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Abstract: Quick population increase and the desire for urbanization are the main drivers for accel-

erating urban expansion on agricultural lands in Egypt. This issue is obvious in governorates with 

no desert backyards. This study aims to (1) explore the trend of Land Use Land Cover Change 

(LULCC) through the period of 1991–2018; (2) upgrade the reliability of predicting LULCC by inte-

grating the Cellular Automata (CA)-Markov chain and fuzzy analytical hierarchy process (FAHP); 

and (3) perform analysis of urbanization risk on LST trends over the Gharbia governorate for the 

decision makers to implement effective strategies for sustainable land use. Multi-temporal Landsat 

images were used to monitor LULCC dynamics from 1991 to 2018 and then simulate LULCC in 2033 

and 2048. Two comparable models were adopted for the simulation of spatiotemporal dynamics of 

land use in the study area: CA-Markov chain and FAHP-CA-Markov chain hybrid models. The 

second model upgrades the potential of the CA-Markov chain for prediction by its integration with 

FAHP, which can determine the locations of high potential to be urbanized. The outcomes stated a 

significant LULCC in Gharbia during the study period—specifically, urban sprawl on agricultural 

land, and this trend is predicted to carry on. The agricultural sector represented 91.2% in 1991 and 

reduced to 83.7% in 2018. The built-up area is almost doubled by 2048 with respect to 2018. The 

regression analysis revealed the LST increase due to urbanization, causing an urban heat island 

phenomenon. Criteria-based analysis reveals the district's vulnerability to rapid urbanization, 

which is efficient for data-gap zones. The simulation results make sense since the FAHP-CA-Mar-

kov simulated the LULCC in a thoughtful way, considering the driving forces of LULCC, while the 

CA-Markov chain results were relatively random. Therefore, the FAHP-CA-Markov chain is the 

pioneer to be relied upon for future projection. The findings of this work provide a better under-

standing of LULCC trends over the years supporting decision makers toward sustainable land use. 

Thus, further urbanization should be planned to avert the loss of agricultural land and uninterrupted 

increasing temperatures. 

Keywords: LULCC dynamics; Gharbia governorate; hybrid models; CA-Markov chain; fuzzy AHP; 

UHI 

 

1. Introduction 

One of the most critical trends of Land Use Land Cover Change (LULCC) is urbani-

zation [1]. This accelerated phenomenon has extremely negative impacts on the environ-

ment and socio-economy [2,3]. Awareness of these environmental and socioeconomic 

problems motivates the subject of the LULCC to be studied. The analysis of urbanization 

experiences a shortage of knowledge and understanding of the urban expansion process, 
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in addition to the physical and socioeconomic factors [4,5]. This paper considers these 

limitations and provides upgraded techniques for monitoring and predicting urban 

sprawl dynamics over the Gharbia governorate, Egypt,  for supporting productive and 

sustainable urban planning. This paper also investigates the direct impact of urban expan-

sion over agricultural lands on the land surface temperature (LST). 

Egypt is an agricultural country with highly fertile soil [6]. However, at this time, the 

agricultural land area continues to decrease, specifically in the governorates with no de-

sert backyard [7]. With overpopulation, no direct reaction except urban sprawl over agri-

cultural lands is expected [8]. Thus, the negative impact of urbanization is multiplied: (1) 

overpopulation in a way that is incommensurate with the resources, leading to water scar-

city and air quality reduction [9,10]; and (2) food shortage crisis as the per capita share of 

agricultural land is shrinking. The Gharbia governorate is a live model of this issue. 

Satellite remote sensing has become a growingly robust and efficient tool for moni-

toring and mapping land cover [11]. The potential of mapping urbanized areas has been 

improved thanks to the various updates in sensor technology. The classification of satellite 

images for obtaining land cover categories [12] is almost the most substantial avail of dig-

ital image analysis. The classification techniques are categorized as supervised or unsu-

pervised. Supervised classification is preferable since the algorithm classifies the image 

based on training samples for each land cover defined by the user. There is a diversity of 

supervised classifiers, e.g., maximum likelihood classification (MLC); support vector ma-

chine (SVM); decision tree; logistic regression; and so on. In the MLC, a pixel with the 

maximum probability is grouped into the matching class. Otherwise, SVM is a kernel-

based algorithm that begins working with comparatively low-dimension data and then 

upgrading them into a higher dimensional space and getting a higher dimensional sup-

port vector classifier that enables the observations classification successfully [13–15]. 

For the simulation of LULCC dynamics, various models are available, e.g., SLEUTH 

[16], SERGoM [17], GEOMOD [18], Dinamica [19], and Cellular Automata—Artificial 

Neural Network (CA-ANN) [20]. SLEUTH, for instance, extrapolates the future LULCC 

according to the land use behavioral change [21] but it requires parameter values to be 

known in advance. Baig et al. [22] assessed the LULCC and predicted future trends in 

Selangor,  Malaysia based on the CA-ANN model. The urban area has increased while the 

green cover has decreased accordingly, and the prediction results confirmed a persistent 

decrease in agriculture and forests opposite to the increase in built-up areas. Otherwise, 

the Markov chain is a stochastic model which is capable of estimating transition potentials 

of land use without determining such transitions spatially [23,24]. The Markov chain al-

gorithm can be integrated with such spatial models of LULCC to estimate the location and 

quantification of conversions relying on historical Land Use Land Cover (LULC) trends 

[25]. 

Many previous studies have monitored and simulated the urban expansion trends 

using the CA-Markov chain model and their results were satisfying and compatible [25]. 

For instance, Wang et al. [26] addressed the LULCC detection and prediction in Bhutan’s 

high-altitude city of Thimphu, using the CA-Markov chain. The study recorded a consid-

erable increase in urban area, followed by an insignificant increase in barren ground cover 

during the interval of 2002–2018. Contrarily, the forest class decreased dramatically fol-

lowed by agricultural land. Simulation results expected a persistent trend of land cover 

change until 2050. Moreover, Koko et al. [27] adopted the CA-Markov chain to predict the 

LULCC in Kano Metropolis, Nigeria over 2035 and 2050 based on the past trends of the 

period of 1991–2020. The hybrid model skipped the limitations of each individual model. 

Samat et al. [28] also simulated the spatiotemporal LULCC in Malaysia’s conurbation us-

ing the CA-Markov chain model and GIS technique. Further recent studies that employed 

the same model to predict future land uses were performed in the Atlanta Metropolitan 

area of Georgia, USA [29], Jiangle County, China [30], and Changping District in Beijing, 

China [31]. These studies have shown the superiority of the CA-Markov model in 
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simulating LULC transition and confirmed its capability for better extrapolating future 

land uses. 

On the other side, in this research, a hybrid model of fuzzy analytical hierarchy pro-

cess (FAHP), CA, and Markov chain has been addressed for more accurate simulation and 

forecasting of LULCC. This hybrid model adopts the concept of multi-criteria decision-

making (MCDM) through the FAHP. Based on selected criteria represented mainly in the 

urban sprawl parameters, the locations highly susceptible to LULCC can be identified. 

This integration will provide a better understanding of urbanization patterns to assist the 

decision makers in developing sustainable urban planning in the future. FAHP was uti-

lized to obtain the transition potentials which can be integrated with that from the CA-

Markov chain, which will then be conducted on the LULC maps of 1991, 2003, and 2018 

to predict the future LULC of 2033 and 2048. Therefore, the results of the prediction are 

supposed to be more logical since the prediction manner considers the major drivers of 

LULCC. Furthermore, this work depends on the fuzzy MCDM which can dispose of un-

certainty in data and analysis, contrary to the usual use of MCDM techniques by research-

ers. 

Furthermore, the LSTs of the study area over the study period were extracted from 

the thermal bands of the selected Landsat images. Pal and Ziaul [32] studied the effect of 

LULC type on LST based on multi-temporal satellite images. The findings showed a con-

siderable LST variation present over diverse LULC types and the built-up area had max-

imum LST. A high correlation between LST and LULC type was observed indicating that 

the impervious surfaces maximally control LST, followed by water bodies and vegetation. 

Therefore, the LULCC pattern affects LST and air temperature. It means the accelerated 

urban expansion negatively impacts the climate status, like the appearance of the UHI 

phenomenon. This issue was addressed by Effat et al. [33] who focused on monitoring the 

trends of urbanization and UHI in Tanta city, Egypt, based on multi-temporal remote 

sensing (RS) data and GIS. The LSTs, retrieved from the thermal bands, were analyzed to 

detect the phenomenon of UHI. Otherwise, the LULC maps were gained based on image 

classification. Then, a regression analysis was conducted to reveal the relationship be-

tween the LST and the different classes of land use, particularly agricultural and urban 

areas. The findings illustrated a massive urban expansion at the expense of the agricul-

tural area, leading to a growing UHI intensity. The regression analysis revealed that the 

LST increases with the spread of urban class and decreases with green space. 

The recognition of LULCC patterns and related motives is critical to promote ideal 

urban strategies which can ensure economic, social, and environmental sustainability [7]. 

Accordingly, this study focuses on three primary objectives: (1) monitoring the trend of 

LULCC through the period of 1991–2018; (2) simulating LULCC by 2033 and 2045 based 

on a hybrid model of CA-Markov chain and FAHP; and (3) analysis of urbanization risk 

on LST trends across the Gharbia governorate for the decision makers to implement effec-

tive strategies for sustainable land use. The outcomes of this paper provide a better un-

derstanding of LULCC dynamics over the years and suggest that thinking of new urban-

ism should be planned to avoid persistently elevated temperatures. 

2. Materials and Methods 

2.1. Study Area 

Gharbia settles in the middle of the Nile delta of Egypt at 30.87°N lat and 31.03°E 

long. It is bounded by the two branches of the Nile river to the east and west as exhibited 

in Figure 1. The area of the Nile delta is one of the oldest agricultural lands in the world 

where agricultural activity has been practiced continuously for more than 5000 years 

[3,34]. The Nile river made the delta soil highly fertile and accordingly elevated crop pro-

duction, generating an evident green triangle enclosed by a vast desert. 

Agriculture as an LULC category is dominant in the governorate of Gharbia, which 

is used to planting conventional yields such as potatoes for domestic consumption and 
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export, as well as strategic crops such as rice, grains, and high-quality cotton. Further-

more, this governorate contributes 86% of Egypt’s flax production. This governorate in-

volves eight territories as elucidated in Figure 1, covering 1999 km2. The population den-

sity was estimated in 2018 as almost 5,066,000 persons, whereas it was hardly 4,011,320 

and 3,790,670 in 2006 and 2001, respectively. Our study focused on such areas suffering 

from accelerating urban sprawl on agricultural lands, resulting in food security challenges 

and LST increase. 

 

Figure 1. The study area of Gharbia governorate, Egypt [35]. 

2.2. Data Collection and Processing 

Multi-temporal Landsat images were employed in this article. Landsat has been re-

lied upon due to its rich and free archive that allows long-term study. To gain the LULC 

maps for the study years, Landsat 5 TM was utilized for 1991 and 2003 while Landsat 8 

OLI/TIRS was utilized for 2018 [36], and then, land cover change was deduced through 

time [37]. The selected images were clear without cloud spectrum by dint of a dry summer 

season since all images were captured in June. For image preprocessing, atmospheric cor-

rection was performed for each captured image. Six images were collected since the area 

of interest is located in two shots. Then, mosaic was applied and the mosaicked images 

were subset by the study area. These images were selected to be in the same season for a 

more realistic comparison over the years. The free source of open street map (OSM) was 

relied upon to acquire the road network of the study area for extracting a “distance from 

nearest road” layer for later use. Based on Google Earth historical images, training sam-

ples used for supervised classification and test samples used for classification assessment 

were obtained (as mentioned in Table 1). 
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Table 1. Description of data used. 

Data Type Capture Date Resolution Source Output 

Landsat 1991™ 27 June 1991 30 m USGS LULC map 

Landsat 2003™ 28 June 2003 30 m USGS LULC map 

Landsat 2018OLI-TIRS 21 June 2018 30 m USGS LULC map 

Google Earth historical images June 1991, 2003, 2018  Google Earth Pro Training/validation 

Road network layer   OSM Distance to nearest road 

After the image preprocessing, the images are prepared for further processing as 

shown in Figure 2. Figure 2 demonstrates the flowchart of the adopted methodology to 

monitor and simulate the LULCC in the present and the future based on comparable mod-

els, with four primary steps. 

 

Figure 2. The conceptual flowchart of the adopted methodology. (a) Supervised classification of 

the processed images for obtaining LULC maps; (b) simulating the LULCC using CA-Markov 

chain model and the integrated model of CA-Markov chain with FAHP; and (c) estimation of LST 

and investigating the impact of LULCC on LST based on regression analysis; and (d) conducting 

regression analysis to obtain the relationship between LULC and the corresponding LST. 

2.3. LULC Classification 

Our study area has three types of LULC: built-up, water, and agricultural land. Based 

on [35], Landsat images of the study area were classified using supervised classification 

techniques; MLC as a parametric pixel-based method compared to SVM classification as 

a non-parametric pixel-based technique [38]. However, SVM was superior to be relied on 

than the MLC as it can be visually noticed that the SVM-based classified image simulates 
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the real land cover frequently better than that of the MLC-based. Therefore, SVM was 

adopted to extract the present LULC classes from the satellite images. 

As usual, there were some misclassifications in the initial outputs of the classification 

step. Accordingly, a majority filter was employed to minimize the noises from the spectral 

confusion [39]. Namely, the classification accuracy can be raised through post-classifica-

tion improvement. 

To guarantee accurate change detection, classification accuracy needs to be assessed. 

The most popular approach for the accuracy assessment of classified images is called the 

error matrix [40]. The error matrix compares the classified image with its reference image 

on a class-by-class principle. A random sampling method [41,42] was utilized to spread 

1000 checkpoints for every image covering all LULC types in a well-distributed manner, 

to fulfill more actual classification accuracy [43]. Based on the confusion matrix, overall 

accuracy (OA %) was computed to estimate the classification accuracy. However, OA is 

incapable of revealing whether the errors were reasonably extended among categories or 

whether some categories were really bad and some were really good. So, three indices of 

accuracy were computed as well: user’s accuracy (%); producer’s accuracy (%); and kappa 

coefficient [44,45]. 

2.4. LULC Change Modeling 

Generally, the LULCC modeling process includes three major phases: (1) model cal-

ibration; (2) model simulation and validation; and (3) model prediction. 

1) Model Calibration 

The model was calibrated for pixels that transferred from every LULC type to all 

other types in the first study period of 1991–2003. Accordingly, the transition potentials 

can be defined quantitatively and/or spatially based on the model used. 

2) LULC Simulation and Model Validation 

After the calibration step, LULC for the year 2018 was simulated based on the ob-

served trends pending the calibration interval (1991–2003). Then, the simulated 2018 

LULC map was compared to the observed one, extracted previously based on the SVM-

supervised classification of the Landsat image, for model validation. The model validation 

was employed to assess the performance of the model to be used in simulating and then 

predicting future LULC maps [46,47]. Cohen’s kappa coefficient [48] is an index for the 

model assessment. It ranges from zero to one. Low values of kappa (0 to 0.2) express the 

inconsiderable relationship between the compared maps while high values (0.81 to 1) refer 

to almost perfect coincidence [49,50]. However, we relied on another index for evaluating 

the model simulation capability since the kappa statistic introduces an overall estimation 

and lacks a cross-check of results [51]. The Jaccard similarity coefficient was preferred for 

the verification of the results [50]. The Jaccard coefficient  is a measure of similarity for two 

data sets, ranging from 0% to 100% indicating the degree of agreement between the two 

sets. The higher the percentage, the more similar the two sets are.  The threshold for ac-

ceptable Jaccard coefficients is 60%. The Jaccard coefficient can be computed as the ratio 

of the area of intersection between the two layers (simulated and actual) versus their un-

ion area [35] as clarified in Equation (1), where 0% reveals no intersection between the 

actual and simulated change while 100% refers to typical coincidence. Since the most re-

markable transition is urban encroachment on agricultural land, the observed and simu-

lated land use of built-up for 2018 was extracted to calculate the Jaccard coefficient. 

J�(simulated, observed)2018 =
 simulated urbanization ⋂ observed urbanization

 simulated urbanization ⋃ observed urbanization
   (1)

3) Model Projection 

The last stage of the modeling process after the calibration and validation steps is the 

projection of the LULCC in the future. Once the model succeeds in the validation step, it 

can be adopted to predict the LULC in 2033 and 2048. The predicted transitions of LULC 
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were extrapolated based on the simulation period (2003–2018). So, in this step, the input 

data images were updated to the actual LULC 2003 and 2018, not the simulated ones. In 

this article, the modeling process has been applied based on two comparable models. 

2.4.1. CA-Markov Chain Model 

A CA-Markov chain model is an integration of the Markov chain stochastic model 

and the spatial model of CA. The “transition potentials” can be extracted based on the 

Markov chain stochastic model, whereas the CA spatial model determines the transition 

potential maps. The CA model acts as an urban area with a network of cells, each of which 

exists in one of a finite set of states. The state of a cell relies on the states of its neighbors 

and changes as a function of time. The progression of time is formulated as a chain of 

discrete steps with future patterns determined by transition rules which assign the atti-

tude of cells over time [52]. The Markov chain depicts a series of states in which the chance 

of each state relies just on the acquired trend in the prior state. For clarification, the Mar-

kov chain has n states. The state vector is a column vector whose ith component represents 

the probability that the system is in the ith state at that time. Note that the sum of the 

entries of a state vector is 1 [52–54]. Markov theory gives the relation between two sequen-

tial state vectors; for example, if Xn+1 and Xn are two successive state vectors of a Markov 

chain with transition matrix T, then 

X��� = T × X� (2)

The IDRISI Sleva (geospatial monitoring and modeling system) from Clark Lab 

(Clark University) is the software for simulating land use change and CA-Markov analy-

sis. The CA-Markov analysis was applied to examine a pair of land cover images and to 

output transition probability and transition area matrices. The first matrix is the probabil-

ity of moving from one state to another during one time period, whereas the second one 

is the number of pixels that are expected to change from each land cover type to every 

other one over a particular number of time units. In our case, the time step is almost 15 

years where we first depended on the images captured in 1991 and 2003 to process the 

model to simulate 2018 which has been already pre-captured. After validating the model, 

the CA-Markov Chain model was utilized to project the LULC in 2033 and 2048. 

2.4.2. FAHP-CA-Markov Chain Hybrid Model 

In this model, not only CA-Markov was relied upon, but also the MCDM technique, 

specifically the analytical hierarchy process (AHP), was involved. In other words, the tra-

ditional CA-Markov chain model is intended to be improved or upgraded by its integra-

tion with MCDM techniques to obtain a better and more accurate transition potential map. 

Therefore, the hybrid model of AHP and CA-Markov chain models has considered the 

merits of the traditional CA-Markov chain model in addition to the substantial feature of 

the MCDM techniques for more accurate simulation and projection of LULCC. 

The AHP is a technique for controlling and analyzing complicated decisions, utiliz-

ing math and psychology. It was developed by Thomas L. Saaty in the 1970s and has been 

revised since then [55]. Stakeholders compare the significance of criteria, two at a time, 

through pairwise comparisons. AHP transforms the evaluations into numbers, which can 

be compared to all of the potential criteria. This quantifying ability discriminates the AHP 

from other decision-making techniques. In the last step of the process, numerical prefer-

ences are calculated for all the alternative choices. These numbers show the most required 

solutions, based on all users’ values. 

As we mentioned, the MCDM is capable of assigning the locations of a high proba-

bility of susceptibility to LULCC through the study area based on selected criteria. There-

fore, to monitor and predict the LULCC, specifically the urbanization, the selected criteria 

were represented in the urban sprawl parameters or the driving factors contributing to 

urban expansion: socioeconomic parameters and neighborhood effect, in addition to the 

type of land use itself. Therefore, the hybrid model of the AHP-CA-Markov chain is 
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capable of predicting the locations susceptible to urban sprawl in a systematic way. Oth-

erwise, FAHP is a method of AHP [56] developed with fuzzy logic theory. We applied 

this integration with both AHP and FAHP. However, the fuzzy model of AHP was pre-

ferred over the AHP to overcome uncertainty in data and analysis. The used fuzzy num-

bers were extracted based on the triangular membership function [57,58]. In the previous 

section, the concept of the CA-Markov chain model was mentioned, so here we focus on 

what concerns the FAHP model. 

a. Driving factors 

There are various factors that directly or indirectly drive urban expansion. It is critical 

to identify and understand the impacts of these factors on LULCC for sustainable urban 

planning and management strategies [59–61]. Previous studies have dealt with diverse 

factors and their influences on urbanization. The selection of the factors usually depends 

on the properties of the study area, understanding of LULCC over time, and expert aware-

ness of assorted study areas [62,63]. Therefore, based on our knowledge of the study area 

and considering the development pattern of the area, we adopted socioeconomic factors, 

neighborhood effect, and LULC type. The socioeconomic factors are the most significant 

factors of urban growth involving: “distance to persistent built-up area”, “distance to ur-

ban centers”, “distance to railway stations”, “distance to nearest road”, “population den-

sity”, “employment”, and “local development”. The natural factors such as slope and el-

evation can be negligible since the area of interest is almost level. 

b. Steps of applying the FAHP model [64] based on the aforementioned criteria: 

The fuzzified pairwise comparison matrices (FPCMs) are obtained by comparing all 

the possible pairs of criteria to rank the criteria in order of priority. Every element takes a 

value from 1 to 9 based on its significance, the value of 1 refers to the criteria being equally 

important while a value of 9 expresses that the considered criterion is exceedingly im-

portant compared to the others. This is called scaling. FAHP is performed through the 

following eight steps: (1) Formation of the fuzzified pairwise comparison matrix as fol-

lows: 

Ã = (ã)�×� = �

(1,1,1) (���, ���, ���) ⋯ (���, ���, ���)

(���, ���, ���) (1,1,1) ⋯ (���, ���, ���)
⋯ ⋯ ⋯ ⋯

(���, ���, ���) (���, ���, ���) ⋯ (1,1,1)

� (3)

(2) Calculating the fuzzy synthetic extent with respect to ith alternative using the fol-

lowing Equation (4): 

�� = � ���

�

���

�� � ���

�

���

�

���

�

��

 (4)

where aij is the element of the FPCM of n: no. of criteria. 

(3) Calculating the degree of possibility for a convex fuzzy number to be greater than 

k convex fuzzy numbers: 
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�(�� ≥ ��) = ������ �min ����(�)
, ���(�)

�� = ℎ��(�� ∩ ��) 

=

⎩
⎨

⎧
1                                 �� �� ≥ ��,
0                                    �� �� ≥ ��,

�� − ��

(�� − ��) − (�� − ��)
,        0�ℎ������

 

V(S ≥ S�, S�, S� ⋯ , S�) = min V(S ≥ S�), i = 1,2,…,k 

(

(5)

(4) Calculation of the weight vector and normalize the nonfuzzy weight vector. 

d`(A�) = min V(S� ≥ S�), 

W` = (d`(A�), d`(A�), ⋯ , d`(A�))� 

(

(6)

(5) Computing λmax (the principal eigenvalue). 

(6) Estimating the consistency index (CI) to measure the inconsistencies of pairwise 

comparisons using Equation (7): 

C. I. =
λ��� − n

n − 1
 (7)

where n is the number of criteria and λmax is the highest eigenvalue [65]. 

(7)  Determining the appropriate value of the random consistency ratio (RI). RI values 

are illustrated in the supplementary material (Table S1). 

(8) Calculating the consistency ratio (CR) by the following relation (Equation (8)): 

�� =
��

��
 (8)

We have depended on nine criteria, so the fuzzified pairwise comparison matrix was 

created as elucidated in Table 2. According to the authors’ prior knowledge of the study 

area, the criterion of “distance to persistent built-up areas” has the highest significance, so 

it was given the value of 9. Likewise, all the other criteria weights and their ranks were 

estimated to determine the locations of high potential to LULCC. 

Table 2. The fuzzified pairwise comparison matrix of nine criteria selected for the study area. 

Criteria LULC 

Dist. to 

Persist. 

Built-Up 

Dist. to 

Urban 

Centers 

Dist. to 

Railway 

Stations 

Dist. to 

Near Road 

Neighbor. 

Effect 

Population 

Density 

Local 

Develop. 
Employment 

LULC (1,1,1) (
1

9
,
1

8
,
1

7
) (

1

9
,
1

8
,
1

7
) (

1

8
,
1

7
,
1

6
) (

1

9
,
1

8
,
1

7
) (

1

8
,
1

7
,
1

6
) (

1

6
,
1

5
,
1

4
) (

1

6
,
1

5
,
1

4
) (

1

8
,
1

7
,
1

6
) 

Dist. to persist. 

built-up 
(7,8,9) (1,1,1) (1,1,1) (4,5,6) (2,3,4) (1,1,1) (2,3,4) (2,3,4) (2,3,4) 

Dist. to urban 

centers 
(7,8,9) (1,1,1) (1,1,1) (2,3,4) (1,2,3) (1,1,1) (2,3,4) (3,4,5) (2,3,4) 

Dist. to railway 

stations 
(6,7,8) (

1

6
,
1

5
,
1

4
) (

1

4
,
1

3
,
1

2
) (1,1,1) (

1

4
,
1

3
,
1

2
) (

1

6
,
1

5
,
1

4
) (1,1,1) (2,3,4) (1,1,1) 

Dist. to nearest 

road 
(7,8,9) (

1

4
,
1

3
,
1
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2.5. Estimation of Land Surface Temperature 

2.5.1. LST Estimation from Landsat Imageries 

The LST can be extracted from the thermal bands of the satellite data images. In Land-

sat 5 TM, band 6 represents the thermal band while there are two thermal bands (band 10, 

11) in Landsat 8 OLI/TIRS. However, we relied only on band 10 since the USGS recom-

mended that band 11 should not be used for LST estimation due to the effect of stray light 

in Landsat 8 TIRS. 

The digital numbers of the thermal bands of the satellite imagery were converted to 

at-sensor spectral radiance. This transformation was performed by applying the following 

equation [66]: 

L� = (
LMAX� − LMIN�

Qcalmax − Qcalmin
)(Qcal − Qcalmin) + LMIN� (9)

where: 

L = spectral radiance at the sensor’s aperture (Watts m−2 sr−1 μm−1); 

Qcal = the quantized calibrated pixel value in DN; 

LMINλ = the spectral radiance scaled to QCALMIN in (Watts m−2 sr−1 μm−1); 

LMAXλ = the spectral radiance scaled to QCALMAX in (Watts m−2 sr−1 μm−1); 

Qcalmin = the minimum quantized calibrated pixel value (corresponding to LMIN) in DN; 

Qcalmax = the maximum quantized calibrated pixel value (corresponding to LMAX) in 

DN. 

Once the DNs for the thermal bands were turned into Top of Atmosphere (TOA) 

radiance values, the brightness temperatures can be estimated using this formula of Artis 

and Carnahan [66]: 

T�(°K) =
k�

ln ([
K�

L�
] + 1)

 (10)

where: 

TB—is the satellite brightness temperature in degrees Kelvin; 

K1_constant_band_6 of TM 5 = 607.76; 

K2_constant_band_6 of TM 5 = 1260.56; 

K1_constant_band_10 of TIRS 8 = 774.8853; 

K2_constant_band_10 of TIRS 8 = 1321.0789; 

Lλ—is TOA spectral radiance. 

Then, the LST was computed by applying the emissivity-corrected land surface tem-

perature’s algorithm [66]: 

S�(ºK) =
T�

1 + �
λ × T�

ρ
� ln ε

 
(11)

where: 

St—is the emissivity-corrected land surface temperature in degrees Kelvin; 

TB—is the satellite brightness temperature in degrees Kelvin recaptured earlier; 

λ = 11.457 μm; 

ρ =
�×�

�
 = 1.438 × 10−2 m k= 1.438 × 104 μm k; 

h—is Planck’s constant = 6.626 × 10−34 J s−1; 

c is velocity of light = 2.998 × 108 m s−1; 

δ is Boltzmann's constant = 1.38 × 10−23J k−1. 

The emissivity-corrected LSTs were firstly estimated in degrees Kelvin, then the tem-

perature values were obtained in degrees Celsius by merely subtracting 273.15. That is: 

S�(°C) = S�(°K) − 273.15 (12)
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Retrieving accurate LST is influenced by three factors: (1) the impacts of atmosphere 

on the infrared radiation transfer (e.g., water vapor and clouds); (2) the conjunction of LST 

and land surface emissivity (LSE) causes a complicated situation of LST retrieval; and (3) 

sensor type [67]. All the methods of estimating LST assume that the emissivity is known. 

However, in reality, emissivity has to be determined in conjunction with the LST but the 

number of unknowns is always more than the number of measurements [68,69]. So, LSE 

may be computed separately. 

2.5.2. Computation of LSE ε 

LSE is a proportionality factor that scales the blackbody radiance (Planck’s law) to 

predict emitted radiance, and it is the efficiency of transmitting thermal energy across the 

surface into the atmosphere [70]. Accurate LSE is in demand in algorithms of LST for 

leading simulations of surface energy budgets from which surface temperature in the 

formula is estimated [68,71]. 

Several approaches have been utilized to extract LSE from Normalized Difference 

Vegetation Index (NDVI) values [70,72,73]. In this article, the NDVI Thresholds Method 

(NDVITHM) was adopted. NDVITHM, which was first introduced by Sobrino and Raissouni 

[74], uses specific NDVI values (thresholds) to discriminate between soil pixels (NDVI < 

NDVIS) and fully vegetated pixels (NDVI > NDVIV). For those pixels composed of soil and 

vegetation (mixed pixels; NDVIS ≤ NDVI ≤ NDVIV), the method uses the simplified Equa-

tion (13): 

ε� = ε��P� + ε��(1 − P�) + C� (13)

where εS and εV are the soil and vegetation emissivities, respectively, PV is the portion of 

vegetation (also referred to as fractional vegetation cover, FVC); the soil influence is lower 

with increasing PV, and C is a term that takes into account the cavity effect owing to sur-

face roughness (C = 0 for flat surfaces, as in our case). 

PV values are obtained from the NDVI according to Skoković et al. [75] by applying 

the following form (Equation (14)): 

P� =
NDVI − NDVI�

NDVI� − NDVI�

 (14)

Over particular areas, NDVIV and NDVIS values (NDVI for vegetated and soil pixels, 

respectively) can be extracted from the NDVI histogram. Values of NDVIV =  0.5 and 

NDVIS =  0.2  were confirmed by Sobrino and Raissouni [74] to apply this method  in  global  
conditions. In order to gain harmonic values of PV, it must be set to zero for pixels with 

NDVI < NDVIS and set to one for pixels with NDVI > NDVIV. When NDVI > NDVIV, the 

pixel is considered fully vegetated and has been granted a constant value of εV  = 0.99. 

NDVITHM estimates the surface emissivity for pixels of bare soil whose PV = 0 (NDVI < 

NDVIS) as a function of the sensor red band reflectivity (ρred). The relationship between 

emissivity and red reflectivity is assumed to be linear, and the coefficients are obtained 

from laboratory spectra of soils and statistical fits. The reasonable formulae for estimating 

soil emissivity are shown in Equations (15) and (16) for Landsat 5 and Landsat 8 images, 

respectively: 

ε� = 0.979 − 0.035 × ρ��� (15)

ε� = 0.979 − 0.046 × ρ��� (16)

where, ρred is the red band reflectance. 

Accordingly, the NDVITHM can be applied as follows: 

ε� = �

ε��                                                NDVI < NDVI�

ε��(1 − P�) + ε��P�                NDVI� ≤ NDVI ≤ NDVI�

ε��                                               NDVI > NDVI�

 (17)
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2.6. Regression Analysis 

After retrieving the LSTs of each pixel through the study area, it is urgent to study 

and analyze the relationship between the LULC types and their corresponding LSTs. Lin-

ear regression analysis was applied based on the Normalized Difference Built-up Index 

(NDBI) values of the pixels in the study area corresponding to their LSTs. NDBI was se-

lected since it can well differentiate between the LULC types, where the higher values of 

NDBI refer to the built-up land use while the lower values represent the classes of agri-

culture and water. NDBI can be computed by the following formula (Equation (18)): 

NDBI =
(SWIR − NIR)

(SWIR +  NIR)
 (18)

where SWIR is short-wave infrared and NIR is near-infrared. SWIR and NIR bands are, 

respectively, represented in Band 5 and Band 4 of Landsat 5 data and Band 6 and Band 5 

of Landsat 8 data. 

3. Results 

3.1. Accuracy of LULC Maps 

Three land-use types are detected through the classification process: built-up, water, 

and agricultural land. The category of built-up includes all impervious surfaces such as 

buildings and roads. The class of water bodies includes the Nile river at the borders of the 

study area and the canals in the middle of the study area. Table 3 displays the indices of 

accuracy for each classified image of 1991, 2003, and 2018, represented in OA and kappa 

coefficient. Moreover, the user’s accuracy and producer’s accuracy for each LULC have 

been mentioned to reveal whether the misclassification was concentrated in a definite 

class over the others. The SVM has proven its high classification capability that all classi-

fication dates fulfilled high OA of 94.9%, 94.7%, and 94.6% and corresponding kappa co-

efficients of 0.78, 0.81, and 0.84 for 1991, 2003, and 2018, respectively. 

Table 3. Classification accuracy assessment of LULC types. 

Accuracy LULC Class 1991 2003 2018 

User’s accuracy (%) 

Built-up 80.7 85.7 91.8 

Water 82.1 82.6 94.7 

Agricultural land 97.0 96.4 95.1 

Producer’s accuracy (%) 

Built-up 80.0 80.9 81.3 

Water 82.1 86.4 85.7 

Agricultural land 97.1 97.2 98.1 

Overall accuracy (%)  94.9 94.7 94.6 

Kappa coefficient  0.78 0.81 0.84 

3.2. Spatiotemporal Analysis of LULCC 

The LULC maps of the study region for the years 1991, 2003, and 2018 are clarified in 

Figure 3 from which LULC changes over time can be detected. Table 4 quantifies the esti-

mated area of each class in squared kilometers and percentage for the specified times. As 

shown, agricultural activity is always prominent but it decreases over time. In 1991, the 

agricultural land represented 1832 km2 (91.2%) and diminished to 1674 km2 (83.7%) in 

2018. Otherwise, the class of water represents the least area (1%) and almost no change 

through the study period. For the built-up land use, the statistical analysis for the year 

2003 exhibited that the built-up area has increased in contrast to the decrease in agricul-

tural land. This expansion through the period of 1991–2003 is not disturbing as it is only 

about 2%. However, urban augmentation was driven to significant growth (almost 5.5%) 

in the period of 2003–2018 due to urbanization desire. The built-up class occupied 7.8%, 
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9.7%, and 15.2% in 1991, 2003, and 2018, respectively, which means that the built-up area 

almost doubled during the study period. 

 

Figure 3. Spatial distribution of LULC over the study area during the study period: (a) LULC map 

in 1991; (b) LULC map in 2003; and (c) LULC map in 2018. 



Remote Sens. 2023, 15, 843 14 of 29 
 

 

Table 4. Details of LULCC in the Gharbia governorate in 1991, 2003, and 2018. 

LULC 
1991 2003 2018 

Area (km2) % Area (km2) % Area (km2) % 

Built-up 156.75 7.8 193.37 9.7 303.75 15.2 

Water 19.57 1.0 24.48 1.2 21.56 1.1 

Agricultural land 1832.01 91.2 1781.48 89.1 1674.02 83.7 

Total 1999.33 100 1999.33 100 1999.33 100 

LULCC analysis detects an increasing prevalence of urbanization throughout the 

study area. For example, built-up land increased by 36.62 km2 and 110.38 km2 within the 

1991–2003 and 2003–2018 time periods, respectively. The percentage of built-up land use 

has increased from 7.8% to 15.2% (nearly doubled) throughout the whole study period (27 

years). The agricultural land revealed a similar (but reverse) trend from 1991 to 2018, since 

the urban growth was extended over the agricultural land. 

3.3. LULCC Modeling, Simulation, and Projection 

We have mentioned in the section on the methodology that two models were adopted 

to simulate, and hence predict, the LULCC: CA-Markov chain model and FAHP-CA-Mar-

kov chain hybrid model. 

3.3.1. Analysis of the CA-Markov Chain Model 

Based on the trend of LULC in the period of 1991–2003, the CA-Markov chain model 

can forecast the LULC for 2018. Then, the model can be validated by comparing the sim-

ulated LULC map for 2018 and the corresponding actual LULC one (obtained from SVM 

classification). Figure 4 illustrates the projected 2018 LULC based on the traditional CA-

Markov chain. The used model proved its capability since the kappa and Jaccard similar-

ity coefficients are 84% and 59%, respectively. The findings are considered acceptable and 

therefore the model can be relied upon for future simulations. 

Based on the concept of Markov probability, the successive state vectors of 1991 and 

2003 (transition through time step of 12 years) reveals a transition probability matrix of 

changing to each other class and an expected transition area matrix. In addition, the CA-

Markov model was employed to extract the transition potentials for 2018 (a time step of 

15 years, as it was the available cloud-free image) based on the past LULC of 1991 and 

2003. The transition probability and transition area matrices for the time steps of 12 and 

15 years are illustrated in Tables S5–S8, respectively, in the Supplementary Materials. 
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Figure 4. The simulated LULC for 2018 obtained based on the traditional CA-Markov model. 

3.3.2. Analysis of FAHP-CA-Markov Chain Model 

The weights of the nine selected criteria for decision making are computed based on 

applying AHP and FAHP and are highlighted in Table 5. As clarified, the FAHP ignored 

the criteria of LULC classes, population density, and local development. Both AHP and 

FAHP models confirmed that the most important criterion is “distance to persistent built-

up area”. However, the FAHP model was preferred over the AHP to avoid uncertainty in 

data and analysis. 

Table 5. Weights of the selected criteria based on AHP and FAHP models. 

Model Criteria AHP FAHP 

LULC 0.017 0 

Dist. to persistent built-up area 0.202 0.260 

Dist. to urban centers 0.185 0.238 

Dist. to railway stations 0.07 0.040 

Dist. to nearest road 0.134 0.206 

Neighborhood effect 0.186 0.226 

Population density 0.071 0 

Local development 0.065 0 

Employment 0.07 0.030 
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Figure S1 compares the transition potential to built-up extracted based on (a) AHP 

considering all the nine criteria and (b) FAHP considering only 6 criteria. As elucidated, 

the AHP-based transition potential map has some noise while the FAHP-based one is cer-

tain. Accordingly, the FAHP model was confirmed and adopted to integrate with the CA-

Markov model for more efficient transition potential maps. Figure S2 highlights the tran-

sition potential to built-up based on the hybrid model of the FAHP-CA-Markov chain for 

the calibration period of 1991–2003. 

The simulated LULC map for 2018 based on the hybrid model of the FAHP-CA-Mar-

kov chain is shown in Figure 5. FAHP played a vital role in defining the locations of high 

priority to urban growth in a logical way. In other words, the FAHP depends on the driv-

ing forces of urbanization which are mainly represented in urban sprawl parameters. The 

validation of the simulation process based on the hybrid model of FAHP-CA-Markov re-

sulted in a kappa statistic and Jaccard coefficient of 86% and 60%, respectively. The Jac-

card coefficient is almost the same in the case of using the CA-Markov model or FAHP-

CA-Markov hybrid model. 

 

Figure 5. Simulated LULC map for 2018 based on the hybrid model of FAHP-CA-Markov chain. 
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In the projection phase, the hybrid model was employed to extrapolate future LULC 

maps for 2033 and 2048 based on the simulation period of 2003–2018. Therefore, the driv-

ing factors (criteria) and Markov quantifications have been updated for the 2003–2018 pe-

riod before running. Figure S3 illustrates the transition potential to built-up based on 

FAHP-CA-Markov chain hybrid model for the simulation period of 2003–2018 which can 

be relied upon in the prediction. 

The predicted LULC for 2033 and 2048 emphasized the same trend of persistent ur-

ban expansion over the agricultural land as displayed in Figure 6, respectively.  Further-

more, the transition probability and transition area matrices were, respectively, stated for 

2033 in Tables S9 and S10, and for 2048 in Tables S11 and S12 in the Supplementary Ma-

terials, based on the LULC trend of the period 2003–2018. An updated transition potential 

to built-up based on FAHP-CA-Markov chain hybrid model was obtained for the simula-

tion period of 2003–2018. 

 

Figure 6. Projected land cover for 2033 and 2048, respectively. 

Table 6 was created to mention the persistent trend of urbanization at the expense of 

agricultural land quantitatively over the years. It is found that the built-up area will cover 

414.9 km2 and 514 km2 by 2033 and 2048, respectively. It means that the built-up cover will 

occupy more than one-fifth of the area by 2033 and more than a quarter of the area by 

2048. The area of built-up is almost doubled by 2048 with respect to 2018. On the other 

hand, the area of agricultural activity will decrease owing to the increase in the urban area. 

It means that the agricultural land will be diminished by the same amount of built-up 

increase (160.4 km2 and 259.5 km2 by 2033 and 2048, respectively). 
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Table 6. The area predicted for each LULC in the study area in 2033 and 2048. 

LULC 

2018 2033 2048 
RD% 

2018–2033 

RD% 

2018–2033 
Area 

(km2) 
% 

Area 

(km2) 
% 

Area 

(km2) 
% 

Built-up 251.62 12.6 414.90 20.7 514.00 25.7 64.9 104.3 

Water 24.48 1.2 21.56 1.1 21.56 1.1 −11.9 −11.9 

Agricultural 

land 
1723.23 86.2 1562.87 78.2 1463.77 73.2 −9.3 −15.1 

Total 1999.33 100 1999.33 100 1999.33 100   

This model affirmed the highest weight for the “distance to persistent built-up area”, 

“distance to urban centers”, and “neighborhood effect”, respectively. Therefore, the maps 

extracted based on the FAHP-CA-Markov chain model simulated the urban sprawl in a 

persistent trend around the clusters. 

3.4. Analysis of LST 

The spatial allocation of the estimated LSTs over Gharbeya city is manifested in Fig-

ure 7. LSTs were estimated from Landsat 5 TM band 6 and Landsat 8 TIRS band 10 using 

the emissivity-corrected land surface temperature’s algorithm. The LST ranged from 23 

°C to 52 °C over the study period from 1991 to 2018. It is obvious that the LST for the built-

up area is considerably higher than that for agricultural land which signifies the existence 

of an urban heat island (UHI) effect. The observed effect of the UHI results from a growing 

population, anthropogenic activities, and LULCC over the study area through the study 

period. For all the study dates, built-up land use has the highest land surface temperatures 

while agricultural land and water have the lower. 
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Figure 7. Spatial distribution of daytime land surface temperature (LST) over the study area during 

the study period in June 1991, 2003, and 2018, all at around 8:00 am. 

3.5. Analysis of the UHI 

The urban heat islands are urban areas that experience higher temperatures than 

their neighboring rural areas. To highlight the zones of the UHI, a threshold 
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differentiating the UHI from non-UHI zones is required [76]. Based on Ma et al. [77], the 

intensity of an urban heat island is defined as the difference between the average temper-

ature of urbanized areas and that of rural ones. 

The statistics of LST are summarized in Table S13 in the supplementary file including 

the mean LST and standard deviation for the three investigated years. The extracted mean 

surface temperature for 1991 was 29.47 °C with a standard deviation of 1.89 °C while the 

mean surface temperatures for 2003 and 2018 were 33 °C and 37.92 °C, respectively, with 

corresponding standard deviations of 2.59 °C and 3.15 °C. It means there is a persistent 

trend of LST increase over the years, then the presence of UHIs. The LST mean values for 

each image were added to half the corresponding standard deviation and considered a 

threshold to discriminate the UHI from non-UHI zones, as shown in Equation (19) [76]. 

Temperature values less than the threshold are identified as non-UHI zones. The UHI 

threshold values are 30.42 °C, 34.30 °C, and 39.50 °C for 1991, 2003, and 2018, respectively. 

LST > μ + 0.5 × δ indicated UHI area 

LST ≤ μ + 0.5 × δ represented non-UHI 
(19)

where μ and δ are the mean and standard deviation of temperatures in the study area, 

respectively. Thus, the UHIs intensities were calculated as the difference between the 

mean LST of the urban areas and that of the surrounding cultivated areas. The result de-

tected a value of UHI intensity of 3.25 °C, 4.72 °C, and 4.04 °C for the study years 1991, 

2003, and 2018, respectively, as shown in Table 7. 

Table 7. Calculation of urban heat island intensity from land surface temperature (LST) based on 

Landsat images. 

Image Acquisition Date Mean Urban LST (°C) Mean Rural LST (°C) UHI (°C) 

1991 32.48 29.23 3.25 

2003 37.29 32.57 4.72 

2018 41.50 37.46 4.04 

The spatial distribution of UHI zones with the corresponding UHI intensities over 

the study area is shown in Figure 8. The zones of non-UHI appeared in white color and 

the zones of UHI are classified to express the UHI intensities. 
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Figure 8. Land surface temperature maps illustrating UHI intensity and UHI zones. The white color 

represents non-UHI zones, and UHI intensity is mentioned for each image. 

For more productive analysis, the UHI intensity was computed on a district basis to 

realize the trend of change in LST over each time step on a small scale to specifically define 
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which districts were affected more for the decision maker to adopt for minimizing the 

UHI impact. According to the intensity of the UHI, Table 8 summarizes the urban LSTs 

and cultivated LSTs for the eight districts during the study period. 

Table 8. Calculation of UHI intensities from land surface temperature (LST) based on Landsat images. 

 Urban LST (°C) Rural LST (°C) UHI (°C) 

Districts 

Mean Tem-

perature (µ) 

1991 

Mean Tem-

perature (µ) 

2003 

Mean Tem-

perature (µ) 

2018 

Mean Tem-

perature (µ) 

1991 

Mean Tem-

perature (µ) 

2003 

Mean Tem-

perature (µ) 

2018 

1991 2003 2018 

Mahalla Kubra 32.16 36.62 40.63 28.65 31.09 36.26 3.51 5.53 4.37 

Tanta 32.87 37.95 41.29 29.77 33.30 37.38 3.10 4.65 3.91 

Basyun 32.80 36.77 40.42 29.89 32.44 38.19 2.91 4.33 2.23 

Zefta 32.32 37.84 41.50 29.29 33.86 38.26 3.03 3.98 3.24 

Santah 32.41 37.65 41.02 29.32 33.31 37.44 3.09 4.34 3.58 

Kafr Elzayat 32.74 38.03 41.40 29.43 34.44 39.48 3.31 3.59 1.92 

Samanod 31.72 36.53 40.53 28.52 31.92 36.58 3.2 4.61 3.95 

Qotur 32.74 36.70 41.04 29.45 31.76 37.77 3.29 4.94 3.27 

Based on Table 8, there is a fluctuating trend of the UHI effect through all districts of 

the study area over the study years with the highest UHI intensities in 2003 compared to 

1991 and 2018. It seemed that there was a heat wave in 2003 causing this year to have the 

highest intensities of UHI. The Mahalla Kubra district has noticed a persistent UHI effect 

with different intensities over the study period of 3.51 °C, 5.53 °C, and 4.37 °C in 1991, 

2003, and 2018, respectively. This district has the absolutely highest UHI intensity in the 

three study years, which means being the most susceptible to the impact of urban expan-

sion as mentioned in Mostafa et al. [35]. Kafr Elzayat has the second-highest UHI in 1991 

after Mahalla district but the lowest UHI in 2003 and 2018. For the district of Tanta, the 

center of Gharbeya city, the UHI intensities were 3.10 °C, 4.65 °C, and 3.91 °C in 1991, 

2003, and 2018, respectively. On the other hand, the lowest UHI effect is found in Basun 

in 1991. 

Table S15 represents the mean LST and the standard deviation for each district in the 

three dates of study which were used to compute the thresholds which differentiate the 

non-UHI regions from the UHI ones. The eight figures (Figures S5–S12) represent the UHI 

spatial distribution through the eight districts. The pixels of white color represent the non-

UHI where these pixels have LSTs less than the threshold selected based on Equation (4). 

On the other hand, the pixels of LSTs higher than the threshold model of the UHI zones 

are classified based on their temperatures for spatial and visual representation. Figures 

S5–S12 represent the dimensions and the corresponding LSTs for the districts of Mahalla 

Kubra, Tanta, Zefta, Kafr Elzayat, Qotur, Samanod, Basun, and Santa, respectively. In the 

figures, a, b, and c represent UHI intensities in 1991, 2003, and 2018, respectively, while d, 

e, and f are the zoom on the most densely populated area for more clarification of the 

spatial distribution of LST ranges. 

3.6. Relationship between LULC and LST 

To quantitatively study the relationship between the land-use types and the surface 

temperature, regression analysis was employed to statistically analyze the impact of 

LULCC on the LST change increasingly or decreasingly causing the phenomenon of UHI 

or UCI (urban cool island). 

The regression analysis between the LULC and the LST was conducted based on the 

NDBI values of pixels in the study area corresponding to their LSTs. As shown in Figure 

9, there is a positive strong correlation between NDBI and LSTs for all the dates. The linear 

regression analysis confirmed correlation coefficients of 0.81, 0.79, and 0.73 for the years 

1991, 2003, and 2018, respectively. 
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It is known that the higher values of NDBI refer to the built-up land use while the 

lower values represent the classes of agriculture and water. So, the high temperatures are 

always associated with the built-up areas and the agricultural lands and water bodies 

manifested a considerably low radiant temperature. Therefore, the expansion of urban 

areas increases the LSTs leading to the effect of UHI. In other words, the increase in LST 

primarily relied on LULCC, specifically the urban sprawl at the expense of agricultural 

land. The increase in LST depends on the presence of impervious surfaces such as build-

ings and roads which keep heat, so the UHI effect is common in cities. 

 

Figure 9. Regression analysis to retrieve the relationship between the LST and LULC over Gharbia 

in (a) 1991, (b) 2003, and (c) 2018. 

4. Discussion 

4.1. Current Study Compared to Previous LULC and Corresponding LST Studies 

SVM confirmed its high capability of classification where all classification dates ful-

filled high values of classification indices. However, there may be some misclassified pix-

els; some water pixels for canals were classified as agricultural land since the width of the 

canals in the study area does not exceed 12 m, and as such these canals are usually edged 

on both sides by green grass (as shown in Figure S14 in the Supplementary Materials) 

whereas the Landsat spatial resolution is 30 m. So, these pixels are mixed pixels. For en-

hancing the classification of the mixed pixels, finer resolution satellite data are required. 

Sentinel-2 launched in 2015 provides free satellite data with a high spatial resolution of 

10m for VNIR and a high temporal resolution of 3–5 days with two satellites [78,79] which 

are practical for extracting fine features such as streets and canals [80]. However, its short 

archive lacks the monitoring of spatiotemporal LULCC over a long-term period. In our 

case, Landsat is considered the most convenient to monitor and assess the phenomena 

which relate to LULCC since it has the longest uninterrupted RS images of the Earth’s 

surface ever. 
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Our findings revealed that Gharbia had experienced fast urban growth in the 27-year 

study period. Similar outcomes were notified by Athukorala and Murayama [81] where 

the analysis of LULCC detected that built-up class augmented notably by 305.21 km2 

through a 19-year study period. 

Two comparable models were utilized for more accurate prediction. Nobody can ig-

nore the efficiency of the CA-Markov chain model as it is successful in determining the 

transition potential quantitatively and spatially, hence capable of predicting the future. 

However, the FAHP-CA-Markov chain hybrid model was superior as it considers the vital 

role of the MCDM technique (FAHP) which employed criteria to examine the locations of 

high potential to be urbanized through the study area. The selected criteria for FAHP were 

the driving factors of LULCC, particularly urban growth, which involved socioeconomic 

parameters and neighborhood effects. Diverse factors and their impacts on urban expan-

sion have been mentioned in former studies. For instance, the study addressed by Wang 

et al. [26] revealed that the principal driving forces of the obvious changes are the acceler-

ated population growth caused by rural-to-urban migration besides quick post-demo-

cratic social and economic development. Further, Dubovyk et al. [59] considered the spa-

tiotemporal trend of the spread of random settlements in the Sancaktepe district, Istanbul, 

Turkey, over the period of 1990 to 2005. Then, the study analyzed the driving forces of 

this random growth and predicted the possible locations of further growth based on a 

logistic regression model. The major driving factors causing this issue through this study 

area over the study period are represented in population density, slope, and neighbor-

hood effect. Zhang et al. [82] also adopted a hybrid of the CA and Markov chain for sim-

ulating and analyzing the behavior of urban expansion in Shanghai, China. Multi-tem-

poral satellite images for 1995, 2000, and 2005 were used to simulate and predict the ur-

banization trend in 2015 and 2025 considering the driving factors. The outcomes revealed 

that the future growth of residential and commercial districts with high and low density 

is usually situated around standing built-up areas or along existing transportation lines. 

Further, Li et al. [83] investigated the urban growth in Beijing, China over the interval of 

1972 to 2010 based on time-series satellite images. Binary logistic regression was utilized 

to explore the impact of the driving factors, e.g., slope and elevation as natural factors, 

distance to urban centers and distance to the nearest road as socioeconomic factors, and 

neighborhood effect. The relative significance of these different factors was assigned. The 

findings manifested that Beijing experienced quick urbanization throughout the study pe-

riod. In addition, all the aforementioned factors influenced this urbanization and their 

influence varied with time. However, the socioeconomic factors represented the most 

principal driving force to urban growth and increased along with the persistent trend. 

Otherwise, based on our knowledge of our study area, we adopted socioeconomic factors, 

neighborhood effect, and LULC type. The socioeconomic factors are the most important 

factors of urban growth including: “distance to persistent built-up area”, “distance to ur-

ban centers”, “distance to railway stations”, “distance to nearest road”, “population den-

sity”, “employment”, and “local development”. The natural factors such as slope and el-

evation can be negligible since the area of interest is almost level. 

In the model's simulation step, the simulation time is not exactly the same as the cal-

ibration time since those are the available capture dates of cloud-free images. Markov 

chain model usually simulates reality well if the utilized satellite data were picked out at 

almost equal intervals of time, and there is no unexpected leap in a specific term. Due to 

the lawlessness that occurred in Egypt during the revolution of 2011, the urban sprawl 

was random and unspecified. So, the Jaccard coefficient affirmed almost equal values in 

the case of the two applied models. The Jaccard coefficient value in the case of the FAHP-

CA-Markov model is less than expected since the model predicts the change in a thought-

ful way, while the actual change was random and irregular. However, in normal cases 

without a sudden boom in a certain period, the distinction of the FAHP-CA-Markov hy-

brid model can appear. Accordingly, the FAHP-CA-Markov chain hybrid model is the 

pioneer to be relied upon for future projection. Aburas et al. [84] have conducted a similar 
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study on Seremban, Malaysia, aimed at improving the simulation capability of an inte-

grated CA-Markov chain model by incorporating the AHP and frequency ratio methods, 

then comparing the outcomes of the traditional CA-Markov chain model and hybrid mod-

els. The results of validation emphasized that the integration of the CA-Markov chain 

model and frequency ratio method has upgraded the potential of the simulation/projec-

tion process. Superiorly, our methodology adopted FAHP while the researchers usually 

depend on the common MCDM techniques, not the fuzzified ones which cannot dispose 

of the uncertainty in data and analysis. Criteria-based analysis reveals the vulnerability of 

the districts to the rapid urbanization risk, which is efficient for the data-gap zones, viz. if 

the satellite data are rare for a specified area, FAHP can determine the possibility of the 

districts being prone to the accelerated urban sprawl. Consequently, the decision makers 

can be notified of which district is prime to be concerned. Correspondingly, obtaining an 

urbanization vulnerability map in the absence of RS data is conceivable. 

The land-use change has basically contributed to the spotted UHI intensity over the 

study area through the processes of urban sprawl. Therefore, the presence of a UHI means 

that there is a variation in the values of LST which means variance in LULC. The maps of 

LST can be reclassified, based on the threshold values to easily visualize the locations of 

UHIs with their intensities. A UHI represents the LST well, where it differentiates the 

zones of higher temperatures from those of lower temperatures with a variation. The high 

temperatures are always associated with the built-up areas while the agricultural lands 

and water bodies manifested a considerably low radiant temperature. So, to mitigate this 

effect, the concrete buildings need to be minimized and the green areas and water bodies 

need to be increased. Effat et al. [33] have investigated the dynamics of urban expansion 

and its effect on the LST in Tanta city, Egypt, based on satellite data. The LSTs were gained 

from the thermal bands of the satellite data images and a regression analysis was em-

ployed to examine the relationship between LST and different LULCs. The findings con-

firmed the wide urban expansion over the agriculture activity during the study period 

and a strong correlation between the LULCC and change in LST. 

4.2. Current and Possible Future Alternative Land-Use Strategies 

The population increase necessitates urban growth. The issue of urban growth in 

Egypt is amplified because around 96% of the country's area is uninhabited desert [85]. 

Therefore, the residents are wholly concentrated in the Nile valley and delta. This uneven 

distribution and huge increase in population density caused significant socioeconomic 

troubles [86]. So, the government of Egypt offered a master plan for the construction of 

new cities in the desert of Egypt. The fast and persistent urban sprawl over agriculture 

activity has critical effects on crop production and then, the country’s economy [2]. The 

government of Egypt has recently launched considerable projects for reclaiming desert 

lands to confront food scarcity owing to the increased inhabitancies. Although these ef-

forts can be appreciated for solving the problem, they cannot be the best solution. The 

fertility of the soil of the reclaimed desert is less than that of the lands of the Nile delta [3]. 

Consequently, the production of the reclaimed lands does not substitute the lost produc-

tion of the sprawled lands. Furthermore, the reclaimed desert lands need a lot of support 

to be qualified for agriculture and production, e.g., water, power, and chemical fertilizers 

in addition to in-demand laborers and paved transportation to distant stores [3,34]. All 

these requirements need a high budget which necessitates the cultivation of the reclaimed 

desert lands by plants for export to fulfill the high earnings proportion of the reclamation 

cost. Obviously, this strategy does not contribute to thinking through the issue of food 

shortage and self-adequacy for the country [3]. Therefore, the government has to follow 

different delineations for critical overpopulation. For example, (1) the vertical urban ex-

pansion of the already existing urban zones instead of the horizontal expansion can limit 

the severity of the problem as well as conserve the present fertile agricultural lands and 

their high productivity; and (2) establishing sustainable cities with adequate infrastruc-

ture for settled life to broaden for the inhabitancies growth distant from the Nile delta. 
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Construction in the desert is the best solution to mitigate the stress in the delta triangle 

and to intercept further urbanization through the agricultural land of the delta. 

5. Conclusions 

The population increase and the desire for urbanization are the main driving forces 

for the urban sprawl on the agricultural land; particularly, the study area does not have a 

desert backyard allowing the urban expansion away from the vegetation cover. 

SVM proved its capability of accurate classification compared to other common clas-

sification techniques owing to its principle of separating the different classes. 

The Jaccard coefficient which was relied upon to validate the two comparable used 

models affirmed that both the two models are accepted and can be adopted for further 

prediction. However, the results of the traditional CA-Markov chain model were rela-

tively random compared to the hybrid model of the FAHP-CA-Markov chain which is 

capable of predicting the locations susceptible to urban sprawl in a systematic way con-

sidering the driving forces of urban expansion. So, the FAHP-CA-Markov model is pref-

erable to the traditional CA-Markov chain model since its results make sense. The Jaccard 

coefficient is almost the same due to the used reference LULC being random due to the 

lawlessness during and after the 2011 revolution in Egypt. 

The criteria-based analysis provides the susceptibility of the districts to the quick ur-

banization risk, which is effective for the data-gap regions, viz. if the satellite data are 

scarce for a definite area, FAHP can determine the probability of the districts being vul-

nerable to accelerated urbanization. Therefore, the decision makers can be notified of 

which district has the priority to be interested. Accordingly, acquiring the urbanization 

vulnerability map in the lack of satellite data is possible. 

Satellite images with thermal bands can be superiorly used to retrieve the LSTs in an 

economical and time-saving technique for spatiotemporal analysis of LSTs allocation. LST 

has a robust correlation positively with the urban class and negatively with the green 

space. Higher LST anomalies are generally associated with impermeable surfaces such as 

buildings. LULCC affects UHI distribution and intensities. So, sustainable land use can 

mitigate the LST impacts. 
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