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Abstract: Satellite laser altimetry has been widely used for monitoring surface height changes in
inland waters. However, constructing time series of water levels is partially limited in temporal
resolution only based on the individual orbit of altimeter observations. To densify and optimize the
time series of altimetry-based water levels is crucial to the scientific understanding of lake hydrologic
dynamics. This paper focuses on synthesizing the multi-orbit on-lake observations from the Ice,
Cloud, and land Elevation Satellite 2 (ICESat-2) to densify and refine the water level time series
for large lakes. The approach of synthesizing water level time series has been validated through
experiments applied to 18 large lakes worldwide, resulting in an average R of 0.93, RMSE of 0.14 m,
MAE of 0.12 m, NSE of 0.67, and CV of 2.86, according to the hydrologic gauge stations. The
evaluation results demonstrate that our approach can provide an effective solution for densifying the
water level series of large lakes covered by multi-orbit ICESat-2 observations. Further, the approach
can be extended to monitor the high-frequency variation of other lakes covered by the multiple
ICESat-2 orbits. This approach provides the potential of generating higher-frequency estimates of
water levels based on satellite altimetry, which could not only help to reveal the characteristics of
the seasonal dynamics of lakes but also be used to investigate the abrupt water level changes due to
hydrological extreme events (e.g., floods, droughts, etc.).

Keywords: assimilation; ICESat-2; lake; multi-orbit; water level

1. Introduction

Monitoring the water level is of paramount importance for understanding the hy-
drologic budgets of lakes [1–5]. Unfortunately, the number of in-situ gauge stations for
monitoring lake water levels is globally limited. Moreover, these in-situ water level data
are usually proprietary and difficult to access in large scales or remote regions [6]. There
is an imperative need for employing remote sensing techniques (especially for satellite
altimetry) to monitor the water levels of inland lakes. For this reason, an increasing number
of altimeters have been launched to investigate parameters related to the hydrologic cycle,
including water level.

Among these altimetry satellites, the latest launch of Ice, Cloud, and land Elevation
Satellite 2 (ICESat-2) provides finer footprint measurements that can be employed to
investigate smaller water bodies, e.g., lakes, reservoirs, and ponds [7]. Besides, ICESat-2
carries the Advanced Topographic Laser Altimeter System (ATLAS), which could acquire
more accurate determinations of the elevation measurement and geolocation [8,9]. These
advantages of the ICESat-2 altimeter make it favored by more researchers to investigate the
dynamics of lake water levels. For example, Ryan et al. [10] and Cooley et al. [11] employed
the ICESat-2 derived global inland water levels to characterize the human influences on
global reservoirs in comparison with natural lakes. By combining the first-generation
satellite laser altimeter (ICESat/GLAS), several recent studies [12–14] estimated the change
rates of water level and storage for global lakes or reservoirs over the past two decades.
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During the latest years (October 2018-) of the mission ICESat-2 retrieved water level,
the progress of ICESat-2 in water level observation has been demonstrated and optimized
from different application perspectives. Xu et al. [15] applied four data quality flags that
come with the ATL13 product to discard the invalid water level observations for global
lakes and reservoirs. They also discussed the different influences of flags on valid ICESat-2
observations. Scherer et al. [16] developed a method that can derive the water surface slope
of rivers to optimize the river water level observations from the ICESat-2 altimeter. They
certified the globally applicable approach to 815 reaches in Europe and North America.
In addition, previous studies have focused more on using different methods to filter the
ICE-Sat-2 photon data for reducing the uncertainty of water level observations [17–22].
For example, Liu et al. [19] used the OpenAltimetry platform (https://openaltimetry.org
(accessed on 1 January 2019)) and the outlier elimination method to screen out valid
ICESat-2 observations. However, rare studies have focused on high-frequency water level
observation by ICESat-2′s multi-orbit adjustment. There are still some barriers to be solved
in this field, especially for large lakes.

Despite previous cases successfully extracting lake levels from ICESat-2, various
challenges still exist, for example, the temporal interval and data accuracy of extracted
lake levels [23,24]. Specifically, large lakes have a higher probability of being covered by
multiple ICESat-2 orbits within one revisit cycle [25]. However, when processing the lake
level time series from raw ICESat-2 altimetry data, we usually do not consider specifically
grouping the different orbits of height measurements within one revisit cycle. In one case,
we may simply average the on-lake measurements of different orbits in the cycle as the
final lake levels. However, the simple calculation may induce uncertainties in the final
water level result, as the different orbits of geoid heights may have systematic biases across
the broad extent of large lakes [26,27]. Furthermore, the surface heights of large lakes tend
to have obvious water slopes across the entire lake surface [28]. Alternatively, we extract
the water level from one orbit, such as the orbit with the most observation dates. It means
that other orbits of height measurements are discarded to reduce the uncertainty caused by
the difference between the orbits, and thus, the observation dates are reduced.

Therefore, synthesizing the multi-orbit data derived from the ICESat-2 altimetry is
a key step to obtaining the accurate and dense time series of water levels for large lakes,
yet, when simply combining the multi-orbit lake level series from raw ICESat-2 altimetry
data, it may induce uncertainties in the final water level result, as the different orbits of
geoid heights have systematic biases, as mentioned above. To achieve this goal, this study
developed an approach of synthesizing multi-orbit ICESat-2 altimetry measurements to
densify and optimize the water levels of large lakes. Moreover, we demonstrated and
validated its feasibility with examples of multiple lakes of different sizes, morphologic
features, and geographic locations globally. Sections 2.1 and 2.2 introduce the study areas,
data, and method, respectively. Section 3 presents the application results of example lakes.
Section 4 concludes this work and implies the extended application of the approach.

2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area and Lake Selection

The first group study cases include six validated lakes that have in-situ measurements
of water level. The selection criteria for validated lakes include different numbers of
ICESat-2 orbital observations, sizes, and locations. These lakes are mostly located in North
America and Europe, due to the easier access to gauging stations. Taihu Lake in Asia
(East China) was selected as a special validation case because of its relatively smaller
area and lower number of ICESat-2 orbits. In addition to the validated lakes, another 12
study lakes, distributed across various continents and without in-situ data, are selected for
demonstrating the applicability of this synthesis method. Figure 1 shows the location of
the 18 lakes selected for this work, with an example of lake level measured by two-orbit
measurements of ICESat-2.

https://openaltimetry.org
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Figure 1. Location of the validated lakes (red stars) and extended study lakes (blue bubbles). The
insert map of one example lake (Erie Lake) illustrated the measurements of two-orbit ICESat-2
altimetry observations (lines represent the ICESat-2 footprints of two orbits with three revisit cycles).

2.1.2. ICESat-2 Altimetry Data

ICESat-2 was launched on 15 September 2018, with the primary goal of measuring
Earth’s surface height change along the global Reference Ground Track (RGT) [7]. The
ICESat-2 mission along 1387 different RGTs (termed orbits hereafter) acquires finer foot-
prints (<17 m diameter) than ICESat and other radar altimeters. Each orbit has a 91-day
repeat cycle [29]. In this paper, the fifth version of the ICESat-2 level-3A product of inland
surface water height (ATL13_V5), from 1 December 2018 to 30 November 2021, was col-
lected and processed to derive the water level time series for study lakes. The ATL13_V5,
derived from the ICESat-2 ATLAS sensor, provides along-track surface height over inland
water bodies, including lakes, reservoirs, bays, estuaries, and rivers [29]. For each study
lake, we chose the median value of along-track ICESat-2 elevation retrievals as the wa-
ter level of each piece of observation data for every orbit due to its statistical robustness
against outliers.

2.1.3. Auxiliary Data

Daily in-situ water level observations were collected for evaluation of the synthesized
results for six validated lakes (Huron Lake, Erie Lake, Athabasca Lake, Ladoga Lake, Onega
Lake, and Taihu Lake) in Section 3.1. Huron Lake and Erie Lake have in-situ lake water
levels accessed from NOAA Great Lakes Environmental Research Laboratory (https://
www.glerl.noaa.gov/data/wlevels/ (accessed on 1 January 2021)). The gauged water level
of Athabasca Lake was received from Historical Hydrometric Data by the government of
Canada (https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html (accessed
on 1 January 2021)). For Ladoga Lake and Onega Lake, the in-situ water levels were
obtained from the Information System on Water Resources and Water Management of the
Russian River Basins (http://gis.vodinfo.ru/ (accessed on 1 January 2021)). Validation
data of Taihu Lake were gathered from the China Lake-Watershed Science Data Center
(http://lake.geodata.cn/ (accessed on 1 January 2021)). The HydroLAKES dataset was
used to define study lake boundaries [30].

2.2. Methods
2.2.1. Preprocessing of Lake Level Derived from ICESat-2

In the preprocessing procedure, the water level time series for each study lake was
generated based on three steps: altimetry footprint extraction by lake mask, calculation of

https://www.glerl.noaa.gov/data/wlevels/
https://www.glerl.noaa.gov/data/wlevels/
https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html
http://gis.vodinfo.ru/
http://lake.geodata.cn/


Remote Sens. 2023, 15, 780 4 of 12

EGM2008 geoid height, and exclusion of water surface height outliers (Figure 2). Firstly,
key variables of each altimetry footprint, including coordinates, date time, orthometric
height, geoid value, etc., were derived from the ATL13_V5 altimeter product, and then,
the on-lake footprints were extracted by using the HydroLAKES lake boundary as a water
mask. Secondly, the EGM2008 geoid value was recalculated by the National Geospatial-
Intelligence Agency tool (National Geospatial-Intelligence Agency, Springfield, IL, USA,
https://earth-info.nga.mil/ (accessed on 1 January 2020)), aiming to improve the orthomet-
ric heights by subtracting geoid heights from ellipsoidal heights [13]. Finally, the method of
normalized median absolute deviation [31] was used to remove outliers of on-lake footprint
heights for each observation date. Further, the median water level was calculated from the
filtered footprint heights of each orbit before the multi-orbit adjustment step.
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Figure 2. Flowchart for densifying and optimizing water level time series for large lakes by combining
multi-orbit data derived from ICESat-2 altimeter. Solid arrows represent data processing and dashed
arrows represent input or output data diagrams.

2.2.2. Densification by Synthesizing Multi-Orbit Data

The multi-orbit adjustment aims to densify the water level time series of lakes by
combining multiple orbits (on different observation dates) of ICESat-2 data. First, the

https://earth-info.nga.mil/
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reference orbit with maximum repeat cycles was selected as the baseline for adjustment
reference. Secondly, the remaining orbits were adjusted (termed as unadjusted orbits) with
systematic height biases against the baseline orbit, as shown in Figure 2. Then, adjustment
value of lake level biases between unadjusted orbits and the reference orbit was calculated
based on the mean of paired height differences between the two orbits for each repeat cycle.
Finally, all orbits of the lake level series were adjusted to the reference orbit by reducing
their systematic height bias to synthesize the multi-orbit water level time series.

2.2.3. Kalman Filtering Optimization

In this study, the ensemble Kalman filtering (EnKF) is applied to optimize the synthe-
sized water level series after multi-orbit adjustment in the last step (Figure 2). EnKF can
be viewed as an optimized version of the Kalman filter (KF) introduced by Evensen [32],
which is a Monte Carlo-based implementation of the KF for extremely high-dimensional,
possibly nonlinear, and non-Gaussian state estimation problems [33]. In contrast to the
standard KF method [34], one of the most notable contributions of EnKF is the optimized
probability density function in time that is achieved by advancing each member of the
ensemble. The EnKF has been successfully used for geodetic applications and hydrological
data assimilation. Further, EnKF has a much lower computation cost, since a rather limited
number of model states is usually sufficient for reasonable statistical convergence. As
shown in Figure 2, the EnKF approach includes an initialization step, prediction step, and
update step. The key steps of the EnKF are introduced in the following Equations (1)–(6)
(refer to Houtekamer [35]).

Xi(0) = Xb + η, for i = 1, N (1)

In the initialization step (1), where Xb is the ensemble of size N at the initial time, η
is the randomly drawn from a normal distribution with zero mean and covariance of the
prior guess.

Xi(t + ∆t) = F(Xi(t)) +
√

∆tζ, for i = 1, N (2)

In the prediction step (2), Xi(t + ∆t) is each propagated ensemble member moved
forward using a stochastic model. F(X) is the function of the stochastic model. ζ is randomly
drawn from a normal distribution with zero mean and covariance of the computer model.

K = PfH
(

HPfHT + R
)−1

(3)

Pf =
1

N − 1 ∑
(
Xi
(
τj
)
− X

)(
Xi
(
τj
)
− X

)T (4)

Xi
(
τj
)
= Xi

(
τj
)
+ K

(
y
(
τj
)
+ ε−H

(
Xi
(
τj
)))

(5)

Pa =
1

N − 1 ∑
(
Xi
(
τj
)
− Xa)(Xi

(
τj
)
− Xa)T (6)

The update step includes calculating the Kalman gain matrix (Equations (3) and (4)),
updating each ensemble member using the perturbed water levels (Equation (5)), and
calculating the analysis error covariance matrix (Equation (6)). Pf is the evolved covariance
of the prior guess, represented by the spread in the evolved ensemble at time τj. H is the
observation matrix relating the state to the observation. R is the error covariance matrices of
the observations. X is the mean of the ensemble. y(x) is a description of how the input water
levels relate to the current state. ε is randomly drawn from a normal distribution with zero
mean and covariance of the computer model. Xa is the mean of updated ensemble at time
τj. All filtering steps are implemented on the computer, and we coded the EnKF method
in Python based on the source code (https://github.com/rlabbe/Kalman-and-Bayesian-
Filters-in-Python (accessed on 1 January 2022)).

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
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2.2.4. Evaluation Metrics

We employed the correlation coefficient (R), root mean square error (RMSE), mean
absolute error (MAE), Nash–Sutcliffe efficiency (NSE), and coefficient of variation (CV) to
evaluate the performance of the approach for synthesizing multi-orbit ICESat-2 observa-
tions. These metrics directly reflect the deviation and dispersion levels of water level time
series derived from the ICESat-2 altimeter and gauge stations. Specifically, the evaluation
metrics were calculated separately for each lake by the following equations:

R =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2
∑n

i=1
(
Yi −Y

)2
(7)

RMSE =

√
∑n

i=1(Xi −Yi)
2

n− 1
(8)

MAE =
∑n

i=1|Xi −Yi|
n

(9)

NSE = 1− ∑n
i=1(Xi −Yi)

2

∑n
i=1
(
Yi −Y

)2 (10)

CV =

√
∑i=1

n (Xi−X)
2

n−1

x
× 100% (11)

where Xi is the water level derived from ICESat-2 for the time i and X is the mean water
level for the study period; Yi is the measured water level from gauge stations for the time i,
and Y is the mean water level for the study period; n represents the number of observations
by ICESat-2.

3. Results and Discussion
3.1. Validation of Lake Water Level Time Series

The densified and optimized water level time series after orbit adjustment and op-
timization (termed as EnKF results hereafter) for the six validated lakes are compared
against available daily in-situ data (Figure 3). The assessments of EnKF results are detailed
in Table 1, showing R of 0.875–0.990, RMSE of 0.078–0.340 m, MAE of 0.064–0.314 m, NSE
of −0.143–0.979, and CV of 0.117–10.480. Overall, Figure 3 shows that the processed water
levels of the six lakes all have consistent characteristics of annual and inter-annual varia-
tions with the in-situ data. The correlation coefficients between the EnKF results and in-situ
measurements are all higher than 0.850. In addition, the RMSE and MAE for each lake is
less than 12 cm, except for Taihu Lake. It could partially be because the observation time
of satellite altimetry and gauged measurement are not completely consistent during the
limited validated pairs.

Comparing the evaluation metrics before and after data processing in Table 1 shows
that our method can effectively reduce the dispersion degree of the unadjusted water
level time series. Take the Ladoga Lake as an example, the improvements in metrics are
shown with R being increased from 0.881 to 0.959, NSE being increased from 0.556 to
0.886, RMSE being reduced from 0.155 m to 0.078 m, MAE being reduced from 0.117 m to
0.064 m, and CV being reduced from 6.219 to 5.505. Although the RMSE and MAE of EnKF
results for Taihu Lake are larger than those of other validated lakes, our approach similarly
optimizes its water level time series from the perspective of evaluation metrics (e.g., the
MAE decreased by 2.1 cm). In general, the proposed approach can effectively adjust the
water level time series for large lakes measured by multi-orbit ICESat-2 observations.
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Figure 3. Comparison of optimized ICESat-2 and gauge-derived water level time series for the
six validated lakes including (a) Huron Lake, (b) Athabasca Lake, (c) Taihu Lake, (d) Erie Lake,
(e) Ladoga Lake, and (f) Onega Lake. The orthometric ICESat-2 water level time series based on
EGM2008 is shifted to the individual reported water level height of the gauge data.

Table 1. Assessment on the final processed water level results for the validated lakes.

Name
Unadjusted/EnKF

Area (km2) R 1 RMSE 2 MAE 3 NSE 4 CV 5

Huron 59,399.30 0.846/0.875 0.126/0.108 0.094/0.084 0.639/0.732 0.133/0.125
Erie 25,767.79 0.857/0.881 0.109/0.098 0.079/0.071 0.623/0.694 0.122/0.117

Athabasca 7528.73 0.986/0.990 0.136/0.116 0.104/0.093 0.971/0.979 0.339/0.338
Ladoga 17,444.01 0.881/0.959 0.155/0.078 0.117/0.064 0.556/0.886 6.219/5.505
Taihu 2329.14 0.984/0.912 0.341/0.340 0.335/0.314 −0.147/−0.143 11.394/10.480
Onega 9961.85 0.906/0.929 0.121/0.087 0.098/0.069 0.738/0.863 0.660/0.620

1 Evaluation indicator R represents the correlation coefficient between ICESat-2 extracted water level and measured
water level of validated lakes. 2 Evaluation indicator RMSE represents the root mean square error of lake level
time series. 3 MAE represents the mean absolute error of lake level time series. 4 NSE represents the Nash–Sutcliffe
efficiency between lake level series. 5 Evaluation indicator CV represents the coefficient of variation of lake level
time series.

3.2. Lake Level Time Series Synthesized by Multi-Orbit ICESat-2 Footprints

To investigate the feasibility of the approach applied to other lakes, another 12 lakes
without gauge stations are selected to derive the densified and optimized results of the
water level time series. The 12 lakes with different sizes and geographic locations are
employed as extended samples of the approach and divided into four groups according to
their sizes, as shown in Figure 4. Overall, similar to the 6 validated lakes, the multi-orbit
adjustment, EnKF filtering can result in a more concentrated and reasonable water level
series for the 12 lakes. However, there are significant differences in the performances of
data densification and optimization among different lake size groups. Lake level time series
in the groups of >10,000 km2 and 5000–10,000 km2, by synthesizing multi-orbit ICESat-2
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footprints, are denser and more self-organized than the lakes under 5000 km2. For lakes less
than 1000 km2, the densification and optimization do not obviously take effect in general.
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Figure 4. Optimized water level time series of selected lakes derived from multi-orbit ICESat-2
footprints over (a) Michigan Lake, (b) Tanganyika Lake, (c) Victoria Lake, (d) Issyk-Kul Lake, (e) Eyre
Lake, (f) Titicaca Lake, (g) Khyargas Lake, (h) Peipsi Lake, (i) Manitoba Lake, (j) Dorgon Lake,
(k) Hjalmaren Lake, and (l) Bosten Lake. Blue points represent unadjusted water level time series
directly derived from the multi-orbit ICESat-2 observations. The green line represents the time series
of lake water levels optimized by multi-orbit adjustment and filtering (EnKF results). The light green
range represents the uncertainty of the optimized water level time series.

Meanwhile, the differences in the optimization results of the water level time series
for these lakes are shown in Figure 4 and Table 2. Interestingly, the lakes above 5000 km2 in
the North American plains (including the Michigan Lake and validated Huron Lake, Erie
Lake, and Athabasca Lake) have fewer improvements in data optimization than the lakes
in the African Rift Valley, the high mountain regions of Asia and South America (alpine
lakes), and the basin region of Oceania. One possible reason could be that these lakes in
high-altitudes or basins have larger geoid height differences between orbits than the lakes
in plains due to topographic factors. From this perspective, our approach would be more
suitable for large lakes with complex topographic features. Further, the more orbits of lakes
are covered by ICESat-2, the denser the water level time series that can be derived (Table 2).
Therefore, the improvement effect of data densification and optimization in our approach
could be stronger for the lakes which have obvious water level differences derived from
multi-orbit ICESat-2 observations and with areas over 5000 km2.
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Table 2. Summary of sample lakes and assessment of adjustment results.

Name Country Continent Longitude Latitude Area (km2) Elevation
(m)

Number of
Orbits

Densified
Ratio *

Dorgon Mongolia Asia 93.431 47.709 370.35 1128 6 4
Hjalmaren Sweden Europe 15.770 59.239 474.39 24 11 8

Bosten China Asia 87.040 41.969 961.84 1050 8 6
Khyargas Mongolia Asia 93.311 49.179 1383.23 1029 11 7

Peipsi Russia Europe 27.545 58.547 3489.00 28 12 8
Manitoba Canada North America −98.645 50.904 4751.05 245 14 10
Issyk-Kul Kyrgyzstan Asia 77.266 42.441 6195.93 1601 18 14
Titicaca Bolivia South America −69.354 −15.882 8002.51 3815 13 9

Eyre Australia Oceania 137.305 −28.597 8026.70 −15 11 8
Tanganyika Congo Africa 29.886 −6.224 32,826.65 767 18 14
Michigan America North America −86.757 44.007 57,726.84 175 42 29
Victoria Uganda Africa 32.911 −1.099 67,166.22 1134 28 20

* Densified ratio is the ratio of the total number of EnKF results observations to the number of observations in the
reference orbit.

3.3. Comparison of Different Filter Methods

To reveal the influence of the filter step on the synthesized data accuracy in our
approach, we compared the performance of the KF and EnKF in densifying and optimizing
water level series from the multi-orbit ICESat-2 data. Figure 5 illustrates optimized water
level series performances by KF and EnKF for the six validated lakes. Both filter methods
perform well in generating smooth and robust trajectories of water level estimates (Figure 5).
As an indicator to measure the dispersion degree of water level time series, the CV of the
two filter methods is generally consistent (bias range from 0.001% to 0.021%), though
EnKF has a slightly better result for most lakes. Further, the CV of six validated lakes
is all under 10% (0.125–9.303%). Hence, the step in our approach that has the greatest
impact on the densification and optimization of the water level time series could be the
multi-orbit adjustment. Generally, the step of the ensemble Kalman filter in our approach
only smoothed the water level time series after multi-orbit adjustment but did not densify
the final time series.
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Lake, and (f) Onega Lake.
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4. Conclusions

This study proposes an approach of synthesizing multi-orbit ICESat-2 altimetry mea-
surements to densify and optimize the water level time series for large lakes. The approach
of synthesizing water level time series has been validated through experiments applied to
6 large lakes with daily in-situ water levels and extended to another 12 ungauged lakes
worldwide. The evaluation results demonstrate that our approach can provide an effec-
tive solution for densifying the water level series of large lakes covered by multi-orbit
ICESat-2 observations. Densified ratio increases as the number of orbits increases, which
also indicates that our approach is more suitable for the lakes with more orbital ICESat-2
observations, especially those with an area over 5000 km2.

Our approach has the great potential to obtain accurate estimates of high-frequency
water levels based on satellite altimetry. The densified water level series could not only
help to indicate the characteristics of the seasonal dynamics of lake water bodies but also be
used to investigate the abrupt water level changes due to hydrological extreme events (e.g.,
floods, droughts, etc.). In the future, quantitative evaluation of water budgets for lakes
will be beneficial from densifying the time-series observations by combining multi-mission
satellite altimetry (e.g., SARAL/AltiKa, Jason-3, CryoSat-2, Sentinel-3/6). Overall, the
optimization processing of more abundant altimeter records will have the potential to
improve our understanding of the global water cycle.
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