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Abstract: Early production warnings are usually labor-intensive, even with remote sensing techniques
in highly intensive but fragmented growing areas with various phenological stages. This study used
high-resolution unmanned aerial vehicle (UAV) images with a ground sampling distance (GSD) of
3 cm to detect the plant body of pineapples. The detection targets were mature fruits mainly covered
with two kinds of sun protection materials—round plastic covers and nets—which could be used
to predict the yield in the next two to three months. For round plastic covers (hereafter referred
to as wearing a hat), the Faster R-CNN was used to locate and count the number of mature fruits
based on input image tiles with a size of 256 × 256 pixels. In the case of intersection-over-union
(IoU) > 0.5, the F1-score of the hat wearer detection results was 0.849, the average precision (AP)
was 0.739, the precision was 0.990, and the recall was 0.743. We used the Mask R-CNN model for
other mature fruits to delineate the fields covered with nets based on input image tiles with a size of
2000 × 2000 pixels and a mean IoU (mIoU) of 0.613. Zonal statistics summed up the area with the
number of fields wearing a hat and covered with nets. Then, the thresholding procedure was used to
solve the potential issue of farmers’ harvesting in different batches. In pineapple cultivation fields,
the zonal results revealed that the overall classification accuracy is 97.46%, and the kappa coefficient
is 0.908. The results were expected to demonstrate the critical factors of yield estimation and provide
researchers and agricultural administration with similar applications to give early warnings regarding
production and adjustments to marketing.

Keywords: object detection; sematic segmentation; zonal statistics; yield estimation

1. Introduction

Pineapples are one of the most critical economic fruit crops for many tropical areas.
The top three countries in the world for pineapple production are the Philippines, China,
and Costa Rica [1]. However, the weather quickly affects the quality and yield of pineapples,
resulting in price and trade revenue fluctuation in many countries. With the development
of agricultural technology, farmers can adjust the harvest period of crops following their
needs and the weather conditions; this adjustment also increases the difficulties related
to harvest time and yield survey for competent authorities. The primary pineapple yield
survey method for the authorities is to request field investigators to conduct sampling
visits to obtain farmers’ planting areas and estimated yield. If the weather conditions
permit, surveys can be conducted by remote sensing techniques such as equipping sensors
on satellites and manned or unmanned aerial vehicles [2,3]. However, even with remote
sensing techniques, the image interpretation task may also be labor-intensive. Especially in
highly intensive but fragmented growing areas with various phenological stages, the image
interpretation of fruit development close to harvest time needs high-spatial-resolution
images and professionally trained experts.

In recent years, based on the development of machine learning, object detection and
segmentation have also become two major research topics. Detection and segmentation can
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be achieved by extracting image features containing shape, texture, and spectral information
from multispectral bands [4–7]. Deep learning is a branch of machine learning developed
based on several processing layers containing linear and nonlinear transformations, and
it may be used as a reference for monitoring the cultivation area of pineapples as well as
other crops in different growing seasons along with yield estimation [8,9]. Deep learning
is a branch of machine learning whose algorithms are artificial neural networks (ANN)
that mimic the functions of the human brain [10]. DNN can learn and summarize the
characteristics of data in a statistical way based on myriad data with the opportunity to
surpass the accuracy of human interpretation [11]. Convolutional neural networks (CNN),
on the other hand, add procedures such as convolution, pooling, and flattening before the
input layer and then enter the fully connected layers that are common in general ANN to
construct prediction models [12].

There are many applications of CNN in remote sensing image classification, ranging
from spatial resolution beyond tens of meters to centimeter-level aerial or UAV imagery.
CNN can process and interpret remote sensing imagery including single-band panchro-
matic imagery, multispectral imagery above three bands, or hyperspectral imagery with
hundreds of bands. For example, if the spatial and temporal adaptive reflectance fusion
model (STARFM) is used to fuse Landsat 8 imagery with a spatial resolution of 30 m and
MODIS imagery with a spatial resolution of 250–500 m, we can simulate daily imagery
with spatial resolution of 30 m. In doing so, STARFM could generate continuous phenolog-
ical parameters such as normalized difference vegetation index (NDVI) and land surface
temperature (LST). For paddy rice, which has a relatively homogeneous spatial pattern,
patch-based deep learning ConvNet could be applied to extract information helpful for
distinguishing paddy rice and other crops [13]. Concerning hyperspectral imagery, the
large number of bands might burden the hardware; thus, a previous study was initiated
to develop minibatch graph convolutional networks (GCN) and further train large-scale
GCN via small batches. Minibatch GCN would be able to deduce out-of-sample data
performance without retraining the network and improving classification. Furthermore,
GCN and CNN could be combined to extract different hyperspectral features to obtain key
information for distinguishing different ground features in urban areas [14]. Regarding
aerial photographs, which have higher spatial resolution by being provided with detailed
information of texture and spatial correlation, CNN could identify enough features, even if
there are limited visible/near-infrared bands. Thus, the previous study added the results of
principal component analysis in aerial photographs to classify 14 types of forest vegetation
with VGG19, ResNet50 and SegNet [15]. If very-high-resolution imagery (<0.5 mm/pixel)
is available, pixel-level detection such as Alternaria solani lesion-counting in potato fields
can be achieved with the U-Net model [16].

Depending on the purpose, CNN can process images through two fundamental
perception methods: object detection and semantic segmentation [17]. The target detection
method of deep learning is widely used, including malaria target detection [18], face
detection [19], vehicle detection [20], and marine target detection [21]. In the “You Only
Look Once” (YOLO) series, the Regions-Convolutional Neural Network (R-CNN), Fast
R-CNN, and Faster R-CNN are widely known. The advantage of the YOLO series is
that its recognition speed is fast and can meet immediate requirements. The application
examples include using the YOLO version 3 (YOLOv3) model with four scale detection
layers (FDL) [22], YOLOv5 to detect internal defects in asphalt pavements with 3D ground-
penetrating radar (GPR) images [23], or YOLOv7 to detect and classify road surface damage
with Google Street View images [24]. In contrast, the speed of the R-CNN series is slower,
and the advantage is that the commission and omission recognition error rate may be
lower [25]. Several previous studies have proposed related applications in fruit tree and
fruit detection—for example, the R-CNN improved from the AlexNet network that was
applied to detect the branches of apple trees in pseudo-color and depth images. In this
state, the average recall and accuracy can reach 92% and 86%, respectively, when the R-
CNN confidence level of the pseudo-color image is 50% [26]. MangoYOLO, improved and
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developed from YOLOv3 and YOLOv2 (tiny), was designed to achieve fast and accurate
detection of mango fruit in images of tree canopies, and the F1-score also reached above
0.89 [27]. With the advantages of fast and real-time detection, MangoYOLO has also been
revised and used in real-time videos for fruit-detection applications [28]. With regard to
Faster R-CNN, it has also been used to detect four different states of apple fruit with an
average precision of 0.879 [29].

In detecting other fruits, such as mature and semi-ripe tomato counting, the previous
study collected images and synthetic images as training samples. It then proposed an
improved method of Inception-ResNet, which effectively improved the counting speed
under the influence of shadows [30]. According to the different kiwifruit states (including
occluded fruit, overlapping fruit, adjacent fruit, and separated fruit), it was concluded
that the recognition rate of kiwifruit is 92.4% with Faster R-CNN [31]. Some potential
applications of this technology include improving automated harvesting technology and
using it for non-performing rate detection or pest inspection. For example, agricultural pest
detection was proposed to reduce blind agricultural drug use to compensate for the lack of
agricultural workers’ knowledge of pests and diseases [32]. However, the aforementioned
agricultural application documents are mostly images taken on the ground, and a small
proportion of them were used for aerial photos.

Deep learning usually requires many samples to be effective [33]. For this, images are
sometimes cropped into hundreds of smaller samples, and the target has to be manually
labeled. A similar way of working can be seen in the study of pineapple detection with
UAV images related to this study [2]. However, even with deep learning models such as
Keras-RetinaNet, it is still necessary to shoot high-resolution UAV images at a low altitude
of about 70 m to calculate the number of pineapple plants. The anchor box calculation
of object detection includes the probability of whether or not it is a target. The detection
result may be more likely to appear in outside areas such as fruit leaves, branches, and
even other plants with higher heights, which interferes with the identification performance
and computing time [2]. The situation of occlusion interference may be more difficult in
aerial photos, and so it is necessary to improve it in combination with other methods, such
as semantic segmentation, which is one of the options.

Semantic segmentation can improve the problem when object detection is disturbed by
irrelevant objects. It can be achieved by being labeled in pixel units and obtaining category
labels for different parts of objects in one image [34]. For example, DeepLab and region
growing refinement (RGR) based on CNN have been used to detect flowers of various
kinds of fruits with different lighting conditions, background components, and image
resolution [35]. Another application was mango detection by developing MangoNet based
on CNN and architecture involving fully convolutional networks (FCN), which can also be
used in different scales, shading, distance, lighting, and other conditions [36]. The Mask
R-CNN combines the two-stage model of Faster R-CNN, and the feature pyramid network
(FPN) method was included to make predictions using feature maps with high feature
levels in different dimensions. Mask R-CNN also improved the shortcomings of a region of
interest (ROI) pooling in Faster R-CNN and caused the precision of the bounding box and
object positioning to reach the pixel level. For the improvement of the accuracy of object
boundary description, Mask R-, which includes the concept of FCN and CNN, can achieve
perfect instant segmentation of objects [37]. In a previous study on potato plants and
lettuces for single plant segmentation, Mask R-CNN achieved a mean average precision
(mAP) of 0.418 for potato plants and 0.660 for lettuce. In the detection, the multiple object
tracking accuracy (MOTA) of potato plants and lettuces can also reach 0.781 and 0.918,
respectively [38].

From the literature analysis presented above, it can be seen that semantic segmen-
tation can classify pixels in images, identify the categories and positions in photos, and
improve the problem of object detection being impeded by irrelevant objects. Therefore,
the objectives of this study were to: (1) use object detection to detect pineapple fruit; (2) use
semantic segmentation to distinguish the distribution of pineapples and non-pineapples;
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(3) combine the results of detection and segmentation to gain detailed yield estimation.
Based on the experience of previous studies [2,3], we used high-resolution unmanned aerial
vehicle (UAV) images with a ground sampling distance (GSD) at the centimeter level to
detect the plant body of pineapples. The results are expected to grasp the critical factors
of yield estimation and provide researchers and agricultural administration with similar
applications to give early warnings regarding production and adjustments to marketing.

2. Materials and Methods
2.1. Study Area

The study area Chiayi County in Central Taiwan is representative of the tropical and
subtropical climate pineapple production area. In FAOSTAT 2020, Taiwan ranked 8th
in yield at 53,196 kg/ha, 18th in production at 419,028 tons, and 28th in harvest area at
7877 ha [1]. According to the Agricultural Situation Report Resource Network in 2020 [39],
Chiayi County has the highest yield in Taiwan, reaching 56,130 kg/ha.

Chiayi County is the transition zone between the tropical and subtropical monsoon
climates [40]. The main producing area of pineapples is the plain area, and the monthly
rainfall exceeds 200 mm, mainly between June and September. Months with a rainfall
below 50 mm are concentrated from October to February, and the month with the lowest
rainfall is November, at only about 21 mm. The mean annual precipitation was 1821.6 mm
during the period of 1991 to 2020. In terms of monthly average temperature, the annual
average monthly temperature is above 15 ◦C, and monthly average temperatures above
20 ◦C reach up to 9 months, indicating a long summer and harsh winter climate. Regarding
the monthly average temperature changes, the highest is 28.9 ◦C, and the lowest is 16.8 ◦C,
so it is suitable for the growth of pineapples.

Based on the pineapple yield per hectare announced by the Agricultural Situation
Report Resource Network in 2020, and the prohibited and restricted navigation range an-
nounced by the Civil Aviation Administration in Taiwan, we overlaid the main agricultural
areas with pineapple on the 372.060 ha selected study area that allowed aerial photography
(Figure 1). The total planting area of pineapples in the study area is 152.387 hectares. The
base image is the UAV image with GDS 3 cm and red, green and blue bands (RGB image),
taken on 4 April 2021.

The main pineapple species in the study area is Ananas comosus. In different pheno-
logical growth stages, the growth patterns can be divided into the plant, growing, forcing,
open heart, flowering, mature, harvest, and sucker stages [41]. Figure 2 presents the growth
period of pineapples in this study area, which takes about 18 months. In general, each
field could be harvested once every two years or even twice every three years with sim-
ilar frequency. The pineapple fruit is primarily available from March through July and
other sporadic months. Considering the situation, farmers may adjust the production
period by batching, forcing flowers to maintain the continuous production of pineapples
in the field. The batching process can also avoid problems such as lack of work or market
price fluctuations.

After interviews with local farmers, it was found that the “forcing stage” is the key to
ripening pineapple fruit. The so-called forcing stage refers to artificially forcing flowers,
mainly using calcium carbide and ethephon. More importantly, pineapples in the “mature”
and “harvest stages” are more prone to sunburn after the forcing stage because the local
sunshine hours are long and the intensity is high. There are various sun protection methods,
such as covering with round plastic covers (the yellow plastic materials in a mature stage,
shown in Figure 2) or covering with nets [42]. According to the descriptions from the local
farmers, these kinds of protection are maintained for about two to three months. In this
study, we call the fruits at this stage “sunscreened mature fruits.” If farmers cover fruits
with a round plastic cover, there is a bonus effect on the taste. Hence, farmers mostly
choose this time-consuming and labor-intensive method based on quality management
requirements. If farmers cover the fruit with a black net, it can reduce working time and
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save labor; this makes the taste of the fruit slightly worse. Because covering with nets can
reduce part of the work cost, this method of sun protection is also used in some fields.

If the number of plants per unit area of sunscreened mature fruits can be calculated,
the yield in the next two to three months can be established. Therefore, this study takes the
sunscreened mature fruit as the primary research object and combines object detection and
semantic segmentation to estimate the current pineapple yield.
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2.2. Materials

With the aim of providing more practical feasibility for a larger scale in other areas
worldwide, this study took 3 cm-spatial resolution UAV images as the test target, obtained
on 4 April 2021. The camera model used was SONY ILCE-7RM2, and each photo was
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recorded as an 8-bit RGB image with a pixel size of 7952 × 5304. The UAV was roughly
200 m above the ground when shooting in the air, and the coverage rate of each vertical shot
exceeded more than 70%. The Pix4D Mapper image processing software was then used to
solve the internal and external orientation parameters of the automatically matched feature
points in the image to produce the digital terrain model for the final orthorectification
processing, which can be used for subsequent target detection and semantic segmentation.
The final GSD of the mosaicking image was better than 3 cm (inclusively).

During the shooting by the UAV, ground investigators were dispatched to the local area
to record the growth status of pineapples and farmers’ farming habits, which could facilitate
the subsequent training and testing of sample construction for deep learning models. The
investigators marked the pineapple planting location and phenological growth pattern of
each cultivation field on the cadastral map based on Figure 2. Figure 3 shows the in situ
condition of mature fruits covered with different materials, which were our main targets of
yield estimation with UAV images.

The concepts above in Section 2.1 illustrates that the yield in the next two to three
months can be grasped if the number of mature sunscreen fruits can be calculated. There-
fore, in addition to investigating pineapple planting areas and growth patterns, we also
weighed mature fruits by randomly selecting the sample cultivation fields. The number
of weighed pineapples varied depending on the number of pineapples that farmers had
not yet sorted, graded, and packaged. The weighed fruit number ranged from 50 to 70.
Combined with official records, the total number of sampled cultivation fields was 36 (green
dots in Figure 1). The average weight of pineapples in the sampling field was 1.507 kg, and
the standard deviation was 0.246 kg.
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2.3. Object Detection

As in Figure 3, there were three kinds of mature sunscreened fruits in our study
area. To simplify the description, we refer to mature fruits covered with “plastic sheets of
different colors” (Figure 3A) and “yellow plastic covers” (Figure 3B) as “hats.” Because
hats can more clearly identify each fruit, performing a more accurate yield estimation is
possible. The characteristics of fruits “covered with nets” (Figure 3C) are different from the
hats and will be discussed in the next Section 3. In this study, the object detection method,
Faster R-CNN, was adopted to calculate the number of hats.

The model of Faster R-CNN can be divided into four parts (Figure 4):

(a) Convolutional layers;
(b) Region proposal networks (RPN);
(c) ROI pooling;
(d) A classifier, as described in the following Section 2.4.
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Regarding convolutional layers, the convolution operation extracted features from the
image, such as the object boundary and shape of the fruit on the image. The convolution
kernel was used to inspect the local area and perform a dot product operation to obtain
the eigenvalues of the area. Nevertheless, the convolution kernel did not operate with a
whole image to prevent an excessively high amount of calculation. It is usually set on two
parameters, kernel size and stride, for the convolution kernel to slide up, down, left, and
right through an image. The extracted feature maps were processed in the subsequent RPN
and fully connected layers, and ResNet50 was used as the backbone.

A moving window was generated on the last convolutional layer to generate bounding
boxes similar to the hats. At each moving window position, multiple bounding boxes were
predicted simultaneously, and the probability score of each target object was estimated.
The center of the moving window was the anchor. A previous study observed the impact
of anchors with different aspect ratios and scale combinations on performance [43]. We
referred to it and used three aspect ratios and three scales to generate nine anchor boxes. We
assigned each anchor a binary class label (hat or non-hat) for training the RPN. We assigned
a positive label based on the hats: (1) the anchor overlapped the ground truth box with
the highest intersection over union (IoU), or (2) the IoU overlap ratio of the anchor point
and any ground-truth box was higher than 0.7. We removed all of the moving windows,
including blank margin areas in the image, to prevent a high amount of calculation. Next,
the non-max suppression (NMS) was used to filter all remaining windows, and the IoU
did not exceed 0.7. The final goal was to control the anchor boxes to about 2000. These
2000 boxes were not calculated every epoch; instead, we randomly selected 256 positive
samples (IoU > 0.7) and 256 negative samples (IoU < 0.3) as mini-batch data. A fully
connected network was then inputted to obtain the probability of an object, the probability
of not containing an object, the XY coordinate position, and the width and height of the
prediction area as the proposed bounding box. Briefly, the purpose of RPN was to improve
operational efficiency.

RoI pooling then collected bounding boxes proposed by RPN and calculated proposal
feature maps to classifiers. With two fully connected networks, the class of each object
was exported through the normalized exponential function (softmax) and the region of
that with linear regression. These procedures made the bounding box more accurate, and
finally, Faster R-CNN achieved hat detection with its coordinate position.

On the other hand, different hat sizes may have different effects when training the
Faster R-CNN model. Compared with smaller objects, larger objects lead to more significant
errors. To reduce these effects, normalization was used to improve the loss calculation of
the width and height of the bounding box. The improved loss function is as follows:

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) +h

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ), (1)

where i is the anchor of the mini batch, pi is the predicted probability of the anchor, p∗i is
the real label (one for a positive anchor and zero for the negative one), ti is the coordinate
representing the predicted bounding box, t∗i is the ground-truth box associated with the
positive anchor, and Lcls is the loss function for two categories (hat and non-hat). For
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regression loss, Lreg
(
ti, t∗i

)
= R

(
ti − t∗i

)
, R is the robust loss function, and p∗i Lreg indicates

that the regression loss is only activated for positive anchors (p∗i = 1). The outputs of cls
and reg consist of {pi} and {ti}, respectively. The normalized Ncls and Nreg are weighted
by the balance parameter h. By default, we set h = 10, so the weights of cls and reg are
roughly the same.

The UAV images used in this study were orthorectified during the preprocessing,
as there are few available datasets with an orthographic view of pineapples with hats.
Therefore, we established a training dataset according to the study area’s spatial distribution
and patterns of fruits with hats. In other words, we tried to disperse the samples as much
as possible in different areas and select hats of various shades of color and materials. To
label each pineapple in every training image, we applied the built-in Label Objects for Deep
Learning tool in ArcGIS Pro 2.8 to label the bounding box of the hats in the image, and
the corresponding PASCAL VOC annotation files were generated after the labeling. The
training sample consisted of image tiles of a fixed size. The UAV images were cropped to
256 × 256 pixels with a stride of 128 for each tile. Each tile covered several fruits with hats.
We set the training to verification sample ratio as 6:4, and the max epochs were 300.

When the IoU between the machine-predicted bounding box and the manually labeled
bounding box was more significant than 0.5, the hat was considered correctly detected and
regarded as a true positive. However, errors can occur if there are multiple predictions
in the same local area or authentic multiple hat clusters in the same area. Each machine-
predicted and human-labeled box is calculated only once to avoid this problem. If the
machine-predicted box is not included in the human-labeled box, it is a false positive.
Finally, after evaluating all predicted boxes and classifying them as true positives, false
positives or false negatives, the remaining set of annotated boxes were considered true
negatives.

The confusion matrix in Table 1 can calculate precision and recall. Precision is the
proportion of the target’s predicted target and shows whether the result is accurate when
the model predicts the target. A recall is the ratio of the actual target to what is predicted to
be the target and gives an idea of the model’s ability to find the target.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Table 1. Performance assessment of Faster R-CNN in this study.

Ground Truth

Hat Non-Hat

Faster R-CNN result
Hat True Positive (TP) False Positive (FP)

Non-hat False Negative (FN) True Negative (TN)

The F1-score is a commonly used indicator for evaluating the accuracy of a model.
The score takes both false positives and missed calls into account. It is the harmonic mean
of precision and recall. The maximum value is 1, and the minimum value is 0.

F1− score = 2× Precision× Recall
Precision + Recall

(4)

Since there is only one category of pineapple plant interpretation (whether hats are
detected), the average precision (AP) evaluation model can be used, which is also a standard
precision index. AP is the area under the precision–recall curve. Usually, we suppose that
the precision maintains a high value with the recall increase. In this case, the model can be
considered a good prediction model because the values of precision and recall are between
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0 and 1, so AP is also between 0 and 1. We used AP50 (APIoU = 0.5), AP75 (APIoU = 0.75), AP95
(APIoU=0.95) to access the accuracy.

AP =
∫ 1

0
p(r)dr (5)

2.4. Sematic Segmentation

As in Figure 3C, the third kind of mature sunscreened fruit in our study area was
covered with nets. Although detecting the fruit under nets is impossible, mapping the area
covered by the nets still contributes to yield estimation in the next two to three months.

The detection model for fruits covered with nets was built based on Mask Regions
with Convolutional Neural Networks (Mask R-CNN) [37]. Mask R-CNN combines object
detection and instance segmentation. It extends the existing network structure in Faster
R-CNN by adding mask branches and consequently can obtain pixel-level detection results.
Mask R-CNN can not only give each target object its bounding box but also mark whether
or not the pixel belongs to the object in the bounding box.

The convolutional layer used a kernel of a specified size and a stride to slide sequen-
tially from top to bottom and left to right to obtain each local feature in the image as the
input of the next layer. After the summation of each local area in the image was obtained,
the linear rectification function (rectified linear unit, ReLU) was used to output the eigen-
value and then was provided to the next layer for use. After the ReLU function processing,
a value less than 0 was output as 0, and a value greater than 0 was output directly. This
resulted in the feature map, and each point on the feature map could be regarded as the
feature of the area in the original image, which can be passed to the next pooling layer. The
following is the convolutional layer formula:

xl
j = f

(
∑m

k

(
xl−1

k ∗W l
kj

)
+ bl

j

)
, (6)

where * is the convolution operation, xl−1
k defines the l − 1st layer as the kth feature map,

xl
j defines the lth layer as the jth feature map, m is the number of input feature maps, W l

kj is

the weight also known as the kernel or filter, and bl
j is the error. f is the nonlinear activation

function where the ReLU function is used, and the following is the ReLU function formula:

f (x) = max(0, x) (7)

The feature maps generated by convolution were trained on RPN to generate boxes
similar to region proposals. A moving window was generated on the last convolutional
layer. The feature map predicted the boxes of multiple regional proposals at each moving
window position and estimated each proposal’s object or non-object probability score. These
candidate objects were then subjected to the pooling layer step, which reduced the spatial
dimensions and complexity. In this way, global features could be extracted along with
local features to reduce the parameters required by subsequent layers, thereby increasing
the efficiency of system operation. After the last convolution, the pooling layer generated
a size vector representing the output. Mask R-CNN used RoIAlign (Region of Interests
Align, RoIAlign) to replace the pixel bias problem in the original RoI pooling and sent these
outputs to fully connected layers and FCN, respectively. Next, they performed classification
and instance segmentation. The fixed-size feature map was obtained through RoIAlign and
sent to the detection network with different thresholds. The fully connected layer analyzed
the previous frame output target coordinate value, converted it into probability through the
softmax function, and outputted the result following the highest probability value category.
FCN slices the image into pixels and outputs a mask of objects so that boundaries can be
delineated along field edges by an overlay network. FCN is commonly used rather than
the traditional CNN. This is because classification is performed after obtaining feature
vectors of fixed range with fully connected layers. However, FCN changes all layers into
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convolutional layers so that the image’s dimensions can be divided into smaller ones to
achieve pixel-level classification [44]. The framework of Mask R-CNN in this study is
shown in Figure 5. The backbone used was ResNet101.
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Similar to Faster R-CNN, the UAV images used were orthorectified during the pre-
processing, while there are few available datasets with such an orthographic view of fruits
covered with nets. Therefore, we established a training dataset according to the study area’s
spatial distribution and patterns of fruits covered with nets. In other words, we tried to
disperse the samples as much as possible in different areas and select black nets of various
shades of color and materials. The irregular boundaries of nets for the training data were
delineated by Labelme software according to the actual growth pattern of pineapples and
stored in JSON format. The training sample consisted of image tiles of a fixed size. The
UAV images were cropped to 2000 × 2000 pixels with a stride of 1000 for each tile. The
2000 × 2000 pixels were decided based on the study area’s average width (about 20 m) of
cultivation fields. Each tile with 2000 pixels, i.e., 60 m, can cover at least two cultivation
fields covered with nets and other categories, which would be helpful for the machine to
delineate the irregular field boundaries. We set the ratio of training to verification samples
as 6:4, and the number of iterations was 300. The mean IoU (mIoU), AP50, AP75, and
AP95 [45,46] were used to evaluate the detection results for the nets. AP and IoU were
defined in Section 2.3. The following are the formulae of the mIoU:

mIoU = mean
(

TP
TP + FN + FP

)
(8)

Finally, zonal statistics were used to sum up the area covered with nets based on each
cadastral cultivation field to obtain the results. These results were also used to complement
the Faster and Mask R-CNN results to improve the detection accuracy of various mature
fruits. We also consider all land features including hat, net and background classes; the
results for zonal statistics, user’s accuracy, producer’s accuracy, overall accuracy, and kappa
coefficient were used for accuracy assessment [47]. The following are the formulae of the
above indices:

user′s accuracy =
xii
xi+
× 100% (9)

producer′s accuracy =
xii
x+i
× 100% (10)

overall accuracy =
∑k+1

i=1 xii

N
× 100% (11)

kappa coe f f icient =
N ∑k+1

i=1 xii −∑k+1
i=1 xi+·x+i

N2 −∑k+1
i=1 xi+·x+i

(12)
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where k indicates the number of classes in the confusion matrix, i.e., two classes including
net and hat, for a total of k + 1 classes (including a background class); xii stands for the
area correctly classified; xij is the area predicted to be the background but is actually a
positive label; xji is the area predicted to be the foreground but is actually a negative label;
xi+ represents the total area classified as class i; x+i denotes the total area of class i in ground
truth data; N indicates the total area of the study area.

2.5. Study Procedures

This study was divided into five parts to summarize the abovementioned materials
and methods (Figure 6).
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1. The first part involved the ground-truth data which were collected from the local
area, obtaining the spatial distribution of various growth patterns of pineapples, and
preliminarily establishing the growth stage of pineapples in the study area.

2. In the second part, we targeted hats (i.e., sunscreen mature fruits with plastic sheets
of different colors and yellow plastic covers in Figure 3A,B) as the basis for estimating
the yield per unit area. Because the shapes of hats are relatively consistent, the spatial
distance and correlation of each hat are both consistent, respectively, and Faster R-
CNN is a suitable tool for our purpose. We established corresponding training and
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validating samples in a ratio of 6050:4010 plants (approximately 6:4) for these kinds of
ripe pineapples.

3. In the third part, we targeted nets (Figure 3C) to map the area of other sunscreen
mature fruits. Dark nets have relatively consistent spectral and texture features, but
most of them are irregular, so Mask R-CNN with semantic segmentation capability
is an ideal model for our purpose. Similar to the Faster R-CNN model, we estab-
lished corresponding training and validating samples at a ratio of 1.53:1.02 in ha
(approximately 6:4) for ripe pineapples that covered the nets.

4. In the fourth part, the fruit detection results were corrected according to the zonal
statistics based on each cultivation field and thresholding. The zonal statistics opera-
tion calculates statistics on the number of hats and the area covered with nets within
each cultivation field. The thresholding procedure was used to solve the potential
issue of farmers’ harvesting in different batches.

5. The fifth part summarized the mature fruit planting area and estimated the study
area’s yield with interval estimation. Based on the detection results, the number of
fruits per unit area was calculated, supplemented by the random sampling on-site
and the official records of fruit weight in the study area.

The software and hardware environment of the proposed procedure was as follows:
programming language, Python; auxiliary software, ArcGIS Pro 2.8; operating system,
Windows 10; graphics card, NVIDIA® TITAN RTX GDDR6 24 GB; processor, Intel(R)
Core(TM) i9-9900KF CPU @ 3.60GHz; and memory, DDR4 2666 MHz 64 GB.

3. Results

The results of this study were divided into three parts. The first involved using Faster
R-CNN to detect hats and assess the F1-score, AP, precision, and recall accuracy. Second,
Mask R-CNN was used to map net coverage. Since the Faster R-CNN model can only
estimate the number of fruits wearing a hat, fruits under nets could not be detected, so
Mask R-CNN was used to map other mature fruits. The results of Mask R-CNN can detect
and correct some fields where omission and commission errors may occur in Faster R-CNN.
Third, we finally used the detection results obtained in the first part to calculate the number
of fruits wearing a hat per unit area. The fruit number per unit area was also adopted to
estimate the yield of fields covered with nets. The weight data from the field survey and
official statistics were used to estimate the pineapple yield in the study area.

3.1. Hat Wearing Detection

Although the mature fruits covered with nets could not be efficiently identified on
the UAV image with Faster R-CNN, those with hats could be identified in this procedure.
We randomly sampled the hat objects, as shown in Figure 7. Figure 7A shows the sample
distribution of plastic sheets of different colors, and Figure 7B shows that of yellow plastic
covers. The base image was a UAV image with GDS 3 cm used for the CNN model.
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The detection speed is 20.5 s per hectare and, in total, 2.16 h for the whole study area.
The parameters of Faster R-CNN during the training process are listed in Table 2, and the
accuracy assessment is shown in Table 3.

Table 2. Parameters of hat wearer detection with Faster R-CNN during the training process.

Parameters Base Learning Rate Batch Size Weight Decay Momentum Anchor Start Size Aspect Ratios

Values 0.001 2 0.0005 0.9 10 [0.5, 1, 2]

Table 3. Accuracy assessment of hat wearer detection results with Faster R-CNN.

IoU Precision Recall F1-Score AP

0.5 0.990 0.743 0.849 0.739

0.75 0.885 0.665 0.760 0.601

0.95 0.046 0.034 0.039 0.002

Regarding the recall value, although the hats could be accurately identified, the
number of missed judgments was also high. The commission errors in most of the situations
are shown in Figure 8, which contains the following:

6. Some land features which may be similar in color or shape to a large fruit wearing
a hat.

7. A field area where hats and nets were used together.
8. A field area which is inconsistent in the maturity period and may lead to sporadic hats.
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Figure 8. The commission error situations of hat wearer detection. (A) Commission error due to
similarity of land features; (B) mixed use of wearing a hat and covered with nets; (C) inconsistency in
field maturity, resulting in sporadic hats. The red boxes and red arrows indicated the hat detection
results with Faster R-CNN.

To amend these commission errors, we referred to farmers’ planting experience and
the habit of harvesting. According to the Central Region Branch, Agriculture and Food
Agency’s official statistics, the maximal fruit number is 36,000 per hectare. Farmers are
usually divided into five to ten harvests according to the size of the field. In other words,
we may use a threshold proportion of mature fruit of 20% of 36,000 plants/ha (at least
20% of plants wearing a hat). Therefore, after summing up the detection number of fruits
wearing a hat based on each field with zonal statistics, the fields with a number of hats
per field of more than 7200 plants/ha were classified as a field with hats, whose area was
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9.901 hectares, with a total of 370,960 plants. Those with less than 7200 plants/ha were
marked and overlaid with the results of Mask R-CNN described later in Section 3.2.

3.2. Mapping of Area Covered with Nets

The photos of covering nets and UAV images are shown in Figure 9. In order to solve
the problem of the detection model being unable to detect the pineapple fruits under nets,
this section describes the use of Mask R-CNN to map the pineapple planting area covered
with nets. If the area covered with nets can be mapped by Mask R-CNN, the number of
plants per unit area obtained by Faster R-CNN and official statistics can be used to estimate
the production of pineapples. The parameters of Mask R-CNN during the training process
are listed in Table 4, and the detection results of the nets are listed in Table 5. The detection
speed is 29.3 s per hectare and, in total, 3.08 h for the whole study area.
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Table 4. Parameters of net detection with Mask R-CNN during the training process.

Parameters Base Learning Rate Batch Size Weight Decay Momentum Anchor Start Size Aspect Ratios

Values 0.005 2 0.0001 0.9 32 [0.5, 1, 2]

Table 5. Accuracy assessment of net detection results with Mask R-CNN.

AP50 AP75 AP95 mIoU

0.792 0.760 0.005 0.613

The low AP95 and mIoU implied some omission and commission errors exist in net
detection results. Therefore, a classification integrating the results of Faster and Mask
R-CNN may be the potential solution. The classification included two steps. First, the
Mask R-CNN modelled the area covered with nets, and then the zonal statistics were used
to sum up the mapped area in each field. If more than half of the area is within a field
covered with nets, this field is temporarily classified as being covered with nets. Second,
the zonal results of Mask R-CNN were overlaid with those of Faster R-CNN. If a field
with less than 7200 plants/ha detected by Faster R-CNN in Section 3.1 is also classified as
covered with nets, this field is finally classified as being covered with nets or other growth
stages of pineapples.

After integrating the field-based results of hat and net mapping obtained in
Sections 3.1 and 3.2 above, accuracy assessments are presented in Table 6, with the cat-
egories defined as “covered with nets,” “wearing a hat,” and “other stages” that are not
in the first two categories. The results revealed that the overall classification accuracy
is 97.46%, and the kappa coefficient is 0.908, indicating that the pattern interpretation
model has a certain degree of credibility and can accurately interpret and cover the state
of the pineapples covered with nets. The total planting area of pineapples in the study
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area is 152.387 hectares, and the total planting area of pineapples covered with nets is
14.628 hectares. The netting area successfully judged is 11.921 hectares, and the producer’s
accuracy is 81.49%. About 2.707 hectares were misclassified as being pineapple of other
stages, which is the omission error of the proposed process in Figure 8.

Table 6. Accuracy assessment of cultivation field-based mapping of sunscreen mature fruits (Unit: ha).

Ground Truth
Total Area User’s Accuracy

Net Hat Others

CNN results

Net 11.921 0 0.232 12.153 98.09%
Hat 0 10.367 1.053 11.419 90.78%

Others 2.707 0 126.108 128.815 97.90%
Total area 14.628 10.367 127.393 152.387

Producer’s accuracy 81.49% 100.00% 98.99% Overall accuracy 97.38%

Kappa 0.9077

As mentioned in Section 3.1, when the number of pineapple plants per field was less
than 7200, this study was listed as a re-inspection list, and this part was corrected based on
the results of pineapple morphology judgment. The correction targets are shown in Figure 8.
If the field is netted, it will be included in the area covered by nets; if the pineapple state is
not judged to be netted, it will be included in the area pineapples at other stages. Finally,
based on the whole proposed process, this study showed that the area of the field with hats
in the study area was 11.419 hectares, and the area covered with nets was 12.153 hectares.
The spatial distribution of the above two states is shown in Figure 10. In other words,
the total area of sunscreened mature fruits is 23.572 hectares. The feasibility of the yield
estimation based on these detection results is discussed in the next Section 3.3.
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3.3. Yield Estimation

The F1-score (0.849) with IoU > 0.5 in Section 3.1 implied that some omission and
commission error exists in hat wearer detection, and we cannot know the location and
quantity of large fruits under the nets. Therefore, it is necessary to understand the number
of pineapple plants per unit area in the study area to complete the yield estimation of
pineapple in the study area. Therefore, the 35 fields with the highest accuracy of hat wearer
detection were selected as the demonstration area. The average number of planted plants
per unit area was calculated for the fields with sunscreened mature fruits as the reference
for the whole study area. In these 35 fields, the average number of plants per unit area of
sunscreened mature fruits was estimated to be 37,467 per hectare by dividing the number
of plants calculated by hat wearer detection by the total area of these 35 fields.

Next, if the average weight of each mature fruit at the harvesting stage can be obtained,
the total production in the study area can be established. Although the official historical
statistics provide the average weight of each fruit in several local fields, fruits are easily
affected by the climate after flowering and the farmer’s field management efficiency, result-
ing in problems such as ultra-small fruit, bad fruit, and sunburn in the field. Meanwhile,
from January to April, before the shooting of UAV imagery, there was less rain in the study
area. Although this was beneficial to the growth of pineapple fruit, it also brought about
the problem that the fruit weight was lighter than expected. Therefore, we still picked
and weighed the fruit on-site on 4 and 17 May 2021. The same 15 from the 35 fields as
mentioned in the previous paragraph were also selected, while we also included another
21 fields for fruit picking and weighing. The other 21 fields were used mainly because not
all of the 35 fields were harvested before mid-May, so it is necessary to find other fields that
were being harvested. The total number of sampled fields for fruit weighing was 36 (shown
as green points in Figure 1), and therefore the yield ranges can be estimated using interval
estimation of known population and population variation. Single pineapple weight was
estimated as 1.570 ± 0.080 kg with a 95% confidence level. The data relating to production
estimation are arranged in Table 7.

Table 7. The data used for production estimation.

Data Resource Item Data

Weighing data from
field survey and official statistics

Number of samples 36
Average weight of one fruit (kg) 1.570

Standard deviation of the weight of one fruit (kg) 0.246
Weight of one fruit at the 95% confidence level (kg) 1.570 ± 0.080

CNN results
Yield of sunscreen mature fruit (number/ha) 37,467

Total area of sunscreen mature fruit (ha) 23.572

Finally, we considered that the yield per hectare was the average number of plants
multiplied by the weight of a single pineapple under the 95% confidence level and then
multiplied by the 10% loss rate. The yield range per hectare in the study area was about
50,243 to 55,638 kg/ha, which was close to the records from FAOSTAT 2020 and Agricultural
Situation Report Resource Network in 2020, mentioned in Section 2.1. The total production
range harvested in the short term (about two to three months) was 1,184,327.996 kg to
1,311,498.936 kg.

4. Discussion

Comparing the advantages of this study with other studies, there are some references
related to fruit detection; nonetheless, few studies have focused on pineapples and UAV im-
agery. Based on the limited literature and references, similar approaches have applied UAV
imagery for analysis; the detection algorithms include object-oriented machine learning
classification methods [3] and the deep learning Keras-RetinaNet model [2]. Segmentation
is the most critical procedure for object-oriented machine learning classification; in this
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procedure, pineapple and non-pineapple plants should be identified and separated as well
as possible. Artificial neural network (ANN), support vector machine (SVM), random
forest (RF), naive Bayes (NB), decision trees (DT) and k-nearest neighbors (KNN) were
then used to classify the UAV images. When dealing with the images shot at a low altitude
of 3 m height, a previous study found that the performance could achieve between 85%
and 95% in terms of overall accuracy [3]. Concerning the previous study with the deep
learning Keras-RetinaNet model, the model and the shooting conditions of UAV images
were similar to this study; however, GSD and the accuracy assessment were not presented
in detail [2]. To summarize, after a comprehensive review of the above literature, the image
spatial resolution shows differences, so accuracy might not be comparable considering
different flight. On the other hand, imagery shooting on the ground [48] or UAV with low
altitude [3] have high spatial resolution and may contribute to the high accuracy. However,
the critical issues of ground shooting are that it is more likely to be blocked by leaves, and
the field of view is limited. Some issues do exist within the situation of UAV low-altitude
shooting such as small field of view, and the applications might be suitable for small-scale
field management.

Nevertheless, compared with the literature [2,3] related to pineapple detection, we can
properly estimate the yield of pineapple through computing the number of pineapples per
unit area, mapping the cultivated area of the whole region and in situ sample weighing
during the early stage of the whole harvest period. If the authorities, i.e., Council of
Agriculture and its affiliated agencies, could apply such procedures to estimate the yield
of pineapples for an area of hundreds of hectares, this is also the main contribution of
this study.

From the above 3 cm-resolution aerial image, it is feasible to detect the sunscreened
mature fruits. However, the detection of other growing stages, such as the planting stage,
becomes a difficult challenge. There are even some mature fruits covered with nets that
are confused with planting stage. This is because the newly planted pineapple plants
blended into the background more seriously, and the characteristics of the plants were less
clear. This makes it more challenging to judge whether it was an artificial or a computer
interpretation process. The super-resolution (SR) method may be helpful for improving
the resolution of the images, which not only reduces the cost of shooting but also helps
to increase the accuracy of interpretation. High-resolution images contain many detailed
textures and critical information. Under the constraints of software, hardware, and cost,
SR is considered one of the most effective methods to obtain high-resolution images from
single or multiple low-resolution images [49]. The SR process for optical remote sensing
imagery includes unsupervised perspective based on the convolutional generator model
without the need of external high-resolution training samples [50], supervised perspective
based on wavelet transform (WT) and the recursive Res-Net [51] or generative adversarial
networks (GAN) [52]. Therefore, using small-scale high-resolution images to estimate the
spatial characteristics of pineapple plants from other low-resolution images is the direction
for sustainable improvement in the future.

5. Conclusions

A large-scale shooting of UAV images of the test target at 3 cm spatial resolution was
carried out on 4 April 2021. At the same time, ground investigators were dispatched to
the local area during the UAV shooting to record the growth of pineapples to facilitate the
reference for subsequent model sample construction. Considering the growth pattern of
pineapples affecting the yield, we chose to interpret two categories of sunscreened mature
fruit: wearing a hat and covered with nets. Faster R-CNN was first used to detect the plants
wearing a hat. Mask R-CNN detected the covered field area and used interval estimation
to estimate the yield and production in the study area.

The contribution of this study is that we demonstrated the importance of combining
two different CNN methods, object detection and sematic segmentation, as well as zonal
statistics and understanding local planting characteristics. If only a single model is used,
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the types of features that can be detected are limited. The fruit wearing a hat is suitable for
object detection because the shape of the object is consistent and it is easy to distinguish
from the background. The fruits covered with nets have a wider range and irregularity,
but with a more homogeneous color, and so are suitable for processing with sematic
segmentation. After combining the concept of zonal statistics, more commission errors of
object detection can be filtered out, and the overall accuracy of sematic segmentation can be
improved, thus overcoming the potential issue of farmers’ harvesting in different batches.

This study focused on mature fruit counting. At the same time, considering that the
less overlapping leaves of seedlings in the planting stage are easier to distinguish from
varied plants, fruit counting in the planting stage may also be feasible. Future studies could
utilize the monitoring data in the planting stage to further estimate the plant loss rate from
the early to mature stage, which would be more likely to estimate the yield in advance.
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