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Abstract: Although mariculture contributes significantly to regional/local economic development,
it also promotes environmental degradation. Therefore, it is essential to understand mariculture
dynamics before taking adaptive measures to deal with it. In the present study, a framework that
integrates the Google Earth Engine (GEE) based methods and GeoDetector software was developed to
identify patterns and drivers of mariculture dynamics. This framework was then applied to Zhao’an
Bay, which is an intensive aquaculture bay in Coastal China, based on Landsat 8 OLI (2013–2022)
and Sentinel-2 (December 2015–May 2022) data. The results show that the GEE-based method
produces acceptable classification accuracy. The overall accuracy values for the interpretation are
>85%, where the kappa coefficients are >0.9 for all years, excluding 2015 (0.83). Mariculture increased
in the study area from 2013 to 2022, and this is characterised by distinct spatiotemporal variations.
Cage mariculture is primarily concentrated around islands, whereas raft mariculture is dominant
in bay areas, and pond and mudflat mariculture types are mostly in nearshore areas. The growth
of mariculture in Zhao’an Bay is attributed to a combination of geographic and human factors. The
initial area associated with mariculture in a grid significantly impacted the expansion of the raft, cage,
and mudflat mariculture. The distance to an island, spatial proximity to similar types of mariculture
and types of mariculture are the main drivers of change in mariculture. Human activities greatly
contribute to the dynamics of mudflat mariculture; regulation regarding the clearing of waterways
directly impacts the dynamics of mariculture. The present study demonstrates that the proposed
framework facilitates the effective monitoring of the mariculture dynamics and identification of
driving factors. These findings can be exploited for the local planning and management of mariculture
in similar coastal bays.
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1. Introduction

Ensuring the availability of food to an estimated 9.7 billion people in the world by
2030 is the second of the 17 Sustainable Development Goals (SDGs) of the United Na-
tions [1]. Therefore, as a major food production sector, aquaculture has been characterised
as a ‘blue revolution’, which can ease the pressure of the demand for food in the world.
Excluding aquatic plants, fisheries and aquaculture production in the world increased by
41% from 2000 to 2019 [2]. Owing to their locations, coastal bays are attractive areas for
mariculture [3,4]. However, even though mariculture in bays yields economic benefits to
local communities, the associated ecosystems often experience tremendous stresses. The
associated negative eco-environmental consequences include water pollution, the loss of
coastal wetlands, and disease transmission [5–9]. Considering that China is the leading
country for aquaculture, understanding the dynamics of mariculture in coastal bays is of
great significance [2].
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Remote sensing is widely used in monitoring targets because of its extensive coverage
and accessibility to areas that are otherwise difficult to reach [10,11]. However, existing
studies focus on the extraction of a single type of aquaculture, which provided limited
information on the spatiotemporal dynamics of aquacultures [12–16]. The extraction of
information involving multiple aquaculture types is more useful for exploring changes
in these areas [17]. Time-series optical imagery can effectively improve mapping accu-
racy [18,19]. The use of time-series remotely sensed data to extract all mariculture types is
beneficial for understanding the spatiotemporal dynamics of these environments, which is
the advantage of the Google Earth Engine (GEE) platform.

The emergence of the GEE cloud platform offers powerful means of monitoring targets
using remotely sensed data, and this has been exploited in diverse sectors including agricul-
ture, meteorology, water conservation, and e-commerce [20–23]. The MODIS, Landsat1-8,
and Sentinel-1,2 imagery is commonly used to provide land use, vegetation, temperature,
and other data for the GEE platform [24]. The GEE cloud platform involves data extraction
techniques, such as threshold, support vector machine (SVM), and random forest [23,25,26].
For example, the performances of multiscale datasets were compared for the classification
of rice cultivation using the random forest method on the GEE platform. Machine learning
and cloud computing were employed based on Landsat 30 m and MODIS 250 m time-series
data to develop three cropland products for South Asia using the GEE platform. The Land-
sat 8 OLI and Sentinel-2 images were pre-processed in the GEE platform using JavaScript,
and the area covered by the Tuosu Lake was extracted by combining the NDWI (normalised
difference water index), MNDWI (modified normalised difference water index), and SVM
methods [26].

The extraction of aquaculture information based on remotely sensed images can be
divided into two categories: cloud computing and local processing. In terms of local pro-
cessing, aquaculture data have been extracted from remote sensing images using techniques
such as deep learning, object-oriented automatic processing, and an improved U-Net with
a PSE structure [12,27,28]. SAR images, such as those acquired by the Sentinel-1, were used
to extract information on raft aquaculture using an improved statistical region merging
(SRM) algorithm and a shape-constrained method [14,29]. Wang et al. [13] also extracted
the coastal raft cultivation area that involves a heterogeneous water background via a
thresholding object-based visually salient NDVI from imagery associated with a high
spatial resolution. Concerning the GEE cloud processing, several studies on the extrac-
tion of aquaculture information from satellite data using this platform are available. A
decision-tree classifier derived from the GEE cloud platform based on Landsat data, for
example, was used to automatically identify ponds associated with major aquaculture [30].
A novel approach based on multisource spectral and texture features was proposed for the
simultaneous mapping of inland and marine aquaculture areas [31]. The GEE cloud com-
puting platform has also been used to extract aquaculture ponds on a national scale [15,16].
In addition, with the continuous development of relevant theories and algorithms of ma-
chine learning, compared with conventional classification methods, machine learning often
produces better results in remotely sensed image classification [32–34]. For user conve-
nience, the GEE platform integrates machine learning-related classification algorithms,
including the random forest, decision tree, SVM, Naive Bayes and so on. It was found that
the random forest method is the most frequently selected method in the GEE platform,
exhibiting maximum overall accuracy compared to other classifiers [24]. As such, the
random forest method in GEE has been widely used in the classification of remotely sensed
images [35–37].

Owing to the mariculture sector, the marine environment has been altered in many
areas. Spatiotemporal variations in aquaculture are controlled by confluence, geographic,
and human factors [17,38]. Based on interviews with 67 aquaculture farmers, economic
incentives account for the conversion from agriculture to aquaculture in the Indian Sundar-
bans [39]. Additionally, analyses of factors controlling changes in aquacultures were mainly
based on a regression model [17,38]. In contrast, GeoDetector is a robust and straight-
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forward method to quantify the influences of driving factors and their interactions [40].
The methods employed can avoid interference due to subjective factors and yield more
objective and accurate evaluation results [40]. This technique enables investigations of the
combined effects of single and multiple factors as well as of the strength, direction, and
linearity or nonlinearity of interactions in mariculture areas in a bay. The effectiveness,
convenience, and validity of the GeoDetector software for the analysis of driving factors
have been demonstrated in diverse fields, including agriculture, disease, climate, forests,
water quality, wetlands, and urban sprawl [41–47].

Understanding the dynamics of mariculture development and the underlying driving
forces is crucial for regulating mariculture development and improving water quality in
the bay. In the present study, we conducted a thorough investigation of the mariculture
dynamics in Zhao’an Bay, which is a typical mariculture bay on the southeast coast of
China. Previous studies on aquaculture in Zhao’an Bay focused on its influence on the
bay’s water quality [48–51]. To our knowledge, there is no report about the remote sensing
of mariculture dynamics in this bay. The objectives of the present study were: (1) to
characterise the spatiotemporal dynamics of mariculture in the bay using the GEE online
cloud platform, and (2) to identify potential drivers of changes in the environment. The
findings of the present study can be used to improve maritime spatial planning and promote
the sustainable development of mariculture locally.

2. Materials and Methodology
2.1. Study Area

Zhao’an Bay is on the southeast coast of Fujian Province and is surrounded by the
Zhao’an, Dongshan, and Yunxiao counties. This bay, which covers an area of approximately
152.66 km2, exhibits an N–S orientation and is characterised by a broad, shallow, and
level seafloor (Figure 1). It represents an important environment for mariculture in Fujian
Province. However, water quality in the bay has been deteriorating in recent years because
of extensive mariculture. In 2021, this bay was listed among 14 with water quality worse
than class V of the standard in China [52].
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2.2. Methods

A flowchart of the methodology used in the present study is shown in Figure 2. The
framework comprised the following components: (1) the extraction and classification of
mariculture types, (2) an analysis of the expansion of mariculture, and (3) an analysis of
forces controlling the mariculture dynamics.
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2.2.1. Extraction and Classification of Mariculture

Sentinel-2 (January 2016–May 2022) and Landsat 8 OLI (2013–2021) data with a max-
imum cloud coverage of 10% per scene were processed in the present study using the
GEE online platform. An annual average dataset was created based on multiple Landsat
8 OLI periods per year. Even though Sentinel-2 provides monthly imagery, June, July,
and August are excluded because the cloud coverage during these months exceeds 10%.
Annual and monthly spatial data on mariculture activity in the study area, which includes
ponds, mudflats, rafts, cages, seawater, vegetation cover, salt pans, and construction land,
were extracted using the random forest method through the GEE online platform. Remote
sensing interpretation marks are shown in Table A1. The three steps followed to extract
information on types of mariculture are displayed in Figure 3.
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Figure 3. Flowchart for classification of types of mariculture.

Step 1: The GEE platform was used to filter images that involved <10% cloudiness,
and this was followed by combining multiple appropriate images for each year into one
image. The images were then tested using varying band combinations, and samples were
selected based on the best composite images. Step 2: Land and marine cover data for the
study area were then extracted from the images using the random forest method in the GEE
platform. The overall accuracy and Kappa coefficient were calculated, and the associated
images were downloaded. Step 3: The ArcGIS 10.2 software was then used to identify
raft, pond, mudflat, and cage mariculture areas in the classification images. The bands of
Landsat 8 used in this study include Band1–Band5 and Band7, with a spatial resolution of
30 m. The Sentinel-2 bands used include Band2–Band4 and Band8, with a spatial resolution
of 10 m. The accuracy of the remote sensing image classification results in 2022 is verified
in the field. The classification results of historical remote sensing images are verified by
using an interactive interpretation method.

2.2.2. Analysis of Mariculture Dynamics

The dynamics of aquaculture over time in Zhao’an Bay were characterised based on the
following aspects: (1) The overall change, which involves transitions between mariculture
area types and the migration path of the geometric centre. (2) The spatial variation, which
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reflects the administrative boundary (county), pixel-scale change frequency of mariculture
and grid-scale dynamics of mariculture, including the amount, extent, and expansion
patterns. (3) The temporal variation, which highlights inter- and intra-annual changes in
the dynamics of mariculture. To investigate the extent of the expansion of the mariculture,
the increase in the area per grid time period was determined and analysed. In each grid
cell, the proportion and variation of types of mariculture were also examined. The degree
of expansion for each grid was determined using the following expression:

E =
∆y
S
× 100 (1)

where ∆y represents the change in the mariculture area of each grid, and S is the area of the
grid. A negative E value indicates a decrease in the mariculture area in a grid, whereas a
positive value represents an increase.

We propose to analyse the spatial and temporal distribution of mariculture using
centre-of-gravity migration methods in order to further investigate the spatial and temporal
dynamic processes of mariculture. The geometric centre of gravity migration trajectory of
mariculture data in the study area from 2013 to 2021 was calculated in ArcGIS 10.2 [53],
and this is based on the following expression:

dt
i =

√
(Xi − Xt)2 + (Yi −Yt)2 + (Zi − Zt)2 (2)

where Xi, Yi, and Zi are coordinates for feature i and n is the number of features.
The ArcGIS 10.2 was then used to estimate transitions between mariculture types

based on changes in the classification attributes of each raster cell for 2013–2018 and
2018–2021. The size of each raster cell was 30 m × 30 m, and the classification codes (1–8)
were recorded in the attribute table that was used to interpret the remote sensing data. Each
raster cell was attributed a three-digit value based on Equation 3, and these corresponded
to the classification codes of a cell for 2013, 2018, and 2021. The property sheet of the raster
data also records the number of grids encoded in three digits. By multiplying the number
of grids by the area of a single grid, the area variation corresponding to the three-digit code
can be obtained. After processing the raster attribute data, visual mapping was performed
to highlight the transformations of marine cover types. The raster cell values were obtained
using the following equation:

N = 100 ∗ C2013 + 10 ∗ C2018 + C2021 (3)

where N is the raster result and C2013, C2018, and C2021 are corresponding remote sensing
interpreted data codes for 2013, 2018, and 2021.

In order to explore the spatial variation in hot spots among different mariculture types,
ArcGIS10.2 was used to calculate the change frequency of mariculture types at the pixel
scale in the study area from 2013 to 2021. The calculation formula is similar to Equation 3,
but the difference is that the classification data of nine remotely sensed images from 2013
to 2021 are calculated. The statistics of change frequency are conducted in Excel 2019.

2.2.3. Analysis of Driving Forces of Mariculture Change

As shown in Table 1, 13 criteria including mariculture, geographical, and anthro-
pogenic factors were utilised, following a consideration of the accessibility of data and the
findings of previous studies [17,54–56]. The mariculture and geographical factors were
calculated primarily based on the interpretation of remote sensing data. Anthropogenic
factors were investigated using night light data, and the data utilised in the present study
involve the monthly average from January 2015 to December 2021. The annual night light
data were then obtained via a summation of the monthly data, and the mean and total
values in a buffer (5 km) were calculated by using data from the centre of each grid.
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Table 1. Primary driving factors of changes in mariculture.

Categories Code Name Unit Detail

Mariculture
F1 area_init m2 the initial area of the mariculture, which reflects the potential

for the further expansion of a grid
F2 num_type pcs the initial number of mariculture types per grid cell
F3 num_c_type pcs the change in the number of mariculture types per grid cell

Geographical
factors

F4 dis_land m the centre of the geometric grid closest to the land at the
beginning

F5 dis_island m the distance from the nearest island

F6 dis_scell m the distance between each grid and its closest neighbours
involving the same type of mariculture

F7 dis_c_scell m the change in the distance between each grid and its closest
neighbours involving the same type of mariculture

F8 dis_dcell m the distance between each grid cell and its closest
neighbours involving a different type of mariculture

F9 dis_c_dcell m the change in distance between each grid cell and its closest
neighbours involving a different type of mariculture

Human Factors

F10 sum_init_light
Nano
Watts

/cm2/sr

the sum of the night light data for an area > 5 km2

F11 sum_c_light the change in the sum of the night-time lighting data
F12 ave_init_light the average of the night light data for an area >5 km2

F13 ave_c_light the change in the average of night-time lighting data

GeoDetector was utilised to analyse potential factors that control changes in mari-
culture. Considering that the GeoDetector method deals with just discrete variables, the
13 criteria were transformed into discrete variables [41]. These variables were then sub-
sequently categorised using five classes (1–5). The factor detector and interaction factor
detector were chosen in the present study to highlight factors driving changes in maricul-
ture. The factor detector identifies factors that are responsible for an independent variable,
and the explanatory power (q) of each factor was obtained from the following expression:

q = 1− ∑L
h=1 Nhδh

2

Nδ2 (4)

where q is the explanatory power of a factor on changes in the area of mariculture, h is the
number of classifications or partitions of Y or factor X, Nh and N are the units in class h
and the entire region, respectively, and δh

2 and δ2 are correspondingly variances of Y for
units in class h and the entire region. The values of q range from 0 to 1, and the spatial
heterogeneity of Y increases as q increases. The noncentral F-test was used to determine the
significance of the q values [40].

Conversely, the interaction detector assesses if the explanatory powers of two factors
are enhanced, weakened, or independent of each other. The relationships between two
factors can be categorised as presented in Table 2.

Table 2. Summary of criteria and categories associated with the interaction detector.

Criteria Interaction

q(×1 ∩ ×2) < min(q(×1), q(×2)) Weaken—nonlinear
min(q(×1),q(×2)) < q(×1 ∩ ×2) < Max(q(×1),

q(×2)) weaken—univariate

q(×1 ∩ ×2) > Max(q(×1), q(×2)) enhance—bivariate
q(×1 ∩ ×2) = q(×1) + q(×2) independent
q(×1 ∩ ×2) > q(×1) + q(×2) enhance—nonlinear

2.3. Data Sources

In the present study, the Sentinel-2 and Landsat 8 OLI data (Table A2) were obtained
from GEE, whereas the night light data (NPP-VIIRS) were retrieved from the LAADS
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DAAC platform (https://ladsweb.modaps.eosdis.nasa.gov/search/) [57]. In addition,
shoreline data and the documents Detailed Mariculture Control Plan of Zhao’an County
(2020–2030) and Dongshan County Mariculture Waters and Mudflats Plan (2018–2030), were
provided by the Zhangzhou Ecological Environment Bureau. Other mariculture-related
policy information was obtained from the Department of Ecology and Environment of
Fujian Province (http://sthjt.fujian.gov.cn/).

3. Results
3.1. Spatiotemporal Dynamics in Mariculture

The classifications associated with the aquaculture information that were extracted
from remote sensing data were: producer’s accuracy values were >85%, user’s accuracy
values were >89%, overall accuracy values were >85%, and the kappa coefficients were >0.9
for all years, excluding 2015 (0.83) (Tables A3 and A4). Through field and human–computer
interaction verification, the classification accuracy value was >80% (Table A5). The dy-
namics of mariculture in Zhao’an Bay from 2013 to 2021 are depicted in Figures 4 and A1.
The spatial resolution of annual scale classification results obtained based on Landsat 8
OLI is 30 m (Figures 4 and A1). The spatial resolution of the seasonal scale classification
results obtained based on Sentinel-2 is 10 m. In general, raft mariculture, which covers the
largest area, is prevalent throughout the bay. This is the main mariculture at the inlet of the
bay, whereas cage mariculture, which is also common in the bay, is prominent around the
islands. Notably, from 2013 to 2020, cage mariculture was distributed in the northeast of
Zhao’an Bay, and it disappeared after 2020. The main cage and pond mariculture are in
Dongshan County, whereas the principal raft and mudflat are in Zhao’an County.
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centre of gravity for raft mariculture shifted to the northeast of the bay, whereas that for
cage mariculture significantly shifted from 2013 to 2016 and slightly from 2017 to 2021.

Considering the availability of remote sensing images, classification accuracy, and
mariculture management policies, the transition from one mariculture to another was
investigated in the period from 2013 to 2018 and 2021 in the bay, and the results are
depicted in Figure 5. Notably, raft mariculture occupies the largest area and the main
interconversion with the seawater, but some interconversion with the pond, mudflat, and
cage also occurred during the period from 2013 to 2021. Compared to the period from
2018 to 2021, the amount of saltwater converted to raft mariculture was greater during
the period from 2013 to 2018. Among the four types of mariculture, the cage occupies the
smallest area, and the main conversion is to another cage. Additionally, salt pans were
predominantly converted to pond mariculture.
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Figure 5. Illustration of transitions among mariculture types in Zhao’an Bay from 2013 to 2021. RM:
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The expansion of the major types of mariculture during the periods 2013–2018, 2018–2021,
and 2013–2021 was also examined at the grid scale, and the results are shown in Figures A3–A6.
According to Figure A3, raft mariculture increased from 2013 to 2018, but decreased from
2018 to 2021, with an overall positive expansion during the 2013–2021 period. Figure A4
reveals a pattern similar to that of the raft for cage mariculture, but the expansion of the
latter is higher relative to the former. Figure A5 shows that even though pond mariculture
declined from 2013 to 2018, the increase from 2018 to 2021 produced an overall expansion
for the 2013–2021 period. In contrast, Figure A6 demonstrates that because of the decrease
in mudflat mariculture from 2013 to 2018, despite the increase from 2018 to 2021, this
mariculture type contracted for the 2013–2021 period. Notably, the proportion of unchanged
mudflat mariculture exceeds 50%.

The change frequency of different mariculture types during the periods 2013–2021
was also explored at the pixel scale, and the results are shown in Figure A7. According
to Figure A7, the places with high change frequency include the seaway, bay mouth, the
sea near the land, etc., whereas the ponds, islands, salt farms, and the middle of the bay
suffered from little change.

The spatial and temporal variations in county-level mariculture from 2013 to 2021
are shown in Figures 6 and A8. Evidently, raft and mudflat mariculture are prevalent in
Zhao’an County, whereas cage and pond mariculture are dominant in Dongshan County.
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Concerning changes occurring during the period from 2018 to 2021 in both Dongshan and
Zhao’an Counties show an ‘increasing–decreasing–increasing’ pattern, even though the
rates of these changes in the latter are higher than in the former.
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Figure 6. Plot showing changes in types of mariculture in different counties during the period from
2013 to 2021 including the (A) CM, (B) MM, (C) PM, and (D) RM.

In Figure 7, inter-annual variations of different types of mariculture are displayed.
The mariculture area, including the pond, raft, mudflat, and cage, increased by 7.5% from
2013 to 2021, even though mudflat mariculture decreased by 33.66%. Raft mariculture
occupies the largest area during this period, followed by cage mariculture, whereas pond
and mudflat mariculture exhibit insignificant changes.

Seasonal variations in the dynamics of mariculture in Zhao’an Bay were also investi-
gated, and the results are shown in Figure 8. Cage mariculture increased by 60.11% from
the winter of 2015 to the spring of 2022, and the period between the winter of 2015 and
the spring of 2019 was characterised by a rapid increase. Overall, mudflat mariculture
was essentially unchanged, except for a notable increase of 30.5% from the spring to the
autumn of 2020. Sea water is characterised by an overall decrease. Further, raft mariculture
increased throughout the period studied, but the period from the spring of 2017 to the
autumn of 2020 is characterised by minor changes followed by a significant increase in
area. Changes in the ponds reached a maximum in the spring of 2016, and overall, they
exhibited minimal variations.
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Figure 8. Plot showing seasonal variations of types of mariculture in the Zhao’an bay including Q1:
spring (March–May), Q2: autumn (September–Novvember), Q3: winter (December–February). (A) Sea
water; (B) Raft mariculture; (C) Cage mariculture; (D) Pond mariculture; (E): Mudflat mariculture.
Note: seasonal scale data for mariculture in summer (June–August) are excluded because of the high
cloudiness associated with the remote sensing data and the fishing moratorium during this period.
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3.2. Potential Driving Factors of Mariculture Expansion

Drivers of changes in mariculture in Zhao’an Bay from 2013 to 2021 are displayed in
Figure 9. Notably, grids with a small initial area (F1) exhibit the potential to expand for all
types of mariculture, excluding the raft. Additionally, geographical factors (F4–F9) clearly
impact all four types of mariculture. Even though all types of mariculture are also influ-
enced by human factors (F10–F13), ponds display the highest impact. Human factors exert
more influence on these changes as the variation in night-time lighting increases (F11, F13).
Variables driving changes in various mariculture areas were estimated using GeoDetector,
and these data are presented in Table A6 (see Table 1 for details on driving factors).

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 31 
 

 

 
Figure 9. Plot displaying drivers of changes in types of mariculture including the (A) raft, (B) cage, 
(C) pond, and (D) mudflat. 

Figure 10 demonstrates that the interaction q value of a factor pair is superior to that 
of the individual factors. The 62 factor pairs in cage mariculture exhibit strong correlation 
and enhancements. All combination pairs for the mudflat, pond, and raft also display en-
hancement. Notably, the F1 and F9 combination for pond mariculture is characterised by 
a nonlinear enhancement. 

Figure 9. Plot displaying drivers of changes in types of mariculture including the (A) raft, (B) cage,
(C) pond, and (D) mudflat.

Figure 10 demonstrates that the interaction q value of a factor pair is superior to that
of the individual factors. The 62 factor pairs in cage mariculture exhibit strong correlation
and enhancements. All combination pairs for the mudflat, pond, and raft also display
enhancement. Notably, the F1 and F9 combination for pond mariculture is characterised by
a nonlinear enhancement.
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4: independent; 5: enhance, nonlinear.

4. Discussion
4.1. Effectiveness of the Proposed Method

The present study illustrates the effectiveness of integrating the GEE online cloud
platform and GeoDetector to monitor mariculture and its drivers in Zhao’an Bay. The
proposed method produces acceptable classification accuracy, with an overall accuracy
over 85% and a kappa coefficient of 0.8 (see Appendix B for details regarding the accuracy
of the remote sensing image classification results). According to the USGS and existing
studies, an overall accuracy and kappa coefficient of 80% are adequate [58]. Compared to
the traditional methods, the proposed approach has its advantage in pre-processing raw
remotely-sensed images and extracting mariculture features due to its powerful function
of cloud computing [23,24]. Existing GEE-based mariculture extraction studies are mainly
on individual types [15,16]. In the present study, four types of mariculture were extracted
simultaneously using the GEE platform. In this proposed method, we also developed a
computational index to identify the submerged raft mariculture from images using the
conventional combination of bands (Figure 3). Furthermore, we demonstrate that the
mariculture, geographic factors, and anthropogenic factors all significantly contribute to
the expansion of mariculture using GeoDetector. The main drivers differ among the type of
mariculture and might be associated with the implementation of mariculture management
policies. For example, mariculture was prohibited in the waterway and other areas of
concern (e.g., gauge of seawater quality) in Zhao’an Bay. This intervention was intended to
limit damage to ecosystems in the bay that can be caused by increasing human demands.
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The present study has implications for local mariculture planning in the bay and for the
development of policies to protect its ecosystems.

4.2. Pattern of Mariculture Dynamics

Spatiotemporal dynamics of mariculture in Zhao’an bay were exhibited at different
scales. Different types of mariculture were associated with unique spatial distributions and
specific annual- and seasonal-scale characteristics during the study period, and these ob-
servations are consistent with other studies [17,45,59–61]. The present study revealed that
the area associated with seafood mariculture in Zhao’an Bay increased by 7.5% (12.74 km2)
during the period from 2013 to 2021. This increase is attributed primarily to the increase
in global demand for seafood, which is similar to other observations [15,17]. Raft mari-
culture is present throughout the bay, whereas cage mariculture is common near islands
(Figures 4 and A1). These two types of mariculture occupy approximately two-thirds of the
mariculture area in Zhao’an Bay, and these control the layout of the mariculture industry
in Zhao’an Bay, which was confirmed through field surveys. These results highlight the
trial-and-error approach of integrated multi-trophic aquaculture (IMTA) [62] in the practice
of mariculture in Zhao’an Bay. Owing to synergistic interactions between species, the IMTA
refers to the mariculture of species at different nutrient levels, which allows the capture and
conversion of the unconsumed feed, waste, and by-products of one species into fertiliser,
feed, and energy for other species [62]. This model optimises the socio-economic benefits
of mariculture, reduces feed costs, and mitigates its negative environmental impacts.

In Zhao’an Bay, ponds and salt pans are frequently adjacent, and thus, the interconver-
sion of this mariculture is common (Figures 4 and A1). However, this differs from the rapid
expansion of ponds in other areas, which is attributed to the conversion of mudflats and
cultivated land [63]. The dominance of raft and mudflat mariculture in Zhao’an, as opposed
to the cage and pond mariculture prevalent in Dongshan County (Figures 6 and A8), is
associated with the local demand for seafood and farming habits. The rate of change in
raft mariculture in Zhao’an County is higher than in Dongshan County, mainly because of
the frequent conversion between mudflats and rafts in the former and the prohibition of
mariculture in the waterway in 2022. Figure A7 shows that the types of mariculture in the
seaway, bay mouth, and sea near land have a high frequency of changes at the pixel scale,
which is mainly due to the great influence of human activities.

Figure A2 shows that the migration path for the centre of gravity of pond and mudflat
mariculture minimally changed, which indicates no major change in areas occupied by
these types of mariculture in the bay during the study period. According to previous
studies, the large-scale reclamation of coastal areas used for mariculture in China started in
2000, and this subsequently attained stability [64]. Consequently, the geometric centre of
gravity for cage mariculture shifted from the inlet to the interior of the bay, and this can
alter the pollution centre in the bay.

Owing to the increasing demand for food by humans, both raft and cage mariculture
increased from 2013 to 2021. This is associated with the increased demand for seafood
and its economic benefits [30]. However, approximately 50% of grids associated with cage
mariculture are unchanged, and this indicates some stability in their positions. In addition,
pond mariculture is characterised by a segment of continuous decline (2013–2018), but this
increased overall from 2013 to 2021. This overall increase in pond mariculture is consistent
with the results of existing studies [63], and the decrease observed is likely because of the
conversion of ponds to saltpans. Previous studies on changes in mariculture are commonly
based on an annual scale [58,65,66,66], and thus, in the present, seasonal patterns were
investigated. The present study shows that the area occupied by cage mariculture in the
winter is greater than that in the spring and autumn (Figure 8). Mudflat mariculture exhibits
a seasonal consistency, which involves a smaller area in the winter than in the spring and
autumn. Conversely, the area linked to raft mariculture is lower in the autumn and winter.
Interestingly, from winter in 2015 to spring in 2022, no seasonal change in the area occupied
by pond mariculture was noticed. We found that cage culture and mudflat mariculture
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showed large fluctuations in spring 2019 and autumn 2020, respectively. The main reason
is the balance between environmental protection and economic development. The Ministry
of Ecology and Environment of the People’s Republic of China informed Zhao’an Bay in
2019 that the water quality was rated as class IV, which denotes poor water quality [67]. To
solve this problem, the local government has regulated mariculture in Zhao’an Bay [68],
but in the pursuit of economic benefits, the cage area increased again in the winter of 2019.
Similarly, in 2020, Zhao‘an Bay cleaned up cage mariculture again, but the area of mudflats
increased accordingly [69].

4.3. Main Drivers of Mariculture Dynamics

The large-scale development of mariculture is closely related to economic growth,
demand for seafood, and the expansion of infrastructure [39,70]. Changes in the area
associated with mariculture are driven by a combination of types of mariculture, geographic
factors, and anthropogenic factors (Figures 9 and 10). The main driving factors differ
according to the types of mariculture, and this observation is consistent with results from
previous studies [17,38].

The present study suggests that a larger initial mariculture area requires more financial
resources and a greater capacity to build farming infrastructure. This highlights a strong
capacity for expansion, which is consistent with findings from previous studies [38]. In
addition, the farther mariculture units are from land and islands, the less likely the influence
of humans. Therefore, space for expansion is higher, which increases the chances of
transforming these units into a major mariculture area. Human activities significantly
impacted mudflat mariculture, and the occupied area increased as the mean and total
night-time light increased. The combination of two driving factors also affected changes
in the mariculture area more than one factor alone (Figure 10). The interaction between
the influencing factors enhances their effects on changes in mariculture, and this is also
consistent with results from previous studies [13,17,43,71].

Furthermore, local government policies enhanced the development of mariculture.
In 1985, for example, Fujian Province introduced the Outline of the Construction of Eight
Bases, which focused on the development of shallow mudflat mariculture. In 1996, Fu-
jian Province declared aquaculture as a primary industry, and subsequently, large areas
occupied by mudflats were utilised for mariculture in other provinces along the coast of
China [72,73]. The management of shallow sea mudflat aquaculture in Fujian Province was
regulated in 2000, and this facilitated the development and aquaculture-related preparation
of abandoned mudflats. In 2002, a law on the use of sea area was introduced [64], and
this strengthened regulations on mariculture along the coast of China. Subsequently, the
Government of China established policies to promote artificial culture and mariculture
technologies. These were intended to accelerate the development of mariculture in the 21st
century and to meet the growing demand for mariculture products in society [63].

According to the present study, mariculture occupies >90% of the Zhao’an Bay area,
and this is among the major sources of income for residents. However, in 2021, the
government introduced ecological protection policies to reduce the damage and impact of
mariculture on the water quality and ecosystem in the bay. As shown in Figures 4 and A1,
for example, mariculture was eliminated in the west channel of Zhao’an Bay and the
north of Bachi Gate. The establishment of new units far from existing mariculture units
has been demonstrated to effectively mitigate the negative impacts of a high mariculture
density [74]. However, following the introduction of integrated mariculture management
by the government in the bay in 2021, the mariculture density increased in some areas
because of livelihood pressures (Figures 4 and A1), and these maintained a high pressure
on the ecosystem in the bay.

Economic conditions also have significant impacts on the expansion of coastal aquacul-
ture because the increased demand for seafood is highly profitable. In addition to quality,
demand for seafood has shifted from seasonal to perennial [75], and this is a potential
factor driving the continued growth of the aquaculture area. Alternatively, aquaculture
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is characterised by a higher economic efficiency compared to traditional industry and
agriculture [76]. Therefore, people are more willing to incorporate aquaculture, especially
in coastal areas where water resources are abundant.

4.4. Management Implications and Limitations

To reduce the impact on the utilisation of marine resources while maintaining the
livelihood of the population growth and economic development, some recommendations
were put forward in China and other nations [77,78]. First, a methodology (model) is
developed to explore the interaction of people with the ocean [79,80]. In this approach
(model), mariculture systems are considered a product of the coupling of human and
marine systems, and thus, human development is integrated into the conservation of
marine systems. Second, an integrated monitoring and assessment of the socioeconomic
benefits and environmental impacts of mariculture on the bay is necessary. Through this
approach, the effects of different types of mariculture on food production and quality,
livelihoods, marine ecosystems, etc. can be compared [81,82]. In such an endeavour, the
internet, the Internet of Things, cloud computing, artificial intelligence, machine learning,
and big data analytics must all be exploited [83–87]. Third, spatial planning policies and
programs should be developed for the bay to achieve sustainable development goals,
coordinate competing marine areas, and reduce water pollution and pressure on the
ecosystem [88–90]. In many studies on spatial planning, the feasibility of monoculture has
been crudely assessed [63,91,92]. Therefore, studies on interactions between multiple types
of mariculture and mariculture areas can be complementary. In addition, a combination of
different types of mariculture in an area can improve planning for the spatial layout of the
bay and reduce the associated environmental impacts. Finally, environmental education,
scientific mariculture training, improved mariculture infrastructure, the production of high-
quality feed, and feed use management can all improve mariculture practices. Long-term
sustainable use of marine ecosystems can be achieved through an improved understanding
and management of human–ocean interactions.

The present study, however, involves few limitations. First, the Landsat 8 OLI and
Sentinel-2 imagery data obtained from the GEE platform lacked data for June, July, and
August during the study period, which to some extent influenced the identification of the
spatiotemporal distribution of mariculture dynamics in this study. Second, influencing
factors such as the COVID-19 epidemic may be further involved.

5. Conclusions

Investigating the pattern of mariculture and its drivers is crucial for local mariculture
planning and eco-environment protection. Previous efforts in the dynamic monitoring of
bay mariculture required downloading remotely sensed images to a local computer for
processing, which consumes more time and requires a higher requirement of hardware.
To address these issues, the GEE online cloud platform was utilised to capture changes
associated with different types of mariculture in Zhao’an Bay in the present study. The
associated drivers and the extent to which these contribute to changes in mariculture were
determined using GeoDetector. The combination of GEE and GeoDetector facilitates the
rapid realisation of dynamic monitoring and driving force analysis of bay mariculture.
Distinct spatiotemporal variations in mariculture dynamics were exhibited in Zhao’an bay
over time. Mariculture products for human consumption were identified as the major
drivers. To achieve the sustainability of the bays, we need to balance development and
conservation with sound approaches to clearly understand the pattern and drivers of
mariculture dynamics locally. This may be a popular solution for similar coastal bays with
intensified anthropogenic disturbance.
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coastal zone 
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green 

Mudflat 
Distributed in tidal flats 
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into the sea 
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white in colour 
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ders, the colour 

is earthen yellow 

Raft It’s found all over the bay 

 

Regular shape, 
dark blue colour 

 

Regular shape, 
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Land Cover Type Distribution Area
Image Interpretation Key and Remote Sensing Image Feature
Landsat 8 OLI Sentinel-2
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Table A1. Cont.

Land Cover Type Distribution Area
Image Interpretation Key and Remote Sensing Image Feature
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Table A2. The band parameter of Landsat 8 OLI and Sentinel-2 satellite remote sensing images used
in this study.

Senor Band Number and Name Central Wavelength (µm) Resolution (m)

Landsat8 OLI

Band1 Coastal 0.443 30
Band2 Blue 0.483 30

Band3 Green 0.563 30
Band4 Red 0.655 30
Band5 NIR 0.865 30

Band7 SWIR 2 2.200 30

Sentinel-2 MSI

Band2 Blue 0.490 10
Band3 Green 0.560 10
Band4 Red 0.665 10
Band8 NIR 0.842 10

Table A3. Summary of accuracy values associated with the remote sensing interpretation of the
marine cover in the study area.

Year Overall Accuracy Producer’s Accuracy User’s Accuracy Kappa Accuracy

2013 0.924 0.904 0.932 0.901
2014 0.951 0.934 0.967 0.934
2015 0.871 0.850 0.901 0.832
2016 0.926 0.914 0.930 0.902
2017 0.923 0.912 0.910 0.9
2018 0.945 0.926 0.941 0.928
2019 0.926 0.858 0.939 0.903
2020 0.940 0.923 0.918 0.922
2021 0.929 0.927 0.899 0.907
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Table A4. User’s accuracy and producer’s accuracy of different land cover type in 2013, 2018,
and 2021.

Land
Cover
Type

2013 2018 2021
Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

Sea Water 0.817 0.915 0.696 0.946 0.845 0.863
Raft 0.906 0.886 0.974 0.886 0.949 0.886
Cage 0.793 0.913 0.793 0.982 0.793 0.895
Pond 0.967 0.958 0.974 0.959 0.945 0.939

Mudflat 0.923 0.860 0.986 0.956 0.918 0.981
Vegetation

Cover 1 0.977 1 1 1 1

Construction
Land 0.875 1 1 0.833 1 0.667

Salt Pans 0.951 0.947 0.983 0.963 0.963 0.959

Table A5. Accuracy of field verification of remote sensing image classification results.

Land Cover Type The Number of
Ground Truth Points

Accuracy
Landsat 8 OLI Sentinel-2

Pond 150 0.853 0.866
Mudflat 80 0.801 0.838

Raft 260 0.835 0.840
Cage 100 0.813 0.833

Seawater 80 0.805 0.812
Vegetation cover 20 0.871 0.885

Salt pan 60 0.822 0.850
Construction land 50 0.862 0.878

Table A6. Data for factors (q and p) controlling change in areas for different types of mariculture.

Factors\Name
RM CM PM MM

q p q p q p q p

F1 0.731 0.000 0.28 0.000 0.146 0.000 0.601 0.000
F2 0.207 0.000 0.284 0.000 0.035 0.000 0.205 0.000
F3 0.188 0.000 0.066 0.000 0.013 0.000 0.195 0.000
F4 0.690 0.000 0.027 0.000 0.087 0.000 0.447 0.000
F5 0.705 0.000 0.007 0.048 0.098 0.000 0.509 0.000
F6 0.687 0.000 0.032 0.000 0.076 0.000 0.442 0.000
F7 0.476 0.000 0.085 0.000 0.127 0.000 0.890 0.000
F8 0.693 0.000 0.087 0.000 0.081 0.000 0.526 0.000
F9 0.476 0.000 0.113 0.000 0.764 0.000 0.901 0.000

F10 0.155 0.000 0.116 0.000 0.047 0.000 0.151 0.000
F11 0.164 0.000 0.039 0.038 0.076 0.000 0.407 0.000
F12 0.160 0.000 0.036 0.111 0.048 0.000 0.164 0.000
F13 0.165 0.000 0.038 0.050 0.077 0.000 0.407 0.000
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