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Abstract: Passive microwave (PMW) sensors are popularly applied to Earth observations. However,
the satellite PMW radiometer data sometimes have non-negligible errors in geolocation. Coastline
inflection methods (CIMs) are widely used to improve geolocation errors of PMW images. However,
they commonly require accuracy satellite flight parameters, which are difficult to obtain by users.
In this study, a simplified coastline inflection method (SCIM) is proposed to correct the geolocation
errors without demanding for the satellite flight parameters. SCIM is applied to improve geolocation
errors of FengYun-3D (FY-3D) Microwave Radiation Imager (MWRI) brightness temperature images
from 2018 and 2019. It reduces the geolocation errors of MWRI images to 0.15 pixels in the along-
track and cross-track direction. This means reductions of 75% and 86% of the geolocation errors,
respectively. The mean brightness temperature differences between the ascending and descending
MWRI images are reduced by 34%, demonstrating the improved geolocation accuracy of SCIM. The
corrected images are also used to estimate Arctic sea ice concentration (SIC). By comparing with SICs
retrieved from the un-corrected images, the root mean square error (RMSE) and mean absolute error
(MAE) of the SICs from the corrected images are reduced from 13.7% to 10.2% and 8.9% to 6.9%,
respectively. The mean correlation coefficient (R) increases from 0.91 to 0.95. All these results indicate
that SCIM can reduce geolocation errors of satellite-based PMW images significantly. As SCIM is
very simple and easy to be applied, it could be a useful method for users of PMW images.

Keywords: simplified coastline inflection method (SCIM); passive microwave images; geolocation
correction; sea ice concentration

1. Introduction

With the capability of the radiation to penetrate cloud cover, passive microwave
(PMW) sensors are widely applied to Earth observations, such as soil moisture, land surface
temperature, surface melt, etc. [1-4]. However, geolocation errors are often found in satellite
PMW radiometer images. There exist 3.5 to 7 km geolocation errors in early versions of
Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) images [5]
and 1 pixel (about 25 km) of geolocation errors in Microwave Radiation Imager (MWRI)
images [6]. The geolocation errors of Special Sensor Microwave/Imager (SSM/I) images
were also found [7]. Since precise geolocation is fundamental to PMW data applications,
the correction of geolocation errors is necessary for applications of PMW images [8].
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Two types of methods for correcting geolocation errors of satellite images are proposed.
The first, called the Image Correlation Method (ICM), uses correlation coefficients (R) of
satellite images to correct the geolocation errors. It quantifies the similarity between an
uncorrected image and a reference image with high geolocation accuracy. The ICM finds the
best R between the uncorrected image and the reference image by varying the geolocation of
the uncorrected image. The Normalized Cross Correlation (NCC) is a sub-type of method of
ICMs, which is by definition the inverse Fourier transform of the convolution of the Fourier
transform of two images. It is widely applied in the studies of image matching [9-11].

The second type of method improves geolocation errors of a satellite image by cor-
recting satellite flight parameters, such as satellite orientation and observation angles
etc. [12,13]. The node differential method (NDM) and the feature matching method (FMM)
are included in this type of method. NDM detects geolocation errors by minimizing bright-
ness temperature (BT) differences between ascending and descending PMW images. It
assumes that most of the BT differences between ascending and descending PMW images
obtained on the same day are caused by the geolocation errors [5,14]. FMM corrects the
geolocation by matching ground control points (GCPs) in the uncorrected image with the
corresponding points from a reference image [15]. A type of FMM, called the coastline
inflection method (CIM), takes coastline inflection points as GCPs to correct the geolocation
errors of PMW images [16,17].

Both approaches have their advantages and limitations. ICM requires less compu-
tational efforts, while it is more sensitive to noises and gradients of images, which has
important impacts on the correction performance [18]. The mean difference for Sentinel
2B images corrected by ICM is about 0.5 pixels [19]. On the other side, NDM and FMM
often provide higher geolocation accuracy for the corrected images than ICM. For exam-
ple, the geolocation error of FengYun-3D (FY-3D) Microwave Radiation Imager (MWRI)
images corrected by CIM is no more than 0.3 pixels [8,17]. However, the computational
cost may be larger up to several orders of magnitude than with ICM [20], since NDM
and FMM methods require to correct the satellite flight parameters based on a chain of
coordinate transformation models leading from the antenna coordinate system to the geoid
system [21,22].

In this study, we present a simplified CIM method (SCIM) to correct geolocation
errors of satellite PMW images without implementing the complex coordinate transfers and
demonstrate its usefulness by applying to FY-3D MWRI images. This paper is organized
as follows. Section 2 describes study data and presents SCIM in detail. Section 3 shows
the performance of SCIM for correcting the geolocation errors of FY-3D MWRI 89GHz
horizontal polarization (h-pol) BT images. The discussion of the results is shown in Section 4
and conclusions in Section 5.

2. Data and Methods
2.1. FY-3D MWRI Images and Land/Sea Mask Data

The Chinese FengYun (FY) series of meteorological polar orbiting satellites were initi-
ated in 1990s. There are four FY-3 satellites that operate in an afternoon orbit, a midmorning
orbit, and a Sun-synchronous orbit. These satellites provide global observations for climate
monitoring and analysis. FY-3D is the fourth unit of the second-generation Chinese polar
orbiting meteorological satellites series launched on 15 November 2017. It is equipped with
10 remote sensing instruments which provide abundant information for surface features
and atmospheric variables. The MWRI carried by FY-3D is a PMW sensor that scans the
Earth conically with a zenith angle of 53.1° and a swath width of 1400 km. It provides
measurements of radio PMW at 10.65, 18.7, 23.8, 36.5, and 89 GHz, each with horizontal and
vertical polarization [23]. The effective field of view of MWRI at 89 GHz has a ground reso-
lution of 9 km x 15 km. The FY-3D MWRI obtains 28 half-orbit swaths of BT observations
of the Earth in one day (Figure 1). Due to the relatively high spatial resolution of the PMW
images at 89 GHz, their BT data are widely used to retrieve land surface features, such
as land surface temperature, sea ice concentration, snow water equivalent, snow depth,
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etc. [24-26]. The 89.0 GHz h-pol FY-3D MWRI BT images of the first 3 days of every month
from 2018 to 2019 are used in this study.
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Figure 1. The FY-3D MWRI ascending brightness temperature on 1 January 2019.

In addition to the FY-3D MWRI images, two land /sea mask datasets are used in this
study. One is the Global Self-consistent, Hierarchical, High-resolution Shoreline (GSHHS)
provided by University of Hawai’i and NOAA Laboratory for Satellite Altimetry [27]. It
was amalgamated from World Vector Shorelines, CIA World Data Bank II, and Atlas of
the Cryosphere. The latest data files for version 2.3.7 were released on 15 June 2017. The
other dataset is the LandSeaMask dataset provided by the National Satellite Meteorological
Center (NSMC), China Meteorological Administration. NSMC transfers the GSHHS data
from the ESRI vector to the LandSeaMask raster format with the same format and spatial
resolution as the FY-3D MWRI images. LandSeaMask is used to correct the geolocation
errors of FY-3D MWRI images, while GSHHS is used to assess the geolocation errors of the
corrected FY-3D MWRI images.

2.2. The Simplified Coastline Inflection Method (SCIM)

In this study, SCIM corrects geolocation errors of MWRI images without coordinate
transformations. SCIM is working in the swath coordinate system of the MWRI Level-1
images, i.e., with the directions along scan and cross scan as x and y axes. The method
is organized in three steps (Figure 2). The first step is to find coastline inflection points
from a MWRI image. Then, geolocation errors of the MWRI image in along the satellite
flight direction (the along-track direction) and perpendicular to the satellite flight direction
(the cross-track direction) are estimated. Finally, SCIM corrects the geolocation errors of
the MWRI image in the along-track and the cross-track directions. The details of SCIM are
described in the following.

2.2.1. Finding Coastline Inflection Points in a MWRI Image

Land (shown as reddish pixels in Figure 3a) usually has higher BT than sea (bluish pixels
in Figure 3a) in a MWRI image, resulting in large BT gradients appearing along the coastlines
(Figure 3a). SCIM selects the pixels with largest BT gradient as coastline pixels in the MWRI
image. The center points of the coastline pixels are the coastline inflection points.
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Figure 2. The flowchart of the SCIM geolocation correction for FY-3D MWRI data.
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Figure 3. The distribution of FY-3D MWRI brightness temperature of Denmark (a) acquired on
3 March 2018. (b) shows a zoom area in Aalborg Bugt, Denmark overlaid with the coastline point
data. The highlighted gray pixels (b) represent the locations of the coastline pixels from LandSeaMask.
The data are displayed in the swath coordinate system.

The details for finding coastline inflection points are shown as follows. According
to previous studies, the geolocation error of the uncorrected MWRI image is less than
four pixels [8]. We assume that the pixels with largest BT gradient would represent near
the true coastline pixels. SCIM uses the coastline pixels from LandSeaMask as the true
coastline pixels (gray pixels in Figure 3b). Then, SCIM takes BT values from the true
coastline pixel (highlighted with the purple circle in Figure 3b) and its eight neighbor pixels
along the direction of one of the two coordinates. Figure 3b shows an example with the
neighbors taken in the cross-track direction. In the along-track direction, the procedure
works similarly.

SCIM takes four pixels with relatively larger BT gradient from the eight pixels to find the
pixel with the largest BT gradient. The BT values of the true coastline point (the blue point
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in Figure 4a) and the four points (black points in Figure 4a) are shown in Figure 4a. The BT
changes of these points can be plotted as Figure 4b. SCIM fits the polynomial function

y=axx+Bxx>4yxx+é 1)

to the BT values where y represents the BT of the true coastline pixel and its neighbor pixels.
x represents the column numbers of these pixels (x = 1,2,3,4). The parameters «, 3, v, and 6
are determined by the fit. The point with the maximum of BT gradient (red point shown
in Figure 4a,b) considered as the coastline inflection point, is obtained by calculating the
first derivative of Equation (1). The distance from the coastline inflection point (the red
point in Figure 4b) to the true coastline point (the blue point in Figure 4b) is the geolocation
error for this pixel. SICM searches coastline inflection points in all rows (the along-track
direction) and columns (the cross-track direction) of a MWRI image to get the geolocation
errors for all coastline inflection points.

1 2 3 4 5 6 7 8 9 10 11
T T T | T T T | T | T

cross track

—
T

Row number
(V5] N
1

N
1 1
along track
<—

| | | | | | 1
Column number

(K) L
180 190 200 210 220 230 240 250 260 Coastline
(a) Mask

265 : —
Coastline point from |
255 1 LandSeaMask DataSet ¢
245 B .- -@ |
235 7 |
- & :
M 225 | e J
N’ pad 1 ) T . |

ﬁ Jl3 F " ; Geolocation errors: offset between

205 .7 :inﬂection point and coastline point
e~ I
195 _ S . |
Inflection point: Coastline point !
1 85 B i ~ - i !
extracted from brightness temperature |
1 75 1 1 1 1

2 3 4 3 6 7 8

row/column number

(b)

Figure 4. Diagram for finding coastline inflection points in the cross-track direction. The gray pixels
are coastline pixels from LandSeaMask. The blue point is the center point of the coastline pixel, which
represents the true coastline point. The red point is the coastline inflection point found by SICM. The
colorful background in (a) represents changes of brightness temperature. (b) shows the BT changes
of the coastline inflection points.
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2.2.2. Estimating Geolocation Errors of a MWRI Image

The distance from a coastline inflection point found by SCIM and its corresponding true
coastline point is the geolocation error of this pixel. We denote the distance as ¢ f and ¢ 2 Here
and in the following, the subscripts i and j are row number and column number of the pixel,
and the superscripts a and c represent the along-track and the cross-track directions.

To correct geolocation errors of a MWRI image, geolocation errors both in the along-
track and the cross-track directions are needed. In this study, we explore the changes of
geolocation errors (ef‘, j and ef, ].) of the coastline pixel with the distances from the coastline
pixel to the scan line (in the along-track direction, the green line in Figure 5b) and the scan
position (in the cross-track direction, the brown line in Figure 5b). We denote the distances
from the coastline pixel P(ij) to the scan line and to the scan position as d j and d; i

The cross track direction
—_—
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Figure 5. Conical scanning geometry of the MWRI instrument. (a) shows the scanning schematic of
the FY-3D MWRI. (b) shows the schematic of FY-3D MWRI brightness temperature images. The red
arrow points to the cross-track direction. The blue arrow points to the along-track direction.

Figure 6 shows the changes of geolocation errors (¢j; and ¢ ;) for all coastline pixels
and the distances (47 i and df,j) between the pixels to the scan line and the scan position
from a MWRI swath image obtained on the first day of odd-numbered months in 2018.
The details of the MWRI images are shown in Table 1. As shown in Figure 6, positive and
negative geolocation errors are detected in the descending and ascending MWRI image,
respectively. The geolocation errors mostly range from 0 to 2 pixels for the ascending
images and —2 to 0 pixels for the descending images. One pixel corresponds to 9 km
in the along-track direction and to 15 km in the cross-track direction. The changes of
geolocation errors with the distances dj j and df,j are quite different in the along-track and
the cross-directions. There is a clear positive linear relationship between the geolocation
errors e;?, j and the distances df», j in the cross-track direction, while the geolocation errors in
the along-track direction are independent of the distances 47 ;. The correlation coefficients
for the geolocation errors and the distances (dj; and d; ;) also support this point (Table 1).
In addition, the geolocation errors in the cross-track direction are slightly larger than the
errors in the along-track direction. The geolocation errors in the along-track direction are
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usually no more than 2 pixels, while the geolocation errors in the cross-track direction reach
3 pixels.
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Figure 6. Geolocation errors of the coastline pixels found by SCIM for ascending (a,b) and descending
(c,d) images on different dates. Horizontal axis are distances from the pixels to the scan line and
the scan position in the cross-track and the along-track direction (d¢ j and df j)' Colored scatters are
geolocation errors. Different colors represent different dates. The colored lines are linear fits between
the geolocation errors and the distances. All distances (x axes, all diagrams) and geolocation errors
(y axes, all diagrams) are given in pixels.
Table 1. The correlation coefficients of the geolocation errors ef i ef j and the distance d¢ ;, df ; in the
along-track and cross-track direction. Each line represents the analysis of one full half orbit starting
at the indicated UTC time.
Correlation Correlation
uTC lat Val laf Val Alph Bet
Date Time Image (Alon: g?'?keafc‘ifllgl;rte ction) (Along-'ﬁaca;(‘]l;irection) (Cross-CT(';eeli?(C]l)eil;z ction) (Cross-'I":acil( l]l)eirection) (E) : (;5)a
1 January 2018 09:50 ascending 0.05 <0.01 0.44 <0.01 0.010 —0.15
1 March 2018 18:03 ascending 0.03 <0.01 0.56 <0.01 0.011 —0.04
1 May 2018 1205  ascending 0.01 <0.01 0.58 <0.01 0.011 —0.08
1 July 2018 17:57 ascending 0.01 <0.01 0.45 <0.01 0.011 —0.18
1 September 2018 20:07 ascending 0.02 <0.01 0.43 <0.01 0.010 —0.09
1 November 2018 04:00 ascending 0.00 <0.01 0.45 <0.01 0.011 -0.25
1 January 2018 02:13 descending 0.02 <0.01 0.43 <0.01 0.010 —2.48
1 March 2018 2358 descending 0.05 <0.01 0.59 <0.01 0.012 ~2.63
1 May 2018 23:05 descending 0.00 <0.01 0.47 <0.01 0.011 —2.47
1]uly 2018 1525  descending 0.03 <0.01 0.48 <0.01 0.010 ~251
1 September 2018 00:40 descending 0.00 <0.01 <0.01 <0.01 0.012 —2.73
1 November 2018 16:41 descending 0.02 <0.01 0.34 <0.01 0.010 —243
Mean - - 0.02 0.49 - -
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Based on these results, SCIM estimates the geolocation errors for a MWRI image in the
along-track and the cross-track directions. We use the mean value of the geolocation errors
of all coastline pixels found by SCIM as the geolocation error in the along-track direction
(e") for the image. For the cross-track direction, we use the linear function

e“=axx+p )

to describe the relationship between geolocation errors and the distance df i ef and x
present the geolocation errors in the cross-track direction and the distance d o and B are
underestimated by the fit. The fitted « and § are shown in Table 1.

2.2.3. Correction of Geolocation Errors

Once ¢* and e° are determined, SCIM can be used to correct the geolocation.
Two geolocation error matrixes are obtained to describe the spatial distributions of the
geolocation errors in the along/cross-track direction. One is the geolocation errors ma-
trix (E,) representing the spatial distribution of the geolocation errors in the along-track
direction, while the other is the geolocation errors matrix (E.) representing the spatial
distribution of the geolocation errors in the cross-track direction. The two geolocation
error matrixes have the same size as the MWRI image. For E,, all elements equal to ¢*,
while the elements in E. are estimated by Equation (2). Since the unit of E, and E. is pixel,
we need to change the unit to geographic coordinates for correcting the geolocation. A
bilinear function is used to implement the transform for longitudes and latitudes. We firstly
use two bilinear functions to fit the relationships between column and row numbers of
the MWRI image and longitudes or latitudes of the image in swath coordinate system,
respectively. The bilinear functions can be expressed as B(x,y,z), where x, y are column and
row numbers of the MWRI image respectively. z is longitude or latitude matrixes of the
image. The longitude and latitude matrixes are provided by NSMC for each MWRI image.
They have the same size as the image. Then, E; and E. are respectively added to x and y to
get updated column and row numbers labeled as £ and 7. Finally, the corrected longitudes
and latitudes are calculated by using the bilinear functions. It can be expressed as

z=B(%79) ©)

where B is the fitted bilinear function, Z is the corrected longitudes and latitudes. Since
e, and e are different from image to image, it is necessary to apply SCIM to every single
MWRI image (half orbit) for correcting their geolocation errors.

2.3. Evaluation Statistics

Root mean square error (RMSE) and error reduction (ER) are used to evaluate the
geolocation correction performances of SCIM on the complete half-orbits. RMSE measures
the distance between the coastline inflection points extracted from the images and the
points from GSHHS. A large RMSE means the geolocation error is large. RMSE can be
calculated as the following equation.

N 1/2
RMSE = (Y (x4 — Gn)*/N) @)
n=1

Here x;, is one of the along-track or cross-track coordinates of the coastline inflection
points from the images. G, is the corresponding along-track or cross-track coordinate of the
coastline inflection points from GSHHS. N is the number of the coastline inflection points.
The RMSEs are calculated in the along-track and cross-track direction. The error reduction
rate (ER) is defined as:

ER(%) = (1 — RMSEco;/RMSE cor) X 100 (5)
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where RMSE,» and RMSE;-cor are RMSE for the corrected and uncorrected BT images. A
large ER value means the method better reduces the geolocation errors of the image.

3. Results
3.1. Evaluation of Geolocation Accuracy before and after Geolocation Correction

The geolocation errors obtained in the first three days of every month from 2018 to
2019 are corrected by SCIM. The average RMSEs and ERs for the uncorrected and corrected
images are shown as Table 2. The RMSEs are reduced from 0.575 resp. 1.098 to 0.145 resp.
0.149 pixels in the along/cross-track direction. The ERs are 74.78% and 86.39% in the
along-track direction and the cross-track direction, respectively. These results indicate that
SCIM has the ability to improve geolocation accuracy of MWRI images. We also use NCC to
correct the geolocation errors of the images. The geolocation errors of the images corrected
by NCC are reduced. The average geolocation errors of the image corrected by NCC is
0.151 pixels in the along-track direction, which is slightly higher than that of SCIM, while
NCC geolocation errors in the cross-track direction is 0.498 pixels, which is much higher
than that of SCIM (Table 2)

Table 2. Comparisons of the geolocation errors of the MWRI brightness temperature images corrected
by SCIM and NCC.

Along-Track (Unit: Pixel) Cross-Track (Unit: Pixel)
Before After Error Before After Error
Correction Correction Reduction Correction Correction Reduction
SCIM 0.575 0.145 74.78% 1.098 0.149 86.43%
NCC 0.575 0.151 73.74% 1.098 0.498 54.64%

Since large BT gradients are easily found in the coastline regions in a PMW image,
the distance between the gradients regions and the coastline regions is usually used to
illustrate the geolocation errors of PMW images. Figure 7 shows the distributions of the
uncorrected and corrected MWRI images in four coastline regions, including Severnaya
Zemlya, Denmark, Australia, and Persian Gulf. Figure 7 also shows the coastline from
GSHHS (black lines). Before the geolocation correction, the pixels with large brightness
temperature gradients in the MWRI images are far from the GSHHS coastlines. Some
pixels with high BT distribute in the oceans (Figure 7c), while some pixels with low BT
locate in the lands (Figure 7g). The distances between pixels with large BT gradients to the
GSHHS coastline data are significantly reduced when SCIM has been applied to correct the
geolocation errors (Figure 7b,d,f,h). These results confirm and illustrate the reduction of
the geolocation errors of MWRI images by SCIM.

3.2. Comparisons of the Brightness Temperature Differences before and after Geolocation Correction

The BT differences between ascending and descending images on the same day are
often used in evaluating geolocation accuracy [14]. Lower BT differences mean better
geolocation accuracy [5]. The FY-3D MWRI images obtained in the first three days of every
month from 2018 to 2019 are corrected by SCIM. The mean BT differences of the uncorrected
and corrected images are shown in Figure 8. The mean BT difference of the uncorrected
images is 25.54 K. It is reduced to 16.83 K for the corrected image, by again confirming the
geolocation improvement by the Table 3. Table 3 shows the mean BT differences for the
four regions shown in Figure 7 The mean BT differences of the uncorrected MWRI images
range from 19.66 K to 26.72 K, while the differences for the corrected images range from
11.90 K to 16.80 K. The mean BT differences are reduced by 31% when SCIM is used. The
reductions of BT difference between ascending and descending MWRI images imply that
the geolocation errors are significantly improved. Note that a reduction of the difference to
0 K cannot be expected because of the temperature difference occurring in the time between
ascending and descending overflights.
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Figure 7. MWRI 89 GHz h-pol brightness temperature maps of four regions uncorrected (a,c,e,g) and
corrected by SCIM (b,d,f,h). From top to bottom, the regions are Severnaya Zemlya (a,b), Denmark
(c,d), the Persian Gulf (e,f), and Australia (gh). The black boxes show the BT comparisons of some
coastline regions between uncorrected and corrected FY-3D MWRI images.
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Figure 8. The brightness temperature differences of the MWRI images before and after geolocation
correction by SCIM in the first three days of every month from 2018 to 2019.

Table 3. Mean brightness temperature differences between MWRI ascending and descending images
in the first three days of every month from 2018 to 2019.

Before Correction After Correction Decline

Severnaya Zemlya 19.66 13.39 31.88%
Denmark 23.43 11.90 49.23%
Australia 25.59 15.32 40.15%

The Persian Gulf 26.72 16.80 37.11%

3.3. Comparisons of Accuracy of Sea Ice Concentration Retrieved from MWRI Images before and
after Geolocation Correction

Sea ice concentration (SIC) is an essential variable for monitoring Arctic sea ice changes.
Satellite PMW data are commonly used for sea ice concentration retrievals [28-31]. Since the
geolocation error of PMW images is an error source for sea ice concentration products [5],
the accuracy of SIC retrieved by uncorrected and corrected images also can illustrate the
performance of the correction method.

In this study, we retrieved daily Arctic SIC by using uncorrected and corrected MWRI
images in 2019. Due to the high spatial resolution (250 m) of the MODIS surface re-
flectance product (MOD09), it is usually used to evaluate SIC products retrieved from
PMW data [31,32]. The SICs estimated by the MOIDS images are compared with the SICs
retrieved from the corresponding MWRI images. Figure 9 shows the differences of the SICs
retrieved by the uncorrected and corrected MWRI images on 22 March (the maximum sea
ice cover appearing in March) and 3 September (the minimum sea ice cover appearing in
September) in 2019. The black boxes in Figure 9 are the sample regions with cloud free
MODIS images used. Obvious differences of the SICs appear near the sea ice margin regions
and the coastline regions. The differences range from —20% to 20%. By comparing with the
SICs retrieved from MODAQ9, the images corrected by SCIM have better performance on
estimating Arctic SICs than the uncorrected images (Table 4). The mean RMSE/MAE is
reduced from 13.67%/8.92% to 10.22%/6.85%. The mean correlation coefficient increases
from 0.91 to 0.95. Figure 10 shows the spatial differences between the SICs from the MWRI
images and the MODOQ9 images in the three sample regions. The differences between
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resulting from the uncorrected in coastline regions are shown in Figure 10a,c,e, and those
resulting from the corrected images are also found in Figure 10b,d,e. The differences based
on the corrected images are significantly smaller than those based on the uncorrected ones.
All these results indicate that SCIM is well suited for improving the geolocation errors of
FY-3D MWRI images.

1 90°E 90°W - 190°E
20190322 20190903
| | | |
—20 —15 —-10 0 5 10 15 20 -20-15-10 -5 0 5 10 15 20

Sea Ice Concentration (%) Sea Ice Concentration (%)

Figure 9. SIC differences retrieved by the uncorrected and corrected MWRI images in 22 March
(a) and 3 September 2019 (b). The black boxes are the sample regions with cloud free MODIS images.

Table 4. Comparisons of the SICs from the uncorrected and corrected images. MAE and R are mean
absolute error and correlation coefficient, respectively.

RMSE MAE R
Image Acquiring Dates
Original Corrected Original Corrected Original Corrected
17 February 2019 20.70 15.16 15.79 11.97 0.84 0.93
22 March 2019 18.58 14.34 14.39 11.45 0.85 0.92
29 April 2019 10.02 6.96 5.55 4.18 0.96 0.98
30 May 2019 10.20 7.41 5.15 412 0.97 0.98
6 June 2019 8.80 6.41 3.94 2.97 0.98 0.99
11 July 2019 17.00 12.02 11.11 7.48 0.80 0.90
3 September 2019 10.40 9.26 6.54 5.78 0.97 0.98
Mean 13.67 10.22 8.92 6.85 0.91 0.95
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Figure 10. The spatial differences between the SICs from the MWRI images and the MOD09 images in
three sample regions. These sample regions are shown as the black boxes labeled by numbers in Figure 9.
From top to bottom, the regions are Gulf of Bothnia (a,b), White Sea (c,d), and Davis Strait (e,f).

4. Discussion

In this study, SCIM is proposed to correct geolocation errors of satellite PMW images. It
has been applied to correct the geolocation errors of FY-3D MWRI images. The geolocation
errors of the corrected images are reduced by 74.78% in the along-track direction and
by 86.43% in the cross-track direction. By comparing with NCC, the geolocation error
reductions by SCIM are stronger than the reductions of the images corrected by NCC. All
these results indicate that SCIM effectively improves the geolocation errors of the FY-3D

MWRI images.

Several CIM methods have been developed to correct the geolocation errors of MWRI
images. For example, Tang and Li et al. used CIM to correct FY-3C/D MWRI data [6,16,17].
All these previous studies have made outstanding contributions for exploring the way
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to correct the geolocation errors of FY-3C/D MWRI images. Their methods corrected the
geolocation errors of FY-3D MWRI images by improving the satellite flight parameters of the
FY-3D satellite. Our study is an exploration for correcting geolocation errors of FY-3D MWRI
images in the image coordinate system without correcting the satellite flight parameters.
According to their studies, the geolocation error reductions (ER) range from 70% to 80% in
the along-track direction and from 70% to 90% in the cross-track direction. The ER of SCIM
is in the range of the reductions of existing methods. However, computational cost for the
geolocation correction methods based on improving satellite flight parameters is much
higher than the methods based on the swath coordinate system, since they are often required
to optimize satellite flight parameters and involve complex coordinate system transforms
from the antenna coordinate system to the geoid system [33,34]. The SCIM requires 62 s
to correct a FY-3D MWRI image on a personal computer with Intel(R)Core(TM)i7-8550U
CPU@1.80GHz and 16 GB RAM.

The advantages of SCIM are fast computation and that the full set of orbit parameters
which may not be accessible to all users, are not needed. On the other hand, geolocation
based on the complete orbit parameters can provided a first guess needed by SCIM. More-
over, we expect that orbit parameter-based geolocation yields the most accurate results
if these parameters are known with sufficient accuracy. Since SCIM is simple and has a
good performance for geolocation correction, it can be a useful method for users who get
satellite based passive microwave images with geolocation errors, but without satellite
flight parameters and coordinate system transform.

Our result shows a linear increasing of the geolocation errors with the distance increas-
ing (df/].) in the cross-track direction, while the geolocation errors are independent on the
distance (d?, ]-) in the along-track direction. Since the geolocation errors in the cross-track and
along-track direction are different, SCIM uses different methods to describe their spatial dis-
tributions. A constant error is used to represent the distribution of the geolocation errors in
the along-track direction, while a linear function is used for the cross-track direction. For the
cross-track direction, the linear function has a good performance for describing the changes,
reducing the error by nearly 90%. However, in the along-track direction, the geolocation
errors are practically uncorrelated (Figure 5a,c) so that SCIM only estimates a constant to
correct for the system bias. This results in a lower error reduction (no more than 80%) for
the along-track direction. We suggest that the constant used to correct geolocation errors in
the along-track direction is only a simplified description for the spatial distribution of the
errors. It is necessary to explore the error distributions along-track in different regions in
order to develop a more accurate SCIM in the along-track direction.

5. Conclusions

In this study, SCIM is proposed to correct for geolocation errors in satellite PMW
images without implementing complex coordinate system transforms. It takes advantage
of the large brightness temperatures gradients between land and sea to extract coastline
inflection points. The extracted coastline inflection points are compared with the LandSea-
Mask dataset to estimate the geolocation errors in the swath coordinate system (along track
and cross track) and to obtain distributions of the geolocation errors. Finally, the SCIM uses
the distributions of geolocation errors to recalculate corrected lat/lon coordinates for all
pixels in the swath image.

FY-3D MWRI 89-GHz h-pol brightness temperature images of the first three days
every month from 2018 to 2019 are collected and corrected by the SCIM. The main results
are: (1) SCIM reduces the geolocation errors from 0.575/1.098 to 0.145/0.149 pixels in
the along/cross-track direction, respectively, corresponding to relative error reductions of
74.78% and 86.43%. (2) The mean brightness temperature differences between ascending
and descending FY-3D MWRI images are reduced by 34.1%, which demonstrates the good
correction performances of the SCIM. Note that a reduction of the difference to 0 K cannot
be expected because of the temperature difference occurring in the between ascending
and descending overflight. (3) The uncorrected and corrected MWRI images are used
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to retrieve daily Arctic SICs and to be compared with the SICs estimated by the MOD09
images. The mean RMSE/MAE of SICs is reduced from 13.67%/8.92% to 10.22%/6.85%
when the corrected images are used, and the mean correlation coefficient also increases
from 0.91 to 0.95.

All these results suggest that SCIM has ability to improve the geolocation errors of
FY-3 MWRI images significantly.

Author Contributions: Conceptualization, X.C. and G.H.; methodology, G.H. and Z.C. (Zhuoqi Chen);
software, ].X,; validation, J.X.; formal analysis, Z.C. (Zhuoqi Chen); investigation, ].X.; resources, ].X,;
data curation, J.X.; writing—original draft preparation, Z.C. (Zhuoqi Chen); writing—review and
editing, Z.C. (Zhaohui Chi), L.Y., SSW. and EH.; visualization, ].X.; supervision, X.C. and G.H.; project
administration, X.C.; funding acquisition, X.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Guangdong Basic and Applied Basic Research Foundation
(2021B1515020032), the National Key Research and Development Program of China (2019YFC1509104)
and the National Science Fund for Distinguished Young Scholars (41925027).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Houtz, D.; Mitzler, C.; Naderpour, R.; Schwank, M.; Steffen, K. Quantifying Surface Melt and Liquid Water on the Greenland Ice
Sheet using L-band Radiometry. Remote Sens. Environ. 2021, 256, 112341. [CrossRef]

2. Sabaghy, S.; Walker, J.P.; Renzullo, L.J.; Jackson, T.J. Spatially enhanced passive microwave derived soil moisture: Capabilities
and opportunities. Remote Sens. Environ. 2021, 209, 551-580. [CrossRef]

3.  Song, P; Zhang, Y. An improved non-linear inter-calibration method on different radiometers for enhancing coverage of daily
LST estimates in low latitudes. Remote Sens. Environ. 2021, 264, 112626. [CrossRef]

4. Zhao, T, Shi, J.; Entekhabi, D.; Jackson, T.J.; Hu, L.; Peng, Z.; Yao, P.; Li, S.; Kang, C.S. Retrievals of soil moisture and vegetation
optical depth using a multi-channel collaborative algorithm. Rermote Sens. Environ. 2021, 257, 112321. [CrossRef]

5. Wiebe, H.; Heygster, G.; Meyer-Lerbs, L. Geolocation of AMSR-E data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3098-3103.
[CrossRef]

6. Tang, F; Zou, X,; Yang, H.; Weng, F. Estimation and correction of geolocation errors in FengYun-3C microwave radiation imager
data. IEEE Trans. Geosci. Remote Sens. 2015, 54, 407-420. [CrossRef]

7. Berg, W.,; Kroodsma, R.; Kummerow, C.D.; McKague, D.S. Fundamental Climate Data Records of Microwave Brightness
Temperatures. Remote Sens. Essent. Clim. Var. Appl. 2015, 10, 1306. [CrossRef]

8. Liu, J.; Li, W.; Peng, J.; Shen, L.; Han, H.; Zhang, P; Yang, L. Geolocation error estimation and correction on long-term MWRI data.
IEEE Trans. Geosci. Remote Sens. 2021, 59, 9448-9461. [CrossRef]

9.  Debella-Gilo, M.; Kdéb, A. Sub-pixel precision image matching for measuring surface displacements on mass movements using
normalized cross-correlation. Remote Sens. Environ. 2011, 115, 130-142. [CrossRef]

10. Debella-Gilo, M.; Kédéb, A. Locally adaptive template sizes for matching repeat images of Earth surface mass movements. ISPRS J.
Photogramm. Remote Sens. 2012, 69, 10-28. [CrossRef]

11. Ling, X.; Zhang, Y.; Xiong, J.; Huang, X.; Chen, Z. An image matching algorithm integrating global SRTM and image segmentation
for multi-source satellite imagery. Remote Sens. 2016, 8, 672. [CrossRef]

12.  Pan, H.; Cui, Z,; Hu, X.; Zhu, X. Systematic Geolocation Errors of FengYun-3D MERSI-II. IEEE Trans. Geosci. Remote. Sens. 2022,
60, 5619711. [CrossRef]

13.  Zhang, Y,; Chi, Z.; Hui, F; Li, T.; Liu, X.; Zhang, B.; Cheng, X.; Chen, Z. Accuracy Evaluation on Geolocation of the Chinese First
Polar Microsatellite (Ice Pathfinder) Imagery. Remote Sens. 2021, 13, 4278. [CrossRef]

14. Moradi, I.; Meng, H.; Ferraro, R.R.; Bilanow, S. Correcting geolocation errors for microwave instruments aboard NOAA satellites.
IEEE Trans. Geosci. Remote Sens. 2013, 51, 3625-3637. [CrossRef]

15.  Wolfe, R.E.; Nishihama, M.; Fleig, A.].; Kuyper, ].A.; Roy, D.P,; Storey, ].C.; Patt, ES. Achieving sub-pixel geolocation accuracy in
support of MODIS land science. Remote Sens. Environ. 2002, 83, 31-49. [CrossRef]

16. Li, W,; Zhao, X,; Peng, J.; Luo, Z.; Shen, L.; Han, H.; Zhang, P; Yang, L. A new geolocation error estimation method in MWRI data
aboard FY3 series satellites. IEEE Geosci. Remote. Sens. Lett. 2019, 17, 197-201. [CrossRef]

17.  Li, W,; Luo, Z;; Liu, C; Liu, J.; Shen, L.; Xie, Q.; Han, H.; Yang, L. {; Sparse Approximation of Coastline Inflection Method on
FY-3C MWRI Data. IEEE Geosci. Remote. Sens. Lett. 2018, 16, 85-89. [CrossRef]

18. Bickel, V.T.; Manconi, A.; Amann, F. Quantitative Assessment of Digital Image Correlation Methods to Detect and Monitor

Surface Displacements of Large Slope Instabilities. Remote Sens. 2018, 10, 865. [CrossRef]


http://doi.org/10.1016/j.rse.2021.112341
http://doi.org/10.1016/j.rse.2018.02.065
http://doi.org/10.1016/j.rse.2021.112626
http://doi.org/10.1016/j.rse.2021.112321
http://doi.org/10.1109/TGRS.2008.919272
http://doi.org/10.1109/TGRS.2015.2458851
http://doi.org/10.3390/rs10081306
http://doi.org/10.1109/TGRS.2021.3051199
http://doi.org/10.1016/j.rse.2010.08.012
http://doi.org/10.1016/j.isprsjprs.2012.02.002
http://doi.org/10.3390/rs8080672
http://doi.org/10.1109/TGRS.2022.3156999
http://doi.org/10.3390/rs13214278
http://doi.org/10.1109/TGRS.2012.2225840
http://doi.org/10.1016/S0034-4257(02)00085-8
http://doi.org/10.1109/LGRS.2019.2920660
http://doi.org/10.1109/LGRS.2018.2867738
http://doi.org/10.3390/rs10060865

Remote Sens. 2023, 15, 813 16 of 16

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Dematteis, N.; Giordan, D. Comparison of Digital Image Correlation Methods and the Impact of Noise in Geoscience Applications.
Remote Sens. 2021, 13, 327. [CrossRef]

Dematteis, N.; Giordan, D.; Crippa, B.; Monserrat, O. Fast local adaptive multiscale image matching algorithm for remote sensing
image correlation. Comput. Geosci. 2022, 159, 104988. [CrossRef]

Shirkolaei, M.M.; Ghalibafan, J. Magnetically scannable slotted waveguide antenna based on the ferrite with gain enhancement.
Waves Random Complex Media 2021, 31, 1-11. [CrossRef]

Masoumi, M.; Dalili Oskouei, H.R.; Mohammadi Shirkolaei, M.; Mirtaheri, A.R.J.M.; Letters, O.T. Substrate integrated waveguide
leaky wave antenna with circular polarization and improvement of the scan angle. Microw. Opt. Technol. Lett. 2022, 64, 137-141.
[CrossRef]

Yang, Z.; Zhang, P; Gu, S.; Hu, X; Tang, S.; Yang, L.; Xu, N.; Zhen, Z.; Wang, L.; Wu, Q.; et al. Capability of Fengyun-3D satellite
in earth system observation. J. Meteorol. Res. 2019, 33, 1113-1130. [CrossRef]

Derksen, C.; Toose, P.; Rees, A.; Wang, L.; English, M.; Walker, A.; Sturm, M. Development of a tundra-specific snow water
equivalent retrieval algorithm for satellite passive microwave data. Remote Sens. Environ. 2010, 114, 1699-1709. [CrossRef]
Tong, X.; Tian, F; Brandt, M.; Liu, Y.; Zhang, W.; Fensholt, R. Trends of land surface phenology derived from passive microwave
and optical remote sensing systems and associated drivers across the dry tropics 1992-2012. Remote Sens. Environ. 2019,
232,111307. [CrossRef]

Xiao, X.; Zhang, T.; Zhong, X.; Shao, W.; Li, X. Support vector regression snow-depth retrieval algorithm using passive microwave
remote sensing data. Remote Sens. Environ. 2018, 210, 48-64. [CrossRef]

Wessel, P.; Smith, WH.E. A global, self-consistent, hierarchical, high-resolution shoreline database. . Geophys. Res. Solid Earth
1996, 101, 8741-8743. [CrossRef]

Andersen, S.; Tonboe, R.; Kern, S.; Schyberg, H. Improved retrieval of sea ice total concentration from spaceborne passive
microwave observations using numerical weather prediction model fields: An intercomparison of nine algorithms. Remote Sens.
Environ. 2006, 104, 374-392. [CrossRef]

Chi, J.; Kim, H.-C.; Lee, S.; Crawford, M.M. Deep learning based retrieval algorithm for Arctic sea ice concentration from AMSR2
passive microwave and MODIS optical data. Remote Sens. Environ. 2019, 231, 111204. [CrossRef]

Shokr, M.; Kaleschke, L. Impact of surface conditions on thin sea ice concentration estimate from passive microwave observations.
Remote Sens. Environ. 2012, 121, 36-50. [CrossRef]

Zhao, X.; Chen, Y,; Kern, S.; Qu, M,; Ji, Q.; Fan, P; Liu, Y. Sea ice concentration derived from FY-3D MWRI and its accuracy
assessment. IEEE Trans. Geosci. Remote. Sens. 2021, 60, 4300418. [CrossRef]

Driie, C.; Heinemann, G. Accuracy assessment of sea-ice concentrations from MODIS using in-situ measurements. Remote Sens.
Environ. 2005, 95, 139-149. [CrossRef]

Moayyed, E; Oskouei, H.D.; Shirkolaei, M.M. High gain and wideband multi-stack multilayer anisotropic dielectric antenna.
Prog. Electromagn. Res. 2021, 99, 103-109. [CrossRef]

Mohammadi Shirkolaei, M.; Dalili Oskouei, H.; Abbasi, M. Design of 1* 4 Microstrip Antenna Array on the Human Thigh with
Gain Enhancement. IETE J. Res. 2021, 67, 1-7. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://doi.org/10.3390/rs13020327
http://doi.org/10.1016/j.cageo.2021.104988
http://doi.org/10.1080/17455030.2021.1983234
http://doi.org/10.1002/mop.33047
http://doi.org/10.1007/s13351-019-9063-4
http://doi.org/10.1016/j.rse.2010.02.019
http://doi.org/10.1016/j.rse.2019.111307
http://doi.org/10.1016/j.rse.2018.03.008
http://doi.org/10.1029/96JB00104
http://doi.org/10.1016/j.rse.2006.05.013
http://doi.org/10.1016/j.rse.2019.05.023
http://doi.org/10.1016/j.rse.2012.01.005
http://doi.org/10.1109/TGRS.2021.3063272
http://doi.org/10.1016/j.rse.2004.12.004
http://doi.org/10.2528/PIERL21062307
http://doi.org/10.1080/03772063.2021.2004459

	Introduction 
	Data and Methods 
	FY-3D MWRI Images and Land/Sea Mask Data 
	The Simplified Coastline Inflection Method (SCIM) 
	Finding Coastline Inflection Points in a MWRI Image 
	Estimating Geolocation Errors of a MWRI Image 
	Correction of Geolocation Errors 

	Evaluation Statistics 

	Results 
	Evaluation of Geolocation Accuracy before and after Geolocation Correction 
	Comparisons of the Brightness Temperature Differences before and after Geolocation Correction 
	Comparisons of Accuracy of Sea Ice Concentration Retrieved from MWRI Images before and after Geolocation Correction 

	Discussion 
	Conclusions 
	References

