Padding Filters Output

Size

(48, 9, 9) PFLA - - - - (48, 9, 9)
(48, 9, 9) Avgpool - - - - (48, 1, 1)
(48, 1, 1) Reshape - - - - (48)
(48) Linear - - - 9 (9)

4. Experiment
4.1. Hyperspectral Dataset Description

In the experiment, four HSI datasets with different land cover types and spectral–
spatial resolutions are introduced to evaluate the effectiveness of the proposed network,
including the University of Pavia dataset, the WHU-Hi-HongHu dataset [71], the GF-5
advanced Jiangxia District HSI dataset [72], and the Houston University dataset [73]. The
details of the four HSIs are described as follows.

The University of Pavia dataset (UP): The UP dataset was obtained by the Reflective
Optics System Imaging Spectrometer (ROSIS) sensor over the University of Pavia, Italy,
in 2003. The spatial size of the UP dataset is 610× 340, and the spatial resolution is about
1.3 m per pixel. The UP dataset consists of 103 bands with a spectral wavelength ranging
from 430 to 860 nm. The land cover objects are labeled into 9 categories. The details of the
UP dataset are shown in Table 4.

Table 4. The classes, colors, land cover types, and number of samples of the UP dataset.

Class Color Land cover Total Train Validation Test

C1 Asphalt 6631 67 67 6497
C2 Meadows 18,649 187 187 18,275
C3 Gravel 2099 21 21 2057
C4 Trees 3064 31 31 3002
C5 Metal sheets 1345 14 14 1317
C6 Bare soil 5029 51 51 4927
C7 Bitumen 1330 14 14 1302
C8 Bricks 3682 37 37 3608
C9 Shadows 947 10 10 927

Total 42,776 432 432 41,912



Remote Sens. 2023, 15, 848 11 of 28

The WHU-Hi-Honghu dataset (HH): The HH dataset was collected by the unmanned
aerial vehicle (UAV) platform, which is an agricultural area in Honghu city, Hubei province,
China. The spatial size is 940× 475. The spatial resolution is about 0.043 m per pixel. The
HH dataset contains 270 spectral bands ranging from 400 to 1000 nm. The land cover
objects are labeled into 22 categories. Due to the memory capacity limitation, we downscale
the HH dataset to 30 dimensions by PCA. The details of the HH dataset are shown in
Table 5.

Table 5. The classes, colors, land cover types, and number of samples of the HH dataset.

Class Color Land Cover Total Train Validation Test

C1 Red roof 14,041 141 141 13,759
C2 Road 3512 36 36 3440
C3 Bare soil 21,821 219 219 21,383
C4 Cotton 163,285 1633 1633 160,019
C5 Cotton firewood 6218 63 63 6092
C6 Rape 44,557 446 446 43665
C7 Chinese cabbage 24,103 242 242 23619
C8 Pakchoi 4054 41 41 3972
C9 Cabbage 10,819 109 109 10,601

C10 Tuber mustard 12,394 124 124 12,146

C11 Brassica
parachinensis 11,015 111 111 10,793

C12 Brassica chinensis 8954 90 90 8774

C13 Small Brassica
chinensis 22,507 226 226 22,055

C14 Lactuca sativa 7356 74 74 7208
C15 Celtuce 1002 11 11 980

C16 Film covered
lettuce 7262 73 73 7116

C17 Romaine lettuce 3010 31 31 2948
C18 Carrot 3217 33 33 3151
C19 White radish 8712 88 88 8536
C20 Garlic sprout 3486 35 35 3416
C21 Broad bean 1328 14 14 1300
C22 Tree 4040 41 41 3958

Total 386,693 3881 3881 378,931

The GF-5 advanced Jiangxia District HSI dataset (JX): The JX dataset was acquired by
the GF-5 satellite over the Jiangxia District, Wuhan City, Hubei Province, China. The JX
dataset is a mixed landscape with mining and agriculture areas, which covers an area of
109.4 km2. The spatial size of the JX dataset is 218× 561, and the spatial resolution is about
30 m per pixel. Its spectral range extends from 400 to 2500 nm with 120 bands. The land
cover objects are classified into 6 categories. The details of the JX dataset are collected in
Table 6.

Table 6. The classes, colors, land cover types, and number of samples of the JX dataset.

Class Color Land Cover Type Total Train Validation Test

C1 Surface-mined area 4838 49 49 4740
C2 Road 486 5 5 476
C3 Water 1026 11 11 1004
C4 Crop land 924 10 10 904
C5 Forest land 1516 16 16 1484
C6 Construction land 549 6 6 537

Total 9339 97 97 9145

The Houston University dataset (HU): The HU dataset was obtained over the Univer-
sity of Houston campus and the neighboring urban area, through the NSF-funded Center
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for Airborne Laser Mapping (NCALM). The spatial size of the HU dataset is 349× 1905.
The spatial resolution is about 2.5 m per pixel. It consists of 144 spectral bands in the 380
to 1050 nm region. The land covers are classified into 15 categories. Due to the memory
capacity limitation, we downscale the HU dataset to 30 dimensions by PCA. The detailed
information is listed in Table 7.

Table 7. The classes, colors, land cover types, and number of samples of the HU dataset.

Class Color Land Cover Type Total Train Validation Test

C1 Healthy grass 1251 13 13 1225
C2 Stressed grass 1254 13 13 1228
C3 Synthetic grass 697 7 7 683
C4 Trees 1244 13 13 1218
C5 Soil 1242 13 13 1216
C6 Water 325 4 4 317
C7 Residential 1268 13 13 1242
C8 Commercial 1244 13 13 1218
C9 Road 1252 13 13 1226

C10 Highway 1227 13 13 1201
C11 Railway 1235 13 13 1209
C12 Parking lot 1 1233 13 13 1207
C13 Parking lot 2 469 5 5 459
C14 Tennis court 428 5 5 418
C15 Running track 660 7 7 646

Total 15,029 158 158 14,713

4.2. Experimental Setting and Evaluation Measures

In the experiment, we select six comparison methods to validate the effectiveness
of the proposed method, including SVM, DBMA [46], DBDA [35], PCIA [40], SSGC [41],
and OSDN [51]. To be specific, the SVM is introduced to represent the traditional HSI
classification methods. The DBMA and DBDA are applied to represent the two-branch-
based 3D spectral–spatial CNNs. The PCIA is introduced to represent multi-scale 3D
spectral–spatial CNNs. The SSGC and OSDN are used to represent the state-of-the-art 3D
spectral–spatial CNN combined with self-attention mechanism frameworks.

(1) SVM: The SVM with RBF kernel is introduced in the experiment. The raw spectral
vectors of the pixels of HSI are fed into the SVM as the input data. The penalty
parameter C and the RBF kernel width σ of SVM are selected by Grid SearchCV, both
in the range of

(
10−2, 102).

(2) DBMA: The DBMA is a two-branch multi-attention mechanism network. The two
branches with 7× 1× 1 and 1× 3× 3 kernel sizes are used to extract spectral and
spatial features, respectively. Two attention mechanisms are adopted in the two
branches. A dense connection is used for efficient feature extraction.

(3) DBDA: The structure of DBDA is similar to the DBMA. Different from the DBMA, the
DBDA applies the Mish activation function and another set of attention mechanisms
in the two branches.

(4) PCIA: Similar to DBMA and DBDA, the PCIA consists of two branches to extract
spectral and spatial features. The pyramidal convolution is used in the two branches.
The kernel sizes of the pyramidal convolutional layers are 7× 1× 1, 5× 1× 1, 3× 1× 1
for the spectral branch and 1 × 7 × 7, 1 × 5 × 5, 1 × 3 × 3 for the spatial branch.
Furthermore, an iterative attention mechanism is applied in the PCIA.

(5) SSGC: For the SSGC, the channel and position global context attention blocks are
applied to extract global features. The rest of the network architecture is the same as
the DBMA and DBDA.

(6) OSCN: For the OSCN, the one-shot connection and polarized self-attention blocks are
applied in the network. The rest of the network architecture is the same as the DBMA
and DBDA.
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To ensure the fairness of the comparative experiments, we adopted the same hyperpa-
rameter settings for the convolutional neural networks. The number of PCA components
is set to 30 for HH and HU datasets. The size of the HSI patch cube (patch size) is set
to 11× 11× C, where C denotes the number of spectral dimensions. The batch size is
set to 32. The number of training epochs is set to 50. The initial learning rate is set to
0.0005. The Adam optimizer is adopted to train the network. The attenuation rate is
set to (0.9, 0.999) and the fuzzy factor is set to 10−8. The cosine annealing technique is
applied in the training process. The learning rate is set to 15 epochs. The early stopping
technique is also used in the training process. The stopping rate is set to 20 epochs. The
dropout technique is introduced in the training process for SSGC, OSDN, and PTCN. The
probability rate is set to 0.5. To quantitatively evaluate the performance of the methods,
the overall accuracy (OA), average accuracy (AA), and Kappa coefficient (Kappa) [74] are
used in the experiment. The average results are reported based on 10 times independent
experiments. The experimental hardware environment is a deep learning workstation with
an Intel Xeon E5-2680v4 processor 2.4 GHz and NVIDIA GeForce RTX 2080Ti GPU. The
software environment is CUDA v11.2, PyTorch 1.10, and Python 3.8.

4.3. Experimental Results

To evaluate the performance of the proposed PTCN, we first collect the classification
accuracies of the competitors on the UP dataset. The classification results and training
times are shown in Table 8. The best OA, AA, Kappa, and the smallest training time
are highlighted in bold. By observing the classification results, we can see that the SVM
obtains the lowest OA (87.72%), which is significantly lower than that of the posterior 3D
convolutional networks. It is understandable that the SVM uses only the spectral features
of the HSI as the discriminative information, while the posterior 3D convolutional networks
apply the spatial contextual information along with the spectral features to extract the
discriminative information. The PCIA provides slightly higher OA than DBMA, DBDA,
and SSGC. It shows that multi-scale convolution technology is effective in extracting
discriminable features from HSI datasets. The OSDN and PTCN provide competitive
classification results (97.96%, 97.99%). The PTCN achieves the highest OA among the
3D convolutional networks, which is 2.01%, 0.91%, 0.9%, 0.94%, and 0.03% higher than
that of other methods. However, we can see that the standard deviation of the PTCN is
relatively large, especially for C7 (4.37%) and C8 (8.89%). It indicates that although the
proposed PTCN can obtain high classification accuracy, the stability (generalization) of the
network is poor and the performance is influenced by the quality of the training samples.
SSGC and PCIA take more time to train the model, which is discussed in Section 5.4. We
select the confusion matrix of primary classification results of the UP dataset that is close
to the average accuracy, which is shown in Figure 4. We can see that C3, C7, and C8 are
hard to be classified for SVM. The C3 is misclassified to C1 (15%) and C8 (11%). The
C7 is misclassified to C1 (20%). The C8 is misclassified to C1 (5%) and C3 (16%). For
the DBMA, C3 and C8 are hard to be classified. The C3 is misclassified to C7 (2%), C8
(5%), and C9 (2%). The C8 is misclassified to C1 (2%) and C3 (15%). For the DBDA, we
can see different results from DBMA. C8 and C9 are hard to be classified for DBDA. The
C8 is misclassified to C3 (5%). The C9 is misclassified to C3 (2%) and C5 (4%). For the
PCIA, C8 is hard to be classified. The C8 is misclassified to C3 (10%). For the SSGC, C3 is
hard to be classified. The C3 is misclassified to C8 (8%). For the OSDN, C8 is hard to be
classified, and the C8 is misclassified to C1 (3%) and C3 (10%). For the PTCN, the C8 is also
hard to be classified, and the C8 is misclassified to C3 (10%). The full-factor classification
maps of the competitors are shown in Figure 5. We can see that many salt–pepper noises
appear in the classification map of SVM, which only invites spectral signatures of HSI to
classify the pixels. In contrast, the classification maps of the 3D convolutional networks
are smoother. The observation indicates that the classification map obtained by the 3D
spectral–spatial convolutional network tends to be spatially smooth by introducing spatial
contextual information when classifying the HSI datasets.
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Table 8. Classification results and training times (TT) of the UP dataset.

Class SVM DBMA DBDA PCIA SSGC OSDN PTCN

C1 87.71 ± 4.45 94.88 ± 0.74 95.89 ± 2.80 94.18 ± 1.84 97.37 ± 1.95 96.99 ± 2.16 97.90 ± 1.26
C2 89.97 ± 0.98 99.30 ± 0.16 99.10 ± 0.18 99.53 ± 0.19 99.53 ± 0.48 99.80 ± 0.04 98.53 ± 0.80
C3 75.85 ± 2.5 84.91 ± 5.01 95.76 ± 7.29 92.96 ± 4.15 74.24 ± 11.18 93.62 ± 5.47 99.04 ± 1.28
C4 93.90 ± 2.35 95.23 ± 0.54 95.30 ± 0.86 97.61 ± 0.27 99.17 ± 0.26 99.06 ± 1.19 99.75 ± 0.09
C5 97.66 ± 0.86 99.42 ± 0.12 98.72 ± 0.26 99.26 ± 0.27 99.81 ± 0.15 96.04 ± 0.65 99.37 ± 0.40
C6 88.42 ± 4.84 99.03 ± 1.14 98.70 ± 0.40 99.86 ± 0.41 99.63 ± 0.46 99.87 ± 0.07 99.42 ± 0.73
C7 77.75 ± 10.55 91.93 ± 1.73 98.40 ± 2.09 98.32 ± 1.12 99.90 ± 0.08 97.75 ± 2.07 98.34 ± 4.37
C8 75.96 ± 2.5 83.83 ± 2.23 91.24 ± 1.88 87.51 ± 4.00 96.16 ± 5.40 90.83 ± 3.05 92.94 ± 8.89
C9 99.98 ± 0.04 99.30 ± 0.25 88.52 ± 2.23 97.96 ± 0.70 96.89 ± 0.84 97.65 ± 1.42 96.60 ± 1.05

OA (%) 87.72 ± 0.68 95.98 ± 0.31 97.08 ± 0.79 97.09 ± 0.89 97.05 ± 1.02 97.96 ± 0.83 97.99 ± 1.56
AA (%) 87.47 ± 0.34 94.21 ± 0.59 95.73 ± 1.05 96.35 ± 1.08 95.86 ± 1.03 96.85 ± 1.09 97.99 ± 1.59

Kappa 0.8347 ±
0.0096

0.9465 ±
0.0041

0.9613 ±
0.0104

0.9614 ±
0.0119

0.9609 ±
0.0135

0.9730 ±
0.0110

0.9733 ±
0.0208

TT (s) - 23.62 26.09 34.66 34.67 18.45 30.14
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To further evaluate the performance of the PTCN, the HH dataset, which is a high
spatial resolution (0.043 m per pixel) HSI dataset, is introduced to the experiment. The
classification results are listed in Table 9. Similar to the UP dataset, the SVM obtains the
lowest OA (79.55%) among the competitors. Checking the classification accuracy of various
categories, we can see that some categories (C5, C8, C11, C12, C18, C20, C21, and C22) are
difficult to discriminate by only employing spectral signatures. The 3D spectral–spatial
neural networks obtain higher classification accuracies in most categories, OA, AA, and
Kappa. The experimental results demonstrate again that the accuracy of the classification
methods can be improved by appropriately introducing spatial contextual information in
the training process. The PCIA and PTCN achieve relatively high overall accuracies (97.67%,
97.73%). DBMA achieves the lowest training time (67.58 s). The standard deviations of the
OAs of the competitors range from 0.16% to 0.57%, which indicates that the OAs of the
methods are stable. It may be due to the fact that sufficient training samples (3881) can
optimize the classification models adequately in the training process and thus improve the
generalization of the models. The heatmap of the normalized confusion matrix, which is
the closest to the average results for HH dataset, is shown in Figure 6. From the normalized
confusion matrix, we can see that the C5, C8, C11, C12, C18, C20, C21, and C22 are hard to
be classified for SVM. The C5 is mainly misclassified to C1 (13%), C3 (8%), C4 (%7), and
C13 (19%). The C8 is mainly misclassified to C7 (9%), C10 (9%), C13 (21%), and C14 (8%).
The C11 is mainly misclassified to C7 (14%) and C19 (15%). The C12 is mainly misclassified
to C7 (10%) and C10 (24%). The C18 is mainly misclassified to C7 (17%) and C11 (12). The
C20 is mainly misclassified to C7 (7%), C11 (9%), C13 (9%), and C22 (8%). The accuracy
of the C21 is only 3% in the confusion matrix, and is mainly misclassified to C2 (16%), C3
(16%), C4 (10%), C5 (13%), C13 (16%), and C14 (16%). The C22 is mainly misclassified to
C4 (7%), C7 (19%), and C11 (9%). For the DBMA, the C21 is hard to be classified, and the
C21 is mainly misclassified to C8 (16%). For the DBDA, the C21 is also hard to be classified,
and the C21 is mainly misclassified to C3 (4%), and C8 (8%). For the PCIA, the C21 is hard
to be classified, and is mainly misclassified to C8 (9%). For the SSGC, the C8 and C21 are
hard to be classified. The C8 is mainly misclassified to C7 (8%) and C13 (4%). The C21 is
mainly misclassified to C3 (7%), C8 (16%), and C13 (9%). For the OSDN, the C2 is hard to
be classified, and is mainly misclassified to C3 (10%). For the PTCN, the C2 and C21 are
hard to be classified. The C2 is mainly misclassified to C1 (3%) and C3 (5%). The C21 is
mainly misclassified to C3 (9%) and C8 (10%). From Figure 7, we can see that there are
some salt-pepper noises in the classification map of SVM. The DBMA, DBMA, PCIA, SSGC,
OSDN, and PTCN provide better classification maps than SVM. However, there are still
some ambiguities and misclassifications in C2 and C21.

Table 9. Classification results and training times (TT) of the HH dataset.

Class SVM DBMA DBDA PCIA SSGC OSDN PTCN

C1 86.68 ± 1.00 98.74 ± 0.13 98.31 ± 0.28 98.90 ± 0.32 97.85 ± 1.57 98.63 ± 0.24 99.19 ± 0.21
C2 57.37 ± 4.00 88.96 ± 1.33 88.13 ± 0.98 90.05 ± 1.94 88.34 ± 3.53 81.77 ± 2.30 86.50 ± 2.58
C3 76.01 ± 0.79 95.34 ± 0.39 94.28 ± 0.92 97.87 ± 1.57 96.10 ± 1.97 97.61 ± 2.14 97.42 ± 1.79
C4 91.30 ± 0.19 99.48 ± 0.07 99.37 ± 0.13 99.66 ± 0.14 99.80 ± 0.05 99.25 ± 0.24 99.41 ± 0.32
C5 37.54 ± 2.41 93.16 ± 0.78 94.64 ± 0.81 96.75 ± 1.08 91.68 ± 5.03 96.44 ± 1.74 94.68 ± 2.54
C6 82.26 ± 1.17 98.31 ± 0.47 98.32 ± 0.45 99.05 ± 0.20 98.70 ± 0.36 99.16 ± 0.15 98.38 ± 0.53
C7 62.42 ± 1.20 92.37 ± 0.92 90.63 ± 1.60 93.01 ± 1.11 94.65 ± 1.31 95.14 ± 0.95 94.72 ± 0.88
C8 28.04 ± 6.37 94.14 ± 1.12 74.46 ± 3.40 89.61 ± 2.09 65.99 ± 8.65 89.70 ± 4.44 98.57 ± 1.25
C9 96.47 ± 0.47 99.34 ± 0.13 98.01 ± 0.39 99.57 ± 0.09 99.17 ± 0.30 98.61 ± 0.34 98.90 ± 0.22

C10 54.97 ± 1.44 94.05 ± 1.24 94.52 ± 1.04 96.86 ± 0.80 93.73 ± 2.43 97.92 ± 0.91 97.26 ± 1.07
C11 52.19 ± 0.73 93.07 ± 0.73 91.89 ± 1.65 93.37 ± 1.34 91.79 ± 5.59 90.18 ± 1.59 92.37 ± 1.79
C12 44.27 ± 2.72 93.56 ± 0.64 88.16 ± 2.38 93.58 ± 2.27 83.30 ± 7.51 93.38 ± 1.92 97.84 ± 0.79
C13 54.27 ± 1.70 93.03 ± 0.62 91.05 ± 1.11 92.48 ± 3.64 93.98 ± 3.90 94.32 ± 1.07 94.71 ± 2.87
C14 80.94 ± 2.47 92.92 ± 1.68 92.72 ± 2.45 98.62 ± 0.47 97.27 ± 1.17 98.35 ± 0.83 98.26 ± 0.57
C15 68.38 ± 35.71 99.89 ± 0.18 97.69 ± 2.10 98.56 ± 0.89 98.31 ± 0.41 96.16 ± 0.69 99.33 ± 1.25
C16 79.24 ± 1.27 97.49 ± 0.64 97.88 ± 2.94 98.01 ± 0.35 98.85 ± 0.35 99.64 ± 0.23 99.49 ± 0.28
C17 51.61 ± 4.32 97.53 ± 1.67 92.79 ± 3.33 98.10 ± 1.14 97.20 ± 2.16 89.09 ± 3.08 96.00 ± 3.68
C18 44.21 ± 4.45 97.20 ± 0.80 93.73 ± 0.67 98.17 ± 0.52 97.33 ± 0.57 97.27 ± 0.50 98.32 ± 0.79
C19 70.41 ± 2.62 94.26 ± 0.49 94.47 ± 1.24 93.85 ± 1.16 92.29 ± 1.82 95.87 ± 1.13 92.67 ± 0.85
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Table 9. Cont.

Class SVM DBMA DBDA PCIA SSGC OSDN PTCN

C20 51.27 ± 5.03 91.57 ± 1.26 85.71 ± 3.12 97.21 ± 0.88 98.02 ± 0.94 95.42 ± 1.50 95.86 ± 2.72
C21 5.36 ± 5.25 84.35 ± 2.49 79.13 ± 2.60 87.99 ± 2.27 70.71 ± 7.23 91.04 ± 4.72 86.42 ± 2.04
C22 51.96 ± 3.71 96.51 ± 0.54 97.04 ± 0.68 98.50 ± 0.39 97.63 ± 1.23 97.73 ± 0.36 96.71 ± 0.73

OA (%) 79.55 ± 0.14 97.05 ± 0.16 96.19 ± 0.21 97.67 ± 0.57 96.67 ± 0.56 97.51 ± 0.30 97.73 ± 0.40
AA (%) 59.87 ± 1.14 94.79 ± 0.32 92.40 ± 0.17 95.90 ± 0.73 92.85 ± 0.77 95.12 ± 0.31 96.05 ± 0.47
Kappa 0.7359 ± 0.0019 0.9626 ± 0.0021 0.9518 ± 0.0026 0.9705 ± 0.0072 0.9580 ± 0.0071 0.9685 ± 0.0038 0.9712 ± 0.0051
TT (s) - 67.58 80.26 83.03 84.57 97.66 117.09
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Although PTCN performs well on the UP and HH datasets, the classification accuracies
are already saturated (above 96%). In those cases, margins for improvement are limited. As
a result, we invite the JX dataset to further evaluate the performance of the PTCN, which is a
more challenging HSI dataset. The JX dataset is a satellite dataset with mining and agriculture
areas. In particular, the labeled pixels of the JX dataset are disjointly marked, which can
effectively limit the ability of the 3D spectral–spatial convolutional networks to extract spatial
contextual information via the cube-based method. The classification results are shown in
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Table 10. We can see that although the SVM provides the lowest OA, the margins with 3D
convolutional networks are relatively small, ranging from 5.72% to 8.94%. It is understandable
that the disjointly marked samples restrict the spatial information. Under this condition, the
3D spectral–spatial convolutional networks (spectral–spatial-based methods) provide limited
improvement in classification accuracy over the SVM (spectral-based methods). The PCIA,
OSDN, and PTCN provide higher OAs than the other convolutional networks. The PTCN gives
competitive results in both classification accuracy and standard deviation. The heatmap of the
normalized confusion matrix, which is the closest to the average results for JX dataset, is shown
in Figure 8. From the confusion matrix, we can see that the C2, C3, C4, and C6 are hard to be
classified for SVM. The C2 is mainly misclassified to C1 (19%), C4 (21%), and C5 (19%). The
C3 is mainly misclassified to C1 (25%). The C4 is mainly misclassified to C1 (19%) and C5 (27).
The C6 is mainly misclassified to C1 (23%). For the spectral–spatial 3D convolutional networks,
the C2 and C4 are still hard to be classified. The C2 is mainly misclassified to C4 (21%, 20%,
20%, 17%, 17%, and 6%), and C5 (29%, 28%, 32%, 24%, 22%, and 11%) for DBMA, DBDA, PCIA,
SSGC, OSDN, and PTCN. The full-factor classification maps for JX dataset are shown in Figure 9.
We can see that the PTCN provides a finer-grained classification map than other convolutional
networks. It is probably because we invite the polarized full attention block in the feature fusion
stage, which can extract more detailed information than the former methods.

Table 10. Classification results and training times (TT) of the JX dataset.

Class SVM DBMA DBDA PCIA SSGC OSDN PTCN

C1 74.04 ± 4.61 87.11 ± 0.75 89.99 ± 0.68 82.76 ± 1.56 85.04 ± 6.05 91.65 ± 0.91 83.17 ± 3.39
C2 14.95 ± 18.99 32.56 ± 2.23 37.91 ± 2.05 34.59 ± 11.75 53.10 ± 27.56 45.19 ± 6.39 33.01 ± 4.51
C3 48.39 ± 25.68 50.04 ± 0.83 50.14 ± 1.70 65.85 ± 3.55 49.64 ± 9.07 52.81 ± 3.21 58.96 ± 7.71
C4 26.50 ± 24.54 45.46 ± 2.63 46.89 ± 1.40 49.17 ± 3.80 49.94 ± 5.03 52.89 ± 6.17 46.72 ± 3.07
C5 55.65 ± 13.53 55.33 ± 2.47 54.65 ± 3.14 51.97 ± 2.94 53.99 ± 9.53 51.71 ± 4.21 78.10 ± 2.99
C6 17.56 ± 23.69 59.50 ± 4.54 62.22 ± 1.95 70.64 ± 2.99 72.26 ± 24.29 65.68 ± 1.84 65.18 ± 9.30

OA (%) 63.98 ± 1.64 69.70 ± 0.92 71.41 ± 0.71 72.22 ± 1.13 70.65 ± 2.56 72.33 ± 1.08 72.92 ± 1.06
AA (%) 39.68 ± 14.03 55.00 ± 1.80 56.97 ± 0.54 59.16 ± 2.94 60.67 ± 8.00 59.99 ± 2.12 60.86 ± 1.47
Kappa 0.4276 ± 0.0568 0.5474 ± 0.0099 0.5767 ± 0.0077 0.5608 ± 0.0230 0.5439 ± 0.0595 0.5931 ± 0.0116 0.5797 ± 0.0164
T (s) - 8.76 7.31 5.77 6.19 6.73 9.01
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Finally, the HU dataset is implemented to investigate the effectiveness of the PTCN
under small sample conditions. In the experiment, the number of training samples of different
categories ranges from 3 to 12, which is difficult to adequately train the classification models.
Viewing Table 11, we can see that the SVM provides the lowest OA (79.42%). The DBDA,
PCIA, and SSGC achieve higher OAs (5.41%, 5.59%, 5.93%) than SVM. The DBMA and OSDN
give better OAs than DBDA (0.78%, 0.81%), PCIA (0.60%, 0.63%), and SSGC (0.26%, 0.29%).
The PTCN provides higher OA than DBMA (0.57%) and OSDN (0.54%). It is understandable
that the simple structure of PTCN can reduce the complexity of the network and the one-shot
connection can make the PTCN easier to be trained. The special designs make the PTCN more
suitable for small-sample learning tasks. The heatmap of the normalized confusion matrix,
which is the closest to the average results for the HU dataset, is shown in Figure 10. It can be
clearly seen that the classification accuracies of the convolutional networks are higher than
that of SVM for most categories. The C9, C12, and C13 are relatively hard to be classified for
the convolutional networks. The C9 is mainly misclassified to C10 (9%, 1%, 9%, 2%, 10%, and
1%) and C12 (6%, 13%, 7%, 10%, 15%, and 14%) for the convolutional networks. The C12
is mainly misclassified to C8 (7%, 2%, 9%, 3%, 0%, and 0%) for the convolutional networks.
The C13 is mainly misclassified to C8 (3%, 18%, 0%, 0%, 12%, and 34%) for the convolutional
networks. The full-factor classification maps for the HU dataset are collected in Figure 11.
Although there are still some ambiguities and misclassifications in C9, C12, and C13, the
PTCN achieves consistently competitive results in most cases.

Table 11. Classification results and training times (TT) of the HU dataset.

Class SVM DBMA DBDA PCIA SSGC OSDN PTCN

C1 86.37 ± 7.64 89.61 ± 1.02 90.10 ± 0.42 90.16 ± 0.22 92.19 ± 0.82 91.81 ± 0.78 85.67 ± 2.96
C2 92.44 ± 3.90 83.66 ± 0.96 82.01 ± 1.52 85.68 ± 0.81 86.88 ± 0.77 78.60 ± 2.47 82.39 ± 0.97
C3 99.56 ± 0.16 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 99.73 ± 0.20 100.00 ± 0.00 100.00 ± 0.00
C4 87.18 ± 7.04 90.21 ± 1.67 95.88 ± 0.96 95.19 ± 1.57 87.89 ± 4.94 84.74 ± 0.74 90.18 ± 2.31
C5 88.42 ± 8.45 89.41 ± 1.49 91.74 ± 0.42 84.48 ± 0.12 94.42 ± 0.41 95.02 ± 0.52 93.37 ± 1.32
C6 95.40 ± 6.45 100.00 ± 0.00 99.74 ± 0.13 99.45 ± 0.17 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
C7 72.11 ± 7.12 83.57 ± 3.85 75.07 ± 2.02 74.17 ± 4.06 81.37 ± 5.37 86.36 ± 1.93 92.46 ± 1.49
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Table 11. Cont.

Class SVM DBMA DBDA PCIA SSGC OSDN PTCN

C8 71.40 ± 4.73 92.74 ± 0.28 88.48 ± 5.88 84.32 ± 10.26 86.62 ± 11.17 77.32 ± 6.85 95.94 ± 2.39
C9 68.68 ± 5.75 70.17 ± 1.94 77.28 ± 3.96 83.71 ± 10.81 73.79 ± 5.21 79.38 ± 4.54 68.94 ± 6.40

C10 72.17 ± 3.78 81.47 ± 3.04 83.86 ± 3.25 73.65 ± 3.77 84.96 ± 4.11 87.02 ± 4.72 85.21 ± 0.96
C11 70.88 ± 5.48 93.19 ± 2.70 92.08 ± 4.04 93.40 ± 5.88 97.68 ± 1.43 85.49 ± 6.00 95.04 ± 2.67
C12 63.53 ± 4.42 73.70 ± 2.15 65.77 ± 3.35 71.36 ± 1.23 71.64 ± 8.85 82.63 ± 4.44 76.52 ± 5.44
C13 52.27 ± 32.33 83.96 ± 1.99 74.50 ± 10.10 64.50 ± 5.64 50.04 ± 19.61 70.72 ± 4.64 60.44 ± 5.06
C14 83.28 ± 13.44 100.00 ± 0.00 92.68 ± 0.00 100.00 ± 0.00 92.68 ± 0.00 94.89 ± 4.77 99.58 ± 0.84
C15 96.61 ± 5.17 84.18 ± 1.51 90.87 ± 0.19 89.80 ± 0.36 90.08 ± 0.89 82.12 ± 1.50 86.97 ± 1.20

OA (%) 78.90 ± 1.74 85.61 ± 0.81 84.83 ± 1.58 85.01 ± 2.75 85.35 ± 3.02 85.64 ± 2.60 86.18 ± 0.60
AA (%) 80.02 ± 3.31 87.73 ± 0.46 86.67 ± 1.21 86.67 ± 2.10 86.00 ± 3.25 86.41 ± 2.27 87.52 ± 0.28
Kappa 0.7715 ± 0.0188 0.8444 ± 0.0087 0.8360 ± 0.0171 0.8379 ± 0.0298 0.8417 ± 0.0329 0.8448 ± 0.0281 0.8506 ± 0.0065
TT (s) - 3.79 3.49 3.60 3.56 5.22 6.25

Remote Sens. 2023, 15, x FOR PEER REVIEW 20 of 29 
 

 

C6 95.40 ± 6.45 100.00 ± 0.00 99.74 ± 0.13 99.45 ± 0.17 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 

C7 72.11 ± 7.12 83.57 ± 3.85 75.07 ± 2.02 74.17 ± 4.06 81.37 ± 5.37 86.36 ± 1.93 92.46 ± 1.49 

C8 71.40 ± 4.73 92.74 ± 0.28 88.48 ± 5.88 84.32 ± 10.26 86.62 ± 11.17 77.32 ± 6.85 95.94 ± 2.39 

C9 68.68 ± 5.75 70.17 ± 1.94 77.28 ± 3.96 83.71 ± 10.81 73.79 ± 5.21 79.38 ± 4.54 68.94 ± 6.40 

C10 72.17 ± 3.78 81.47 ± 3.04 83.86 ± 3.25 73.65 ± 3.77 84.96 ± 4.11 87.02 ± 4.72 85.21 ± 0.96 

C11 70.88 ± 5.48 93.19 ± 2.70 92.08 ± 4.04 93.40 ± 5.88 97.68 ± 1.43 85.49 ± 6.00 95.04 ± 2.67 

C12 63.53 ± 4.42 73.70 ± 2.15 65.77 ± 3.35 71.36 ± 1.23 71.64 ± 8.85 82.63 ± 4.44 76.52 ± 5.44 

C13 52.27 ± 32.33 83.96 ± 1.99 74.50 ± 10.10 64.50 ± 5.64 50.04 ± 19.61 70.72 ± 4.64 60.44 ± 5.06 

C14 83.28 ± 13.44 100.00 ± 0.00 92.68 ± 0.00 100.00 ± 0.00 92.68 ± 0.00 94.89 ± 4.77 99.58 ± 0.84 

C15 96.61 ± 5.17 84.18 ± 1.51 90.87 ± 0.19 89.80 ± 0.36 90.08 ± 0.89 82.12 ± 1.50 86.97 ± 1.20 

OA (%) 78.90 ± 1.74 85.61 ± 0.81 84.83 ± 1.58 85.01 ± 2.75 85.35 ± 3.02 85.64 ± 2.60 86.18 ± 0.60 

AA (%) 80.02 ± 3.31 87.73 ± 0.46 86.67 ± 1.21 86.67 ± 2.10 86.00 ± 3.25 86.41 ± 2.27 87.52 ± 0.28 

Kappa 0.7715 ± 0.0188 0.8444 ± 0.0087 0.8360 ± 0.0171 0.8379 ± 0.0298 0.8417 ± 0.0329 0.8448 ± 0.0281 0.8506 ± 0.0065 

TT (s) - 3.79 3.49 3.60 3.56 5.22 6.25 

 

    

(a) (b) (c) (d) 

   

 

(e) (f) (g)  

Figure 10. The heatmap of normalized confusion matrix for the HU dataset. (a) SVM. (b) DBMA. (c) 

DBDA. (d) PCIA. (e) SSGC. (f) OSDN. (g) PTCN. 
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Figure 10. The heatmap of normalized confusion matrix for the HU dataset. (a) SVM. (b) DBMA.
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Figure 10. The heatmap of normalized confusion matrix for the HU dataset. (a) SVM. (b) DBMA. (c) 

DBDA. (d) PCIA. (e) SSGC. (f) OSDN. (g) PTCN. 
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5. Discussion
5.1. Investigation of the Proportion of Training Samples

It is an important issue to investigate the classification results of the methods under
different training sample proportion conditions, which allows us to assess the effectiveness
of the methods from wider perspectives. The experimental results are shown in Figure 12.
Observing Figure 12a, we can see that the classification accuracies of all classification methods
increase with the proportion of the training samples. The PCIA, PTCN, and OSDN obtain
competitive OAs among the competitors. When the proportion of training samples is larger
than 4%, the OAs of all 3D spectral–spatial convolutional networks are higher than 99%,
which is already approximated to the upper limit (100%). Viewing Figure 12b, we can
see similar results as the UP dataset. The OSDN, PTCN, and PCIA receive consistently
competitive classification results in most cases. The OAs of all convolutional networks are
higher than 99% when the training sample proportion is greater than 5%. Figure 12c presents
different results from the previous two HSI datasets. With the increase in the proportion
of the training samples, the OAs of the classification methods are improved significantly,
which range from 11.83% to 18.36%. The PCIA, OSDN, and PTCN give better classification
results than other methods. The PTCN obtained the highest OAs at 4% and 5% of the
training sample proportions. The experimental results demonstrate the effectiveness of
the proposed PTCN in extracting discriminable features under the condition of restricted
spatial contextual information. Checking Figure 12d, we can consistently see that PCIA,
PTCN, and OSDN receive better classification results. The OAs of the methods are improved
significantly with the increase of the training sample proportions, especially for SVM (22.15%)
and OSDN (24.94%). By comparing the classification accuracy of each classification method
on different HSIs with different proportions of training samples, we can see that the proposed
PTCN consistently obtains competitive classification results on all HSI datasets, which can
quantitatively demonstrate the effectiveness of the PTCN.
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5.2. Investigation of the Spatial Patch Sizes

In this section, we consider the influence of spatial patch size on the classification
accuracy of PTCN. In general, the cube-based classification method with a small spatial
patch size can provide highly accurate spatial information and method with a large spatial
patch size can provide extensive spatial information. The appropriate patch sizes can
effectively improve the classification accuracies of the classification methods. The OAs of
the patch sizes of PTCN on different HSIs are shown in Figure 13, which ranges from 3 to
15 in 2 intervals. We can see that the influence of the patch size is variable for the different
HSI datasets. For instance, the optimal patch sizes for the UP and HH datasets are 11 and
13, while the best patch sizes for JX and HU datasets are 7 and 9. The experimental result
indicates that the appropriate patch sizes are determined according to the characteristics
of the HSI datasets, and it is difficult to select a patch size that is optimal for all the HSI
datasets. In our experiment, we set the spatial patch size to 11 to maintain consistency.
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5.3. Investigation of the Number of PCA Components

Generally speaking, abundant spectral dimensions can provide rich spectral informa-
tion to discriminate pixel classes. However, highly correlated spectral dimensions with
redundant spectral information can also affect classification accuracy. In this section, we
check the influence of different numbers of PCA components on the proposed PTCN in the
HH dataset and HU dataset and try to find an appropriate number of PCA components.

The experimental results of different numbers of PCA components of PTCN for HH
and HU datasets are shown in Figure 14. We can see that the classification results are
different for the HH and HU datasets. For the HH dataset, the lowest OA (94.32%) is
achieved when the number of PCA components is 10. The highest OA (97.73%) is obtained
when the number of PCA components is 30. When the number of PCA components is 50,
the second-highest OA (97.50%) is obtained. It indicates that a certain number of spectral
dimensions on the HH dataset is helpful to improve classification accuracy. However, more
spectral dimensions have the potential to reduce classification accuracy. For the HU dataset,
we can see that although relatively low OA (85.56%) is obtained when the number of PCA
components is 10, the lowest OA (83.78%) appears when the number of PCA components
is 50. The highest OA (86.97%) is achieved when the number of PCA components is 20. It
indicates that providing more spectral information may lead to a decrease in classification
accuracy for HU datasets. It is probably due to the Hughes phenomenon caused by the
small number of training samples in the HU dataset. Comparing the classification results
of the two datasets, we can see that the optimal numbers of PCA components are different
for various datasets (30 for the HH dataset, 20 for the HU dataset). It is difficult to find
consistent optimized parameters on multiple datasets. In our experiment, we set the
number of PCA components to 30 to maintain consistency.



Remote Sens. 2023, 15, 848 22 of 28

Remote Sens. 2023, 15, x FOR PEER REVIEW 23 of 29 
 

 

different for the HH and HU datasets. For the HH dataset, the lowest OA (94.32%) is 

achieved when the number of PCA components is 10. The highest OA (97.73%) is obtained 

when the number of PCA components is 30. When the number of PCA components is 50, 

the second-highest OA (97.50%) is obtained. It indicates that a certain number of spectral 

dimensions on the HH dataset is helpful to improve classification accuracy. However, 

more spectral dimensions have the potential to reduce classification accuracy. For the HU 

dataset, we can see that although relatively low OA (85.56%) is obtained when the number 

of PCA components is 10, the lowest OA (83.78%) appears when the number of PCA com-

ponents is 50. The highest OA (86.97%) is achieved when the number of PCA components 

is 20. It indicates that providing more spectral information may lead to a decrease in clas-

sification accuracy for HU datasets. It is probably due to the Hughes phenomenon caused 

by the small number of training samples in the HU dataset. Comparing the classification 

results of the two datasets, we can see that the optimal numbers of PCA components are 

different for various datasets (30 for the HH dataset, 20 for the HU dataset). It is difficult 

to find consistent optimized parameters on multiple datasets. In our experiment, we set 

the number of PCA components to 30 to maintain consistency. 

 

Figure 14. The investigation of the number of PCA components of the PTCN. 

5.4. Ablation Analysis 

In this section, we implement ablation experiments to evaluate the effectiveness of 

the components of the PTCN. Four ablation experiments are designed in the experiment, 

including the two-branch network ablation experiment, one-shot connection ablation ex-

periment, self-attention block ablation experiment, and FLAT-PFLAT ablation experi-

ment. The results are shown in Figure 15. Figure 15a shows the experimental results of the 

two-branch network ablation experiment. Model1 denotes that only the spectral feature 

extraction branch network is retained in the PTCN, while model2 denotes that only the 

spatial feature extraction branch network is retained. We can see that the OAs of the net-

work using either spectral or spatial feature extraction network alone are lower than that 

of the network using a two-branch structure (2.69%, 2.74% for the UP dataset, 1.56%, 

7.94% for the HH dataset, 4.94%, 2.87% for the JX dataset, and 0.08%, 4.57% for the HU 

dataset). It indicates that employing both spectral and spatial feature extraction branch 

networks can effectively improve the performance of the convolutional network. Observ-

ing the classification results of model1 and model2, we can see that the classification ac-

curacies of the spectral branch are higher than that of the spatial branch for the UP, HH, 

and HU datasets, while the classification accuracies of the spatial branch are higher than 

that of the spectral branch for JX dataset. It indicates that the discriminability of spectral 

signatures and spatial information varies among HSI datasets. In addition, it further illus-

trates that it is a challenging task to process highly complex HSI datasets. Figure 15b pre-

sents the effectiveness of the one-shot connection technique. The model1 indicates that the 

one-shot connection is not applied in the network. We can see that the classification accu-

racy of the PTCN is improved on all HSI datasets by employing the one-shot connection, 

Figure 14. The investigation of the number of PCA components of the PTCN.

5.4. Ablation Analysis

In this section, we implement ablation experiments to evaluate the effectiveness of
the components of the PTCN. Four ablation experiments are designed in the experiment,
including the two-branch network ablation experiment, one-shot connection ablation
experiment, self-attention block ablation experiment, and FLAT-PFLAT ablation experiment.
The results are shown in Figure 15. Figure 15a shows the experimental results of the
two-branch network ablation experiment. Model1 denotes that only the spectral feature
extraction branch network is retained in the PTCN, while model2 denotes that only the
spatial feature extraction branch network is retained. We can see that the OAs of the
network using either spectral or spatial feature extraction network alone are lower than that
of the network using a two-branch structure (2.69%, 2.74% for the UP dataset, 1.56%, 7.94%
for the HH dataset, 4.94%, 2.87% for the JX dataset, and 0.08%, 4.57% for the HU dataset).
It indicates that employing both spectral and spatial feature extraction branch networks
can effectively improve the performance of the convolutional network. Observing the
classification results of model1 and model2, we can see that the classification accuracies
of the spectral branch are higher than that of the spatial branch for the UP, HH, and HU
datasets, while the classification accuracies of the spatial branch are higher than that of the
spectral branch for JX dataset. It indicates that the discriminability of spectral signatures
and spatial information varies among HSI datasets. In addition, it further illustrates that
it is a challenging task to process highly complex HSI datasets. Figure 15b presents the
effectiveness of the one-shot connection technique. The model1 indicates that the one-shot
connection is not applied in the network. We can see that the classification accuracy of
the PTCN is improved on all HSI datasets by employing the one-shot connection, which
ranges from 0.34% to 2.71%. The results demonstrate the effectiveness of the one-shot
connection technique. Figure 15c collects the OAs of the self-attention block ablation
experiments. The model1 denotes that the PFLAT is not applied in the PTCN. We can
clearly see that the classification accuracies of the PTCN decrease without applying the
PFLAT block in the network to fusion the features (3.18%, 1.14%, 4.23%, and 0.55%). The
experimental results powerfully demonstrate the effectiveness of the self-attention block
and provide new thoughts for us to improve the traditional convolutional neural networks.
To further evaluate the effectiveness of the PFLAT, the FLAT-PFLAT ablation experiment
is implemented. The results are shown in Figure 15d. The model1 represents that the
network employs the FLAT to fusion the features. We can see that the network using
PFLAT has slight improvements on UP, HH, and JX datasets (0.76%, 0.42%, and 1.72%),
while the accuracy decreases on the HU dataset (0.37). The classification results can prove
the effectiveness of the PFLAT to some extent.
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5.5. Comparison of Computational Cost and Complexity

In this section, we consider the computational cost and complexity of the convolu-
tional networks. The number of parameters and floating-point operations (FLOPs) of the
convolutional networks on the HSI datasets are listed in Table 12. We can see that the
parameters of the convolutional networks vary with the structures of the networks and the
input HSI datasets. In general, larger input data sizes and more output categories lead to
larger parameters of the network models. Since the cube-based method is applied in the
experiment, the size of the input data depends on the spatial patch size and the spectral
bands of the HSI dataset. For example, the patch size of the input data is 11 for the UP
dataset. The number of spectral bands is 103. The number of categories is 9. As a result,
the size of the input data of the UP dataset is 103× 11× 11, and the output category is 9.
We can see that the OSDN and PTCN provide smaller parameters than the competitors.
It is because the one-shot connection is employed in OSDN and PTCN. The parameters
of PTCN are larger than that of OSDN. It is due to the fact that PTCN implements more
convolutional blocks in the two-branch feature extraction network. Comparing the FLOPs
of the convolutional networks, we can see that the PTCN provides the largest FLOPs,
which are mainly concentrated in the spectral feature extraction branch (79.78%). However,
observing Tables 8–11, the training time of PTCN is similar to that of the other methods. It is
because the early stopping technique is applied to the training process in the experiments.
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Table 12. The number of parameters and FLOPs of the methods.

Dataset Metrics DBMA DBDA PCIA SSGC OSDN PTCN

UP
Parameters (k) 205.31 206.11 213.38 203.06 50.16 103.02
FLOPs (MMac) 81.28 80.79 65.45 81.31 52.31 167.15

HH
Parameters (k) 71.93 72.73 98.00 69.68 27.73 61.03
FLOPs (MMac) 21.06 21.32 20.16 21.09 13.79 46.17

JX
Parameters (k) 234.15 234.96 260.23 231.91 55.03 112.09
FLOPs (MMac) 94.30 93.65 75.24 94.34 60.64 193.31

HU
Parameters (k) 71.08 71.89 97.16 68.84 27.39 60.69
FLOPs (MMac) 21.06 21.32 20.16 21.09 13.79 46.17

6. Conclusions

In this paper, we propose a two-branch convolutional neural network with a polarized
full attention mechanism for HSI classification. In the proposed PTCN, the feature extrac-
tion block is separated into two branches, the spectral branch and spatial branch. To reduce
the complexity of the network and fit the small sample condition, the kernel sizes of the
convolutional layers are simplified specifically for spectral and spatial feature extraction.
Moreover, one-shot connection is applied in the proposed PTCN to improve the efficiency
of the network to extract features in a limited training sample environment. In addition, we
try to introduce the attention mechanism to solve the problem of feature fusion. We hope
to use the attention mechanism to find discriminative abstract features that are worthy
of attention. An improved full attention mechanism, named polarized full attention, is
implemented to solve the feature fusion problem. Different from the raw full attention
mechanism, the polarized full attention can provide polarizability for the network to keep
high internal resolution when fuse the spectral and spatial features. Four different types
of HSIs are introduced to evaluate the performance of the PTCN. Six related classification
methods are employed for comparison. The experimental results show that the PTCN
provides competitive performance among the competitors. In addition, the training sample
proportion, the spatial patch size, the number of PCA components, the ablation analyses,
and the computational cost are discussed in the experiment. In the future, we will explore
the combination of convolutional networks and other self-attention mechanisms and apply
the neural networks to pixel-based HSI classification tasks.
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SVM support vector machine
ELM extreme learning machine
SAE stacked auto-encoder
DBN deep belief network
RNN recurrent neural network
GAN generative adversarial network
1D 1-dimensional
2D 2-dimensional
3D 3-dimensional
PTCN two-branch convolutional neural network with polarized fully attention mechanism
FLA full attention
PFLA polarized full attention
NL non-local
BN batch normalization
UP the University of Pavia dataset
ROSIS the Reflective Optics System Imaging Spectrometer
HH the WHU-Hi-Honghu dataset
UAV the unmanned aerial vehicle platform
JX the GF-5 advanced Jiangxia District HSI dataset
HU the Houston University dataset
NCALM the NSF-funded Center for Airborne Laser Mapping
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