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Abstract: A new scattering power decomposition method is developed for accurate tropical forest
monitoring that utilizes data in dual-polarization mode instead of quad-polarization (POLSAR) data.
This improves the forest classification accuracy and helps to realize rapid deforestation detection
because dual-polarization data are more frequently acquired than POLSAR data. The proposed
method involves constructing scattering power models for dual-polarization data considering the
radar scattering scenario of tropical forests (i.e., ground scattering, volume scattering, and helix
scattering). Then, a covariance matrix is created for dual-polarization data and is decomposed
to obtain three scattering powers. We evaluated the proposed method by using simulated dual-
polarization data for the Amazon, Southeast Asia, and Africa. The proposed method showed an
excellent forest classification performance with both user’s accuracy and producer’s accuracy at
>98% for window sizes greater than 7 × 14 pixels, regardless of the transmission polarization. It
also showed a comparable deforestation detection performance to that obtained by POLSAR data
analysis. Moreover, the proposed method showed better classification performance than vegetation
indices and was found to be robust regardless of the transmission polarization. When applied to
actual dual-polarization data from the Amazon, it provided accurate forest map and deforestation
detection. The proposed method will serve tropical forest monitoring very effectively not only for
future dual-polarization data but also for accumulated data that have not been fully utilized.

Keywords: scattering power decomposition; dual-polarization; tropical forests; forest monitoring;
PALSAR-2

1. Introduction

Reducing deforestation and forest degradation is an effective option for climate change
mitigation because forests can absorb and sequester large amounts of greenhouse gas emis-
sions. Tropical forests and savannas in Latin America have the largest share of mitigation
potential, followed by those in Southeast Asia and Africa [1]. Globally, the net forest loss
rate declined from 7.8 million ha/year in 1990–2000 to 4.7 million ha/year in 2010–2020.
Brazil, the Democratic Republic of the Congo (DRC), and Indonesia suffered the largest
average annual net losses of forest area between 2010 and 2020 [2]. In 2012, Brazil reduced
the deforestation rate in the Amazon by 84% compared to the historical peak in 2004. How-
ever, since 2013, the official deforestation rate has increased, especially in 2019 and 2020 [3].
In DRC, the gross forest cover loss from 2000 to 2010 was estimated to be 37,118 km2, or
2.3% of the total forest area in 2000 [4]. In Sumatra and Kalimantan, primary forest loss
increased from 2001 to 2012 and gradually decreased afterward through to 2019 [5].

Early warning of deforestation and forest degradation is crucial to protecting and
maintaining tropical forests. Remote sensing by optical sensors has been utilized for
monitoring forests in these regions (e.g., PRODES in Brazil and Landsat in DRC and
Indonesia). Such optical sensors are very effective for monitoring the long-term trend of
forest distributions. However, they are often unsuitable for early detection of deforestation
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and forest degradation because of the dense cloud cover over tropical forests during the
rainy season.

Synthetic aperture radar (SAR) sensors are suitable for monitoring tropical forests
because microwaves can penetrate the cloud cover and observe the ground regardless of
the weather. The Japan International Cooperation Agency (JICA) and Japan Aerospace
Exploration Agency (JAXA) have been operating the JICA–JAXA Forest Early Warning
System in the Tropics (JJ-FAST) since November 2016, which provides forest change infor-
mation of tropical forests every 1.5 months under all weather conditions [6]. JJ-FAST uses
SAR time-series data acquired by Phased Array type L-band Synthetic Aperture Radar-2
(PALSAR-2) in dual-polarization (HH/HV) ScanSAR mode with a spatial resolution of
50 m. Global Forest Watch has been operating Radar for Detecting Deforestation (RADD)
alerts since 2019 [7], which provides tropical forest disturbance alerts every 6–12 days
based on an analysis of SAR time-series data acquired by Sentinel-1 in dual-polarization
(VV/VH) mode with a spatial resolution of 10 m. Both JJ-FAST and RADD use algorithms
that analyze the backscatter of each polarization and do not utilize the correlation between
polarizations. Polarimetric SAR (POLSAR) data are acquired in quad-polarization Stripmap
mode, and L-band POLSAR data, in particular, contain the most information regarding the
dielectric properties and structures of scatterers. Deforestation detection based on PALSAR-
2 POLSAR data from before and after logging and using the six-component scattering
power decomposition (6SD) method demonstrated an almost comparable performance
with detection based on an annual deforestation map using time-series data from an optical
sensor [8]. However, the swath coverage of PALSAR-2 data in Stripmap mode is insufficient
for monitoring tropical forests. PALSAR-3 is the next-generation successor of PALSAR-2
and has a spatial resolution of 10 m with a wide swath of 200 km in dual-polarization
Stripmap mode [9]. Thus, PALSAR–3 will provide abundant dual-polarization data for
monitoring tropical forests. A few studies of the polarimetric analysis for dual-polarization
data were conducted. In [10], the entropy/alpha decomposition method for POLSAR data
was extended to dual-polarization data. Although the previous study applied the method
to several application examples, it did not evaluate the technique quantitatively. It was
indicated in [11] that HH/HV and HV/VV data did not adequately extract scattering
mechanisms in the entropy/alpha decomposition method.

To realize accurate tropical forest monitoring using dual-polarization data, the objec-
tive of this paper is to extend the scattering power decomposition method for POLSAR
data to dual-polarization data. We quantitatively evaluated the proposed method by using
simulated dual-polarization data from the Amazon, Southeast Asia, and Africa and com-
paring the forest classification and deforestation detection performance to those of the 6SD
method and vegetation indices. We also evaluated its performance when applied to actual
dual-polarization data from the Amazon.

2. Data and Methods
2.1. Data
2.1.1. PALSAR-2 POLSAR Data for Simulating Dual-Polarization Data

PALSAR-2 was launched on 24 May 2014, and it is an Earth observation L-band
SAR sensor onboard the Advanced Land Observing Satellite 2 (ALOS-2). PALSAR-2 has
three observation modes [12]: Spotlight (single-polarization), Stripmap (single-, dual-, and
quad-polarization), and ScanSAR (single- and dual-polarization). In the basic observation
scenario of PALSAR-2, the dual-polarization Stripmap and ScanSAR modes cover almost
the entire Earth. PALSAR-2 observes the terrestrial areas of Earth twice a year in dual-
polarization Stripmap mode with a spatial resolution of 10 m and swath width of 70 km.
The dual-polarization ScanSAR mode has a wide swath width of 350 km but a much lower
spatial resolution. The quad-polarization Stripmap mode has a spatial resolution of 6 m
and swath width of 50 km, which are almost comparable to the spatial resolution and swath
width of dual-polarization data. This means that HH/HV or VV/VH data in POLSAR
data can be used to simulate dual-polarization data and validate the proposed method
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that extends the scattering power decomposition method to the dual-polarization data.
However, few time-series data have been acquired in quad-polarization mode, even during
the global basic observation scenario for its mode that ended in June 2017. Rio Branco
in Brazil is one of the few sites for which time series POLSAR data are available because
corner reflectors were installed here for the PALSAR-2 calibration and validation [13].
Thus, POLSAR data for this region have been acquired at least once a year since 2017.
Furthermore, Rio Branco is at the border between Peru, Bolivia, and Brazil, and it is at
the western terminal of the area with the highest rate of deforestation in the Amazon,
which is known as the “Arc of Deforestation.” Therefore, we selected Rio Branco as a
study site, as shown in Figure 1. In addition, we selected three other study sites for which
POLSAR data of tropical forests have been acquired: the Amazon, Southeast Asia, and
Africa. The Amazon study site is around the Ucayali River and it includes a flooded
area. The co-polarization (HH or VV) component is greater in flooded forests than in
non-flooded forests owing to the dihedral reflection of stems [6,8] and flooded forests can
include a backscatter variation in HH polarization exceeding 3 dB compared to non-flooded
forests [14]. The Kalimantan study site in Southeast Asia includes artificial forests such as
oil palm plantations, which have different scattering behavior than natural vegetation [8].
Oil palm plantations increase the double-bounce scattering power in addition to the volume
scattering power for vegetation because L-band microwaves can penetrate the canopies
of oil palms to interact with the woody trunks and the underlying surface. The Africa
study site covers the Congo Basin, which has many tropical forests. Table 1 presents the
PALSAR-2 data used in this study. The data acquired at Rio Branco were used to produce
the forest map of each scene and detect deforestation during the three years from 2015 to
2017. Other data were used to produce the forest map of each study site.

Table 1. Main characteristics of POLSAR data from PALSAR-2 used in this study.

Site Subarea Off-Nadir Angle (◦) Acquisition Date

Rio Branco
A 28.4◦

9 January 2015
19 January 2018

B 30.9◦
23 January 2015
5 January 2018

Ucayali River – 30.9◦ 16 April 2016

Kalimantan
A 33.2◦

9 January 2016
29 October 2016

B 28.4◦
8 December 2014

27 April 2015

Congo Basin
A

28.4◦

8 November 2014
7 May 2016

B
8 November 2014

7 May 2016

2.1.2. Reference Data

Visual interpretation of images with a high spatial resolution is often utilized to
construct reference data to validate the image processing results of satellite data [4,6–8]. At
Rio Branco, reference data were produced by visual interpretation of an area comprising
67.2◦–67.5◦W and 9.5◦–9.8◦S using the Planet biannual base map of the NICFI satellite
data program [8]. The reference data consisted of polygons representing deforestation,
permanent forest, and permanent non-forest sites in Rio Branco between January 2015
and January 2018. For the reference forest map in January 2015, the deforestation and
permanent forest polygons could be utilized. In addition, for the reference forest map in
January 2018, only permanent forest polygons could be utilized. The reference data were
used to validate the results at Rio Branco considering the above relationship. Note that the
deforestation polygons of 1 ha or less were also used, which we excluded in a previous
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study due to target size [8]. Those polygons were then rasterized with a spatial resolution
of 1 arcsec, which had the same spatial resolution as that of the digital elevation model
we used. The raster images indicated that the deforested sites in the study area covered
~2000 ha in total, as given in Table 2. The permanent forest and permanent non-forest sites
each covered areas of ~30,000 ha.
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Figure 1. Study sites: (a) Rio Branco in Brazil, (b) Ucayali River in the Amazon, (c) Kalimantan
in Indonesia, and (d) Congo Basin in the Republic of the Congo. The white solid and dotted
rectangles indicate subareas A and B, respectively. The red square in (a) shows the reference data area
described in Section 2.1.2. The mosaic images used as the base map were acquired by Planet/Dove in
(a) December 2017–May 2018, (b) June–November 2016, (c) June–November 2016, and (d) December
2015–May 2016.

Table 2. Number of polygons, pixels, and corresponding area for deforestation, permanent forest,
and permanent non-forest sites at Rio Branco.

Polygons Pixels Area (ha)

Deforestation 406 21,281 1915
Permanent forest 514 341,355 30,722

Permanent non-forest 648 394,589 35,513



Remote Sens. 2023, 15, 839 5 of 19

However, no reference data by visual interpretation were available for the other study
sites. The objective of our study was to extend an analysis method for POLSAR data to
dual-polarization data. Therefore, we decided to use the POLSAR results as reference data
for the Ucayali River, Kalimantan, and Congo Basin sites and validated the results using
dual-polarization data against the consistency with the POLSAR data.

2.2. Proposed Method
2.2.1. Scattering Power Decomposition

The scattering power decomposition algorithm is part of the POLSAR analyses, and
several types have been proposed. The three-component scattering power decomposition
method [15] considers a simple physical scattering model (i.e., surface scattering, double-
bounce scattering, and volume scattering), and decomposes POLSAR data under reflection
symmetry conditions. This method is suitable for natural distributed targets. Singh
et al. [16] proposed a method called general four-component decomposition with a unitary
transformation of the coherency matrix (G4U). Singh and Yamaguchi [17] later extended
the G4U method to include two additional scattering models (i.e., oriented and compound
dipole) into the 6SD method for better physical interpretation. The 6SD method divides the
total scattering power into six components: the surface scattering power Ps, double-bounce
scattering power Pd, volume scattering power Pv, helix scattering power Ph, oriented dipole
scattering power Pod, and compound dipole scattering power Pcd. It considerably improves
image interpretation compared with other existing model-based decompositions [17]. A
scattering power decomposition algorithm is generally expressed as follows:

〈[T]〉 = 〈
[
Rp(θ)

]
kpk†

p
[
Rp(θ)

]†〉 = 〈kp(θ)k†
p(θ)〉 =

∫ 2π
0 kp(θ)k†

p(θ)p(θ)dθ

= ∑ Pcomp〈[T]〉comp
(1)

kp =
1√
2

SHH + SVV
SHH − SVV

2SHV

 (2)

Rp(θ) =

1 0 0
0 cos 2θ sin 2θ

0 − sin 2θ cos 2θ

 (3)

where 〈[T]〉 is a 3 × 3 scattering coherency matrix with an ensemble average and kp is the Pauli
scattering vector. θ is the polarimetric orientation angle and p(θ) is a probability density function that
represented its distribution. Pcomp and 〈[T]〉comp are components of scattering powers and expansion
matrices corresponding to scattering powers such as the surface scattering power and double-bounce
scattering power. SHH , SVV , and SHV are complex elements of the scattering matrix. Refer to [18] for
further details on expansion matrices corresponding to scattering powers.

2.2.2. Extension to Dual-Polarization Data
The Pauli scattering vector and coherency matrix cannot be constructed for dual-polarization

data because only two complex elements are acquired: SHH , SHV or SVV , SVH . Therefore, we cannot
directly apply scattering power decomposition algorithms intended for POLSAR data such as G4U
and 6SD to dual-polarization data. Based on the relationship between dual-polarization and POLSAR
data, we can summarize the polarimetric information content of the 2 × 2 covariance matrices [C2H ],
[C2V ] by relating them to the full 3 × 3 scattering coherency matrices as follows [10]:

kH =

[
SHH
SHV

]
=

1
2

[
1 1 0
0 0 1

]SHH + SVV
SHH − SVV

2SHV

 =
1√
2

[
1 1 0
0 0 1

]
kp (4)

[C2H ] = kHk†
H =

[
|SHH |2 SHHS∗HV

S∗HHSHV |SHV |2

]
=

1
2

[
1 1 0
0 0 1

]
kpk†

p

1 0
1 0
0 1

 (5)

kV =

[
SVV
SVH

]
= 1

2

[
1 −1 0
0 0 1

]SHH + SVV
SHH − SVV

2SHV

 = 1√
2

[
1 −1 0
0 0 1

]
kp

∵ SVH = SHV

(6)
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[C2V ] = kVk†
V =

[
|SVV |2 SVVS∗VH

S∗VVSVH |SVH |2

]
=

1
2

[
1 −1 0
0 0 1

]
kpk†

p

−1 0
1 0
0 1

. (7)

These relationships can then be used to extend a scattering power decomposition algorithm to
dual-polarization data. Therefore, we construct three scattering power models for dual-polarization
data considering the radar scattering scenario of tropical forests: volume scattering power, helix
scattering power, and ground scattering power.

Volume scattering power

A cloud of randomly oriented dipole is employed as the volume scattering model because its
power is mainly attributed to natural vegetation with a random branch distribution. The Pauli scattering
vector kp(θ) of the dipole model [18] and the covariance matrices can be expressed as follows:

kp(θ) =
[
1 cos 2θ − sin 2θ

]T

〈[C2H ]〉v =
∫ 2π

0
1
2

[
1 + 2 cos 2θ + cos2 2θ − sin 2θ(1 + cos 2θ)
− sin 2θ(1 + cos 2θ) sin2 2θ

]
p(θ)dθ

〈[C2V ]〉v =
∫ 2π

0
1
2

[
1− 2 cos 2θ + cos2 2θ − sin 2θ(1− cos 2θ)
− sin 2θ(1− cos 2θ) sin2 2θ

]
p(θ)dθ

(for a horizontal dipole)

(8)

kp(θ) =
[
1 − cos 2θ sin 2θ

]T

〈[C2H ]〉v =
∫ 2π

0
1
2

[
1− 2 cos 2θ + cos2 2θ sin 2θ(1− cos 2θ)

sin 2θ(1− cos 2θ) sin2 2θ

]
p(θ)dθ

〈[C2V ]〉v =
∫ 2π

0
1
2

[
1 + 2 cos 2θ + cos2 2θ sin 2θ(1 + cos 2θ)

sin 2θ(1 + cos 2θ) sin2 2θ

]
p(θ)dθ.

(for a vertical dipole)

(9)

Uniform, vertical, and horizontal distributions are generally considered for the probability
density function of a dipole model. Both co-polarization data (SHH and SVV ) are needed to distinguish
these distributions. If the probability density function of the dipole model has the uniform distribution
p(θ) = 1/2π, then the covariance matrix of the volume scattering power finally becomes:

〈[C2H ]〉v = 〈[C2V ]〉v = 1
4

[
3 0
0 1

]
.

(for both horizontal and vertical dipole)
(10)

When the probability density function is not a uniform distribution, the scatters are primarily
distributed vertically or horizontally, and the covariance matrix differs from that in Equation (10).
By using an appropriately large window size for the ensemble average, we can assume that the
probability density function has a uniform distribution.

Helix scattering power

The left or right helix model is the only model that can account for the off-diagonal term in
the covariance matrix (i.e., SHHS∗HV 6= 0, SVVS∗VH 6= 0) [18], and the helix target generates circular
polarization for all linear polarization incidences. Then, the Pauli scattering vector kp(θ) of the helix
model and the covariance matrices are expressed as follows:

kp(θ) = ej2θ
[
0 1 j

]T

〈[C2H ]〉h =
∫ 2π

0
1
2

[
1 −j
j 1

]
p(θ)dθ

〈[C2V ]〉h =
∫ 2π

0
1
2

[
1 j
−j 1

]
p(θ)dθ

(for a left helix)

(11)

kp(θ) = e−j2θ
[
0 1 −j

]T

〈[C2H ]〉h =
∫ 2π

0
1
2

[
1 j
−j 1

]
p(θ)dθ

〈[C2V ]〉h =
∫ 2π

0
1
2

[
1 −j
j 1

]
p(θ)dθ.

(for a right helix)

(12)
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The covariance matrix of the helix scattering power is independent of the probability density
function and is finally summarized as follows:

〈[C2H ]〉h = 1
2

[
1 −j
j 1

]
, 〈[C2V ]〉h = 1

2

[
1 j
−j 1

]
(for a left helix)

〈[C2H ]〉h = 1
2

[
1 j
−j 1

]
, 〈[C2V ]〉h = 1

2

[
1 −j
j 1

]
.

(for a right helix)

(13)

Ground scattering power

The scattering components on the ground are mainly surface scattering and double-bounce scat-
tering, except for volume scattering. Those components approximately correspond to 〈|SHH + SVV |2〉
and 〈|SHH − SVV |2〉, respectively, and are distinguished by the phase difference between SHH and
SVV (i.e., it is in phase for surface scattering and vice versa for double-bounce scattering). However,
SHH and SVV cannot be acquired simultaneously in dual-polarization mode. Because the left-upper
diagonal terms in the covariance matrix of dual-polarization data are SHH and SVV , we can express
the ground scattering power as follows:

〈[C2H ]〉g = 〈[C2V ]〉g =

[
1 0
0 0

]
. (14)

Scattering power decomposition for dual-polarization data

A covariance matrix acquired in dual-polarization mode can be expressed by using three
unknown scattering powers (PH

g , PH
v , and PH

h for horizontal transmission polarization or PV
g , PV

v , and
PV

h for vertical transmission polarization) and Equations (10), (13), and (14) as follows:

[C2H ] = PH
g 〈[C2H ]〉g + PH

v 〈[C2H ]〉v + PH
h 〈[C2H ]〉h

= PH
g

[
1 0
0 0

]
+ PH

v
4

[
3 0
0 1

]
+

PH
h
2

[
1 j
−j 1

]
(15)

[C2V ] = PV
g 〈[C2V ]〉g + PV

v 〈[C2V ]〉v + PV
h 〈[C2V ]〉h

= PV
g

[
1 0
0 0

]
+ PV

v
4

[
3 0
0 1

]
+

PV
h
2

[
1 −j
j 1

]
(16)

〈|SHH |2〉 = PH
g +

3
4

PH
v +

1
2

PH
h , 〈|SVV |2〉 = PV

g +
3
4

PV
v +

1
2

PV
h (17)

|Im〈SHHS∗HV〉| =
1
2

PH
h , |Im〈SVVS∗VH〉| =

1
2

PV
h (18)

〈|SHV |2〉 =
1
4

PH
v +

1
2

PH
h , 〈|SVH |2〉 =

1
4

PV
v +

1
2

PV
h . (19)

The three unknowns (PH
g , PH

v , and PH
h for horizontal transmission polarization or PV

g , PV
v , and

PV
h for vertical transmission polarization) can be determined as follows. First, the helix scattering

power Ph is determined directly from Equation (18):

PH
h = 2|Im〈SHHS∗HV〉|, PV

h = 2|Im〈SVVS∗VH〉|. (20)

Then, Equation (19) gives the volume scattering power Pv:

PH
v = 4〈|SHV |2〉 − 2PH

h ,PV
v = 4〈|SVH |2〉 − 2PV

h . (21)

Finally, the ground scattering power Pg is determined from Equation (17):

PH
g = 〈|SHH |2〉 − 3

4 PH
v − 1

2 PH
h = TPH − PH

v − PH
h ,

PV
g = 〈|SVV |2〉 − 3

4 PV
v − 1

2 PV
h = TPV − PV

v − PV
h

(22)

where TPH and TPV are the total powers 〈|SHH |2〉+ 〈|SHV |2〉 and 〈|SVV |2〉+ 〈|SVH |2〉, respectively.
Thus, the proposed method is a three-component decomposition scheme for using dual-

polarization data to monitor forest scattering scenarios. The scattering powers Pg, Pv, and Ph can
be used to monitor and classify radar scenes of tropical forests in the rainy season. Note that the
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proposed method has no assumption of applied SAR frequency and is applicable to not only L-band
SAR data but also to C-band SAR data. In this study, the proposed method was applied to L-band
SAR data with good penetration for vegetation.

2.3. Validation
2.3.1. Comparison to 6SD Method at Rio Branco

To evaluate the forest classification accuracy of the proposed method, forest maps were produced
using POLSAR data at Rio Branco. First, we used the proposed method to calculate the scattering
powers from the simulated dual-polarization data (i.e., HH/HV and VV/VH data in POLSAR data).
In scattering power decomposition, the window size of the ensemble average is crucial to distinguish
forests [8]. Therefore, we considered various window sizes of 7 × 14, 10 × 20, and 14 × 28 pixels in
the range and azimuth directions. These corresponded to ground areas of approximately 0.3, 0.6, and
1 ha, respectively. Next, the scattering powers were geocoded by using Shuttle Radar Topography
Mission 1 arc-second Global (SRTM1) for comparison with the reference data projected on the map.
The geocoded scattering powers were then averaged over 3 × 3 pixels to reduce noise, and those
that satisfied the condition Pv ≥ Pg ∩ Pv ≥ α were classified as forests. The classified labels were
compared to the reference data (see Section 2.1.2). The threshold α was increased from 0.05 to 0.45 in
increments of 0.01 to determine the optimal value for forest classification among the 41 results. The
same procedure was performed by using the 6SD method with the POLSAR data for comparison.

Moreover, to evaluate the deforestation detection accuracy with the proposed method, we
applied it to POLSAR data for Rio Branco for the 3-year period of 2015–2017. POLSAR data acquired
in January 2015 and January 2018 were used to represent before and after logging, respectively.
The geocoded scattering powers were calculated in the same manner as for the forest classification
accuracy. Then, pixels that satisfied the following condition were classified as deforestation:

Pv be f ore ≥ Pg be f ore ∩ Pv be f ore ≥ α ∩ Pv a f ter < α ∩
(

Pv a f ter − Pv be f ore

)
< β (23)

where “before” and “after” indicate before and after logging, respectively. Equation (23) corresponds
to Equation (6) in a previous paper [8]. The optimal values of the parameters α and β for deforestation
detection were determined among the 656 results by increasing α from 0.05 to 0.45 in increments
of 0.01 and increasing β from −0.15 to 0.0 in increments of 0.01. The same procedure was used
to evaluate the deforestation detection performance of the 6SD method with the POLSAR data for
comparison with the proposed method.

2.3.2. Comparison to 6SD Method at Other Study Sites
A previous study [8] has shown that the 6SD method can robustly distinguish between flooded

and non-flooded forests as well as oil palm plantations and natural vegetation. We evaluated whether
the proposed method has similar robustness by using POLSAR data acquired at the Ucayali River and
Kalimantan. POLSAR data acquired at the Congo Basin were also used to evaluate the robustness of
the regional characteristics. Forest maps with slant-range coordinates were produced by using the
proposed and 6SD method. The results of the 6SD method were used as reference data because no
reference data from visual interpretation were available for these study sites. Thus, we evaluated
the forest map generated by the proposed method for its consistency with that generated by the 6SD
method. Scattering powers were calculated by using a window size of 10 × 20 pixels in the range
and azimuth directions. In addition, the scattering powers were decimated to be a spatial resolution
equivalent to that of SRTM1 in the slant-range coordinates. The scattering powers were then averaged
over areas of 3 × 3 pixels to reduce noise, and pixels that satisfied the condition Pv ≥ Pg ∩ Pv ≥ α

were classified as forests. For the forest map generated by the 6SD method, the threshold α was
determined to be 0.20 based on rough visual interpretation so that the forest and non-forest areas in
the 6SD RGB image roughly corresponded to the mosaic image acquired by Planet/Dove rather than
pixel-by-pixel. The mosaic images used for the rough visual interpretation were acquired around the
same dates as the POLSAR data, except for the mosaic image of the Ucayali River because of dense
cloud cover. For the forest map generated by the proposed method, the threshold α was increased
from 0.05 to 0.25 in increments of 0.01 to determine the optimal value that best matched the results of
the 6SD method, among the 21 results.

2.3.3. Comparison to Vegetation Indices
Table 3 presents various studies that have proposed different methods of using dual-polarization

data for forest classification. The radar forest degradation index (RFDI) [19] uses the normalized
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differential index for deforestation detection. RFDI generates values between –1 and +1, and it can
be seen from Equation (10) that the theoretical value is 0.5 for a forest. The radar vegetation index
(RVI) [20] can be applied to dual-polarization data under the assumption |SHH |2 ≈ |SVV |2 [21]. We
checked the forest pixels in the reference data to confirm that this assumption was appropriate. RVI
generally ranges between 0 and 1, and it can be seen from Equation (10) that the theoretical value
is 1.0 for a forest. Forest maps were generated using the RFDI and RVI at the Rio Branco. Based
on the value range and the theoretical value of both indices, we classified pixels as forests under
the condition α1 ≤ RFDI ∩ RFDI ≤ α2, and α1 ≤ RVI, respectively. To obtain the best forest
classification performances with the RFDI and RVI, the thresholds α1 and α2 for the RFDI were
evaluated from 0.2 to 0.8 in increments of 0.01, and the threshold α1 for the RVI was evaluated from
0.5 to 1.0 in increments of 0.01. Note that pixels with |SHH |2 and |SVV |2 values lower than 0.03 were
considered water areas and classified as non-forest.

Table 3. Vegetation indices proposed in previous studies.

Symbol Description Equation Theoretical Value for Forest

RFDI Radar forest degradation
index

|SHH |2−|SHV |2

|SHH |2+|SHV |2
0.5

RVI Radar vegetation index

8|SHV |2

|SHH |2+|SVV |2+2|SHV |2

= 4|SHV |2

|SHH |2+|SHV |2

∵ |SHH |2 ≈ |SVV |2 at f orests

1.0

2.3.4. Application to Actual Dual-Polarization Data
Finally, the proposed method was applied to actual dual-polarization data. In February 2022,

JICA conducted a field survey of deforestation at Altamira in Brazil. Therefore, we selected Altamira
as the study site and collected dual-polarization data after February 2022 to represent the site after
logging. To represent the site before logging, we collected data near the beginning of the year
for comparison with the JAXA Global PALSAR-2 Forest/Non-Forest map (JAXA FNF), which is
produced annually [22].

3. Results
3.1. Comparison to 6SD Method at Rio Branco
3.1.1. Forest Classification Accuracy

Figure 2 shows the RGB image and the forest map generated by the proposed method at Rio
Branco using HH/HV data, a window size of 10 × 20 pixels, and a threshold α value of 0.16 as given
in Table 4. Pixels dominated by the volume scattering power caused by natural forests are shown in
green in the RGB image. The green pixels in the RGB image and forest map are roughly consistent
with the visual interpretation of the Planet/Dove image. Table 4 presents the forest classification
performances of the proposed method and 6SD method. For comparison of the proposed method
with the 6SD method, each best performance by a simple threshold value was demonstrated using
the whole reference data. The proposed method showed an excellent classification performance with
both the user’s accuracy (UA) and producer’s accuracy (PA) above 98% regardless of the ensemble
average window size and transmission polarization. The high Kappa value of >0.98 indicates that the
coincidence was not by chance. The proposed method performed comparably to the 6SD method.
Note that only one co-polarization component is included in dual-polarization data, and the total
power is lower than that for the POLSAR data, which explains the lower threshold for the proposed
method than for the 6SD method.
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the reference data area. (a) Mosaic image acquired by Planet/Dove from December 2017 to May 2018. 
The white rectangle shows the observation area of PALSAR-2. (b) RGB image generated by the pro-
posed method: ground scattering is in red and blue and volume scattering is in green. (c) Forest map 
generated by the proposed method. 

Table 4. Forest classification performance at Rio Branco. 

Method and Data Window Size for 
Ensemble Average 

Threshold 𝜶 UA (%) PA (%) Kappa 

Proposed method  
with HH/HV 

7 × 14 pixels 0.15 98.6 99.3 0.981 
10 × 20 pixels 0.16 98.6 99.5 0.983 
14 × 28 pixels 0.17 98.8 99.5 0.984 

Proposed method  
with VV/VH 

7 × 14 pixels 0.15 98.6 99.3 0.980 
10 × 20 pixels 0.16 98.6 99.4 0.982 
14 × 28 pixels 0.17 98.8 99.4 0.983 

6SD method  
with POLSAR 

7 × 14 pixels 0.20 98.5 99.2 0.979 
10 × 20 pixels 0.24 98.6 99.6 0.982 
14 × 28 pixels 0.28 98.8 99.5 0.984 
UA: User’s accuracy (precision) and PA: Producer’s accuracy (recall). 

3.1.2. Deforestation Detection Accuracy 
Table 5 presents the deforestation detection performances of the proposed method 

and 6SD method. The UA, PA, and Kappa values of the two methods were comparable 
regardless of the ensemble average window size and transmission polarization. The de-
forestation maps are not shown here, but they indicated that the trends for the correct 
detection, omission error, and commission error were the same for both methods. We pre-
viously showed that the 6SD method had almost the same deforestation detection accu-
racy as the deforestation map produced annually from time-series optical satellite im-
agery [8]. Therefore, the proposed method should also contribute to rapid deforestation 
detection with the same accuracy as the annual deforestation map because dual-polariza-
tion data are observed more frequently. The omission error increased for both the pro-
posed method and 6SD method because sparse trees remained after logging (i.e., forest 
degradation), and the volume scattering power did not decrease. This problem should be 
addressed in future work.  

Figure 2. Forest map at Rio Branco generated by using the proposed method with HH/HV data
acquired on 5 January and 19, 2018, and a window size of 10 × 20 pixels. The red rectangle shows
the reference data area. (a) Mosaic image acquired by Planet/Dove from December 2017 to May
2018. The white rectangle shows the observation area of PALSAR-2. (b) RGB image generated by the
proposed method: ground scattering is in red and blue and volume scattering is in green. (c) Forest
map generated by the proposed method.

Table 4. Forest classification performance at Rio Branco.

Method and Data Window Size for
Ensemble Average Threshold α UA (%) PA (%) Kappa

Proposed method
with HH/HV

7 × 14 pixels 0.15 98.6 99.3 0.981
10 × 20 pixels 0.16 98.6 99.5 0.983
14 × 28 pixels 0.17 98.8 99.5 0.984

Proposed method
with VV/VH

7 × 14 pixels 0.15 98.6 99.3 0.980
10 × 20 pixels 0.16 98.6 99.4 0.982
14 × 28 pixels 0.17 98.8 99.4 0.983

6SD method
with POLSAR

7 × 14 pixels 0.20 98.5 99.2 0.979
10 × 20 pixels 0.24 98.6 99.6 0.982
14 × 28 pixels 0.28 98.8 99.5 0.984

UA: User’s accuracy (precision) and PA: Producer’s accuracy (recall).

3.1.2. Deforestation Detection Accuracy
Table 5 presents the deforestation detection performances of the proposed method and 6SD

method. The UA, PA, and Kappa values of the two methods were comparable regardless of the
ensemble average window size and transmission polarization. The deforestation maps are not shown
here, but they indicated that the trends for the correct detection, omission error, and commission error
were the same for both methods. We previously showed that the 6SD method had almost the same
deforestation detection accuracy as the deforestation map produced annually from time-series optical
satellite imagery [8]. Therefore, the proposed method should also contribute to rapid deforestation
detection with the same accuracy as the annual deforestation map because dual-polarization data
are observed more frequently. The omission error increased for both the proposed method and
6SD method because sparse trees remained after logging (i.e., forest degradation), and the volume
scattering power did not decrease. This problem should be addressed in future work.

Table 5. Deforestation detection performance at Rio Branco.

Method and Data Window Size for
Ensemble Average

Threshold
UA (%) PA (%) Kappa

α β

Proposed method
with HH/HV

7 × 14 pixels 0.16 –0.04 88.7 68.9 0.770
10 × 20 pixels 0.17 –0.04 92.1 69.9 0.789
14 × 28 pixels 0.18 –0.04 93.3 71.0 0.802
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Table 5. Cont.

Method and Data Window Size for
Ensemble Average

Threshold
UA (%) PA (%) Kappa

α β

Proposed method
with VV/VH

7 × 14 pixels 0.16 –0.04 90.2 67.3 0.765
10 × 20 pixels 0.17 –0.04 93.2 68.9 0.787
14 × 28 pixels 0.18 –0.04 94.8 69.7 0.799

6SD method
with POLSAR

7 × 14 pixels 0.21 –0.06 83.2 67.9 0.741
10 × 20 pixels 0.26 –0.07 90.5 70.2 0.786
14 × 28 pixels 0.30 –0.07 92.3 71.8 0.803

UA: User’s accuracy (precision) and PA: Producer’s accuracy (recall).

3.2. Comparison to 6SD Method at Other Study Sites
Figures 3–5 show images comparing the performances of the proposed method and 6SD method

at the Ucayali River, Kalimantan, and the Congo Basin. In the RGB images of the two methods,
the green pixels, which indicated predominant volume scattering power, were roughly consistent
with the visual interpretation of the Planet/Dove images regardless of the study sites. In particular,
Figure 3 shows that the distribution of forest and non-forest areas around the river were almost
identical in both RGB images. In Figure 4, the oil palm plantation was not color-coded as green in
both RGB images. The blue and red pixels in the 6SD RGB images corresponded to the magenta
pixels in the RGB images of the proposed method because the surface and double-bound scattering
powers in the 6SD method were treated as the ground scattering power by the proposed method.
Moreover, both forest maps mostly matched the pixels classified as forest in the Planet/Dove images,
indicating good accuracy. Table 6 presents the consistency between the proposed method and 6SD
method at the Ucayali River, Kalimantan, and the Congo Basin. The PA was over 90% regardless of
the transmission polarization and study sites, which indicates that the proposed method correctly
classified pixels that the 6SD method classified as forest. In general, the UA and Kappa were over
80% and 0.80, respectively, regardless of the transmission polarization and study sites. One outlier
was when the proposed method used the VV/VH data at the Ucayali River. In this case, the proposed
method incorrectly classified pixels as forest that the 6SD method classified as non-forest, which
reduced the Kappa value to below 0.70. This commission error occurred in flooded forest pixels that
were red in the 6SD RGB image. These results suggest that the proposed method and 6SD method
had comparable forest classification performances across the study sites except for flooded forests
using VV/VH data.

Table 6. Consistency between the proposed method and 6SD method using a window size of 10 × 20
pixels at Ucayali River, Kalimantan, and the Congo Basin.

Site Subarea Acquisition Date Threshold α UA (%) PA (%) Kappa

Proposed method with HH/HV

Ucayali River – 16 April 2016 0.14 98.3 97.1 0.867

Kalimantan
A

9 January 2016 0.14 92.1 89.9 0.875

29 October 2016 0.13 87.4 95.4 0.859

B
8 December 2014 0.13 95.7 98.9 0.844

27 April 2015 0.13 95.6 98.8 0.848

Congo Basin
A

8 November 2014 0.13 94.9 98.9 0.861

7 May 2016 0.13 94.6 98.4 0.865

B
8 November 2014 0.14 85.2 91.1 0.838

7 May 2016 0.13 81.1 96.4 0.843
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Table 6. Cont.

Site Subarea Acquisition Date Threshold α UA (%) PA (%) Kappa

Proposed method with VV/VH

Ucayali River – 16 April 2016 0.16 92.2 99.5 0.682

Kalimantan
A

9 January 2016 0.13 86.8 95.1 0.869

29 October 2016 0.13 85.4 95.6 0.842

B
8 December 2014 0.13 94.6 98.8 0.806

27 April 2015 0.13 94.1 98.9 0.801

Congo Basin
A

8 November 2014 0.13 94.0 99.1 0.839

7 May 2016 0.13 93.8 98.3 0.845

B
8 November 2014 0.14 81.1 90.3 0.801

7 May 2016 0.13 78.1 95.3 0.814

UA: User’s accuracy (precision) and PA: Producer’s accuracy (recall).
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with POLSAR data acquired on 16 April 2016 and a window size of 10 × 20 pixels. (a) Mosaic image 
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Figure 3. Forest maps of Ucayali River in the Amazon using the proposed method and 6SD method
with POLSAR data acquired on 16 April 2016 and a window size of 10 × 20 pixels. (a) Mosaic image
acquired by Planet/Dove from June to November 2016. The white rectangle shows the observation
area of PALSAR-2. (b) 6SD RGB image: double-bounce scattering is in red, volume scattering is in
green, and surface scattering is in blue. (c) Forest map using the 6SD method. (d) RGB image of the
proposed method: ground scattering is in red and blue, and volume scattering is in green. (e) Forest
map using the proposed method.
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Figure 4. Forest maps of Kalimantan in Indonesia using the proposed method and 6SD method with 
the POLSAR data acquired on 29 October 2016 and a window size of 10 × 20 pixels. (a) Mosaic image 
acquired by Planet/Dove from June to November 2016. The white rectangle shows the observation 
area of PALSAR-2. (b–e) Same as in Figure 3. The white dotted rectangle shows the oil palm plan-
tation. 

 
Figure 5. Forest maps of the Congo Basin in the Republic of the Congo using the proposed method 
and 6SD method with the POLSAR data acquired on 7 May 2016 and a window size of 10 × 20 pixels. 

Figure 4. Forest maps of Kalimantan in Indonesia using the proposed method and 6SD method with
the POLSAR data acquired on 29 October 2016 and a window size of 10 × 20 pixels. (a) Mosaic image
acquired by Planet/Dove from June to November 2016. The white rectangle shows the observation area
of PALSAR-2. (b–e) Same as in Figure 3. The white dotted rectangle shows the oil palm plantation.

3.3. Comparison to Vegetation Indices
Table 7 presents the forest classification performance at Rio Branco using the RFDI and RVI.

The reference data are the same ones used in Section 3.1.1 and are summarized in Table 2. The
forest classification performances were similar for both indices regardless of the ensemble average
window size and transmission polarization. The commission error increased in both indices using
VV/VH data. The reason is that the VV power was lower than the HH power in the pixels where the
commission error occurred, and both indices resulted in the same value as the forests even though the
VH power decreased. From Tables 4 and 7, the proposed method showed higher performance than
the RFDI and RVI and had robustness that did not degrade with VV/VH data. Figure 6 shows the
forest and non-forest distributions of the volume scattering power derived by the proposed method,
RFDI, and RVI using HH/HV data and a window size of 10 × 20 pixels. The reference data were
used as the forest and non-forest pixels. Among these distributions, the volume scattering power
showed a sharp peak at 0.23 and a smaller overlap between forest and non-forest distributions. These
distributions support that the proposed method has a superior forest classification performance
compared to the vegetation indices.

3.4. Application to Actual Dual-Polarization Data
Figure 7 shows the forest map generated at Altamira using the proposed method and JAXA FNF.

Note that the forest map generated by the proposed method was based on HH/HV data acquired
on April 4, 2019, a window size of 10 × 20 pixels, and a threshold α value of 0.16 as given in Table 4.
The JAXA FNF was produced in 2018. The forest map generated by the proposed method had less
salt-and-pepper noise, and its forest pixels showed good agreement with the forest pixels (>90%
crown cover) of JAXA FNF. The non-forest pixels in the forest map generated by the proposed method
(red arrows) were confirmed by Planet/Dove mosaic images to be deforested in 2019. The forest
pixels with 10–90% crown cover in JAXA FNF were often at the boundary between forests (>90%
crown cover) and non-forests, and some were classified as non-forests in the forest map generated
by the proposed method. In this case, the percentage of forest in the ensemble average window
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decreased, which decreased the volume scattering power. Future work will involve improving the
proposed method to clearly distinguish forests with a low canopy cover from non-forests.
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shows the observation area of PALSAR-2. (b–e) Same as in Figure 3.

Table 7. Forest classification performance with vegetation indices at Rio Branco.

Method and Data
Window Size for

Ensemble Average
Threshold

UA (%) PA (%) Kappa
α1 α2

RFDI with HH/HV
7 × 14 pixels 0.34 0.61 95.6 97.2 0.933

10 × 20 pixels 0.34 0.61 96.0 97.7 0.940
14 × 28 pixels 0.38 0.60 97.1 97.0 0.946

RFDI with VV/VH
7 × 14 pixels 0.38 0.58 86.0 96.8 0.824

10 × 20 pixels 0.40 0.57 88.2 95.6 0.840
14 × 28 pixels 0.42 0.57 88.8 96.9 0.857

RVI with HH/HV
7 × 14 pixels 0.79 – 96.2 96.7 0.933

10 × 20 pixels 0.79 – 96.4 97.2 0.940
14 × 28 pixels 0.79 – 96.7 97.5 0.946

RVI with VV/VH
7 × 14 pixels 0.85 – 86.9 95.6 0.825

10 × 20 pixels 0.85 – 87.3 96.9 0.840
14 × 28 pixels 0.86 – 88.7 96.9 0.857

UA: User’s accuracy (precision) and PA: Producer’s accuracy (recall).
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Method and Data Window Size for 
Ensemble Average 

Threshold UA (%) PA (%) Kappa 𝜶𝟏 𝜶𝟐 

RFDI with HH/HV 
7 × 14 pixels 0.34 0.61 95.6 97.2 0.933 

10 × 20 pixels 0.34 0.61 96.0 97.7 0.940 
14 × 28 pixels 0.38 0.60 97.1 97.0 0.946 

RFDI with VV/VH 
7 × 14 pixels 0.38 0.58 86.0 96.8 0.824 

10 × 20 pixels 0.40 0.57 88.2 95.6 0.840 
14 × 28 pixels 0.42 0.57 88.8 96.9 0.857 

RVI with HH/HV 
7 × 14 pixels 0.79 – 96.2 96.7 0.933 

10 × 20 pixels 0.79 – 96.4 97.2 0.940 
14 × 28 pixels 0.79 – 96.7 97.5 0.946 

RVI with VV/VH 
7 × 14 pixels 0.85 – 86.9 95.6 0.825 

10 × 20 pixels 0.85 – 87.3 96.9 0.840 
14 × 28 pixels 0.86 – 88.7 96.9 0.857 
UA: User’s accuracy (precision) and PA: Producer’s accuracy (recall). 

Figure 6. Distributions of the (a) volume scattering power, (b) RFDI, and (c) RVI using the forest and
non-forest pixels of the reference data. These values were derived using HH/HV data and a window
size of 10 × 20 pixels.
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The proposed method was applied for deforestation detection at Altamira using ac-
tual dual-polarization data acquired on 4 April 2019 and 12 May 2022. The window size 
was 10 × 20 pixels, and the threshold values for 𝛼 and 𝛽 were set to 0.17 and –0.04, re-
spectively, as given in Table 5. Figures 8 and 9 show examples of deforestation that could 
and could not be detected by the proposed method, respectively. The detected deforesta-
tion area in Figure 8a–c clearly indicated logging and the RGB image based on scattering 
power (Figure 8d,e) showed a change from green to magenta in the deforested area. This 
is evidenced by the scattering power components before and after logging in Figure 8e, 
which shows that the volume scattering power was dominant before logging whereas the 
ground scattering power increased after logging. In the forest degradation area not 

Figure 7. Forest map of Altamira using the proposed method with actual dual-polarization data
acquired on 4 April 2019. (a) Forest map generated by the proposed method. (b) JAXA Global
PALSAR-2 Forest/Non-Forest map in 2018. The white rectangle shows the observation area of dual-
polarization data. The red arrows indicate deforestation in 2019 as visually confirmed by Planet/Dove
mosaic images.

The proposed method was applied for deforestation detection at Altamira using actual dual-
polarization data acquired on 4 April 2019 and 12 May 2022. The window size was 10 × 20 pixels,
and the threshold values for α and β were set to 0.17 and –0.04, respectively, as given in Table 5.
Figures 8 and 9 show examples of deforestation that could and could not be detected by the proposed
method, respectively. The detected deforestation area in Figure 8a–c clearly indicated logging and
the RGB image based on scattering power (Figure 8d,e) showed a change from green to magenta in
the deforested area. This is evidenced by the scattering power components before and after logging
in Figure 8e, which shows that the volume scattering power was dominant before logging whereas
the ground scattering power increased after logging. In the forest degradation area not detected by
the proposed method, Figure 9e,f show that the volume scattering power remained high even after
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logging. Figure 9b,c show sparse trees in the area after logging, which indicates that the volume
scattering power did not decrease after logging because of the remaining sparse trees. A similar
omission error was observed with the 6SD method [8]. Future work will involve improving both
methods to detect forest degradation.
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Figure 8. Deforestation at Altamira detected by using the proposed method with actual dual-
polarization data acquired on 4 April 2019 and 12 May 2022. The yellow outline shows the area
detected by the proposed method. Mosaic images acquired by Planet/Dove in (a) June–November
2019 and (b) April 2022. (c) Drone image of the detected area acquired in February 2022. RGB images
generated by the proposed method using dual-polarization data acquired on (d) 4 April 2019 and
(e) 12 May 2022. Ground scattering is indicated in red and blue, and volume scattering is in green.
(f) Box and whisker plot of the scattering power components using pixels in the yellow outline. The
whiskers extend to 1.5 times the interquartile range.

4. Discussion
The proposed method was evaluated using window sizes of 7 × 14, 10 × 20, and 14 × 28 pixels.

The trade-off between spatial resolution of the forest map and accuracy of the forest classification is
an important issue for forest monitoring. Table 8 presents the forest classification performance of the
proposed method using a window size of 3 × 6 pixels. Figure 10 also shows box and whisker plots
of the scattering power components based on the forest pixels of the reference data. The proposed
method showed not only comparable UA but also fewer omission errors than the 6SD method at
this window size. However, at this window size, the surface and double-bounce scattering powers
had approximately the same power as the volume scattering power for the 6SD method with the
POLSAR data, whereas the volume scattering power remained higher than the other powers for the
proposed method. This suggests that the distribution of scatterers was not uniform in this window
size, so the proposed method overestimated the volume scattering power because it assumes that the
probability density function only has a uniform distribution. To avoid overestimating the volume
scattering power with the proposed method, the window size of the ensemble average should be at
least 7 × 14 pixels.
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Figure 9. Forest degradation at Altamira not detected by using the proposed method with actual
dual-polarization data acquired on 4 April 2019 and 12 May 2022. The yellow outline shows the
deforestation area based on visual interpretation of Planet/Dove mosaic images. (a–f) Same as in
Figure 8.

Table 8. Forest classification performance using a window size of 3 × 6 pixels at Rio Branco.

Method and Data Threshold α UA (%) PA (%) Kappa

Proposed method
with HH/HV 0.10 97.5 98.0 0.959

Proposed method
with VV/VH 0.11 98.0 98.2 0.964

6SD method
with POLSAR 0.11 97.4 59.0 0.592

UA: User’s accuracy (precision) and PA: Producer’s accuracy (recall).

The scattering powers generated by the proposed method showed a similar variation to a sigma-
naught in mountain regions, where it is stronger at the mountain slope toward SAR line-of-sight
and weaker at the mountain slope parallel to SAR line-of-sight. In Figure 4d, the prominent bright
pixels at bottom right located at a mountain slope towards the sensor and the dark pixels near those
pixels locate at the opposite slope. Because the dark pixels had lower scattering power than that of
pixels located at flat area, a part of the mountain forests was not classified as forest in Figure 4e. This
suggests that slope correction [23] should be applied to forest classification in high-elevation areas.
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Figure 10. Box and whisker plots of the scattering power components using the forest pixels of the
reference data: (a) proposed method with HH/HV data, (b) proposed method with VV/VH data,
and (c) 6SD method with POLSAR data. The whiskers extend to 1.5 times the interquartile range.
In (c), Po is the summation of the helix scattering, oriented dipole scattering, and compound dipole
scattering powers.

5. Conclusions
We developed a scattering power decomposition method for more accurate monitoring of

tropical forest using dual-polarization data. The proposed method decomposes the covariance matrix
obtained from dual-polarization data into three scattering powers: ground scattering, volume scatter-
ing, and helix scattering. We validated the proposed method by using simulated dual-polarization
data. The proposed method showed an excellent forest classification performance with both the
UA and PA above 98% at a window size greater than 7 × 14 pixels regardless of transmission po-
larization. It also showed a comparable deforestation detection performance to the 6SD method.
The proposed method can contribute to rapid deforestation detection with the same accuracy as the
6SD method because dual-polarization data are observed more frequently. The proposed method
showed a better and more robust forest classification performance than the RFDI and RVI regardless
of the transmission polarization. When we applied the proposed method to actual dual-polarization
data at Altamira, it generated a forest map and demonstrated deforestation detection with high
accuracy. The proposed method can be applied to monitoring tropical forests using not only future
dual-polarization data but also accumulated data that have not been fully utilized.

Both the proposed method and 6SD method showed omission errors when detecting forest
degradation because the volume scattering power did not decrease after logging when sparse trees
remained. Future work will involve improving the detection performance of forest degradation
by both methods. An application to other SAR data is also planned for future work because the
proposed method has no limit to SAR frequency and is applicable to not only L-band data but also to
C-band data.
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