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Abstract: Hyperspectral image (HSI) classification has recently been successfully explored by using
deep learning (DL) methods. However, DL models rely heavily on a large number of labeled
samples, which are laborious to obtain. Therefore, finding a way to efficiently embed DL models
in limited labeled samples is a hot topic in the field of HSI classification. In this paper, an active
learning-based siamese network (ALSN) is proposed to solve the limited labeled samples problem
in HSI classification. First, we designed a dual learning-based siamese network (DLSN), which
consists of a contrastive learning module and a classification module. Secondly, in view of the
problem that active learning is difficult to effectively sample under the extremely limited labeling cost,
we proposed an adversarial uncertainty-based active learning (AUAL) method to query valuable
samples, and to promote DLSN to learn a more complete feature distribution by fine-tuning. Finally,
an active learning architecture, based on inter-class uncertainty (ICUAL), is proposed to construct a
lightweight sample pair training set, fully extracting the inter-class information of sample pairs and
improving classification accuracy. Experiments on three generic HSI datasets strongly demonstrated
the effectiveness of ALSN for HSI classification, with performance improvements over other related
DL methods.

Keywords: hyperspectral image (HSI) classification; limited labeled samples problem; active learning;
siamese network

1. Introduction

Benefiting from the rapid developments of hyperspectral imaging technology, hyper-
spectral sensors acquire a wide range of different bands from the electromagnetic spectrum.
The resultant hyperspectral image (HSI) contains an enormous amount of spectral and
spatial information representing texture, border, and shape of ground objects. Owing to the
specific characteristics of ground objects, HSI can identify each individual pixel accurately.
So far, a variety of applications have been developed based on HSI, such as agricultural
applications [1], anomaly detection [2] and marine monitoring [3].

As a popular direction of research, DL performs excellently in feature extraction
and learning ability [4–6], and this has caught the attention of experts in the HSI classifi-
cation field. There are many famous DL models for HSI classification, such as stacked
autoencoder (SAE) [7], convolutional neural network (CNN) [8], recurrent neural net-
work (RNN) [9], deep belief network (DBN) [10], long short-term memory (LSTM) [11],
and generative adversarial networks (GAN) [12]. In these frameworks, CNN has domi-
nated the main structure of DL in HSI classification. The architecture of CNN evolved
from 1-D CNN to 3-D CNN. One-dimensional CNN was used in the early stage of HSI
classification to extract spectral features [13]. However, 1-D CNN neglected the spatial
dimension characteristics of ground objects. To make full use of spatial information, 2-D
CNN was developed to acquire HSI information from the spatial domain [14,15]. Later,
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combined with three-dimensional features of HSI, 3-D CNN was proposed to simulta-
neously extract spatial and spectral information, further deepening the application of
CNN in HSI classification [16,17].

However, traditional CNN still has shortcomings, such as the limitation of the local
receptive field. The attention mechanism has been intensively studied in recent years to
learn sufficient and detailed spectral–spatial features in the field of DL. Zhou et al. [18]
proposed a spectral–spatial self–mutual attention network, which aimed to construct the
correlation between spectral domain and spatial domain through self-attention and mutual
attention. Dong et al. [19] used a superpixel-based graph attention network and pixel-
based CNN to construct deep features. Through the weighted fusion of each specific
feature and the cross information between different features, the recognition ability of
the model was improved.

Despite acquiring success in HSI classification, DL models primarily depend on
massively labeled samples. Meanwhile, the labeling process is laborious. Thus, making DL
models perform well in small labeled sample environments is a hotspot in the field of HSI
classification [20]. Many studies have focused on building DL paradigms with few labeled
samples, such as transfer learning [21], active learning [22], and few-shot learning [23] to
solve this problem.

Specifically, transfer learning aims to identify the labels in the target domain based
on information from the source domain. The primary operating paradigm of transfer
learning is deep feature distribution adaptation. Yang et al. [21] first combined transfer
learning with DL for HSI classification. The model pre-trains with training samples of
source domain and then transfers to the target domain by fine-tuning the parameters of
the network, accommodating the new feature distribution. Subsequent transfer learning
models basically abide by the above technical lines [24–26].

Active learning aims to assess and sort the candidate instances by designing metrics
and querying labels for the representative samples. After iterations of purposeful query,
valuable samples are chosen and labeled again for the model to fine-tune. A few advanced
active learning strategies are designed for HSI, such as Bayesian CNN [27] and super-
pixel and neighborhood assumption-based semi-supervised active learning (SSAL-SN) [28].
By means of active learning, a reduction in labeling expenses can be achieved. In fact,
many active learning strategies combine with posterior probability, which rely on another
classifier to query valuable samples [29–31]. Tuia et al. [29] used the distance of feature to
the hyperplane as the posterior probability to exclude samples with similar information.
Li et al. [30] first used autoencoder to extract deep features and measured uncertainty of a
given sample through category probability output by neural network. Hu et al. [31] used
posterior probability distribution to evaluate the interior indeterminacy of multi-view and
to learn the exterior indeterminacy of samples.

Few-shot learning focuses on fully exploring the deep relationship between samples
to build a discriminatory decision boundary [20]. Many DL networks that combine with
few-shot learning have been studied in HSI classification, such as the siamese network [32],
the prototype network [33] and the relation network [34]. Zhao et al. [32] designed a
two-branch siamese network with shared parameters to learn the differences between
features. In [33], a prototype network combining residual network and prototype learning
mechanism was constructed for enhancing homogeneity in the same class and separation
in different classes. To model the complex relationship among samples, Deng et al. [34]
introduced relation network to replace feature extractor and metric module with deep
learning.

Furthermore, the above DL paradigms can be combined to learn more useful knowl-
edge from a small sample pool. Deng et al. [35] used active learning to find more generic
samples to fine-tune the network in transfer learning. Li et al. [36] combined a prototypical
network with active learning to request labels from valuable examples to enhance the
network’s ability in extracting features.
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The essential reason for the limited labeled sample problem is the unreliable minimiza-
tion of empirical risk. It is difficult for the model to learn the complete data distribution
from limited training samples, resulting in prediction bias. Although effective model
architectures and learning paradigms can be used to deal with this problem, they ignore the
influence of the quality of training samples on the classification ability of the model in the
limited labeled samples problem. We believe that if representative samples can be obtained,
the model can learn more deep features and fit a more complete feature distribution with
a limited labeling cost. Therefore, in this paper, we focused on the quality of the original
input. Siamese network and active learning were used to evaluate and find samples with
feature uncertainty. By training a small number of representative samples to help the
model learn a complete data distribution, we corrected a large number of testing sample
misclassifications.

In this paper, an active learning-driven siamese network (ALSN) is proposed. First,
a dual learning-based siamese network (DLSN) was designed for the limited labeled
samples problem. The DLSN used multiple sets of convolution kernels to extract sample
features. Then, the contrastive learning module learnt to distinguish the intra-class and
inter-class relationships, and the classification module learnt the characteristics of these
samples from another perspective. Second, an adversarial uncertainty-based active learning
method (AUAL) was proposed for the minimal labeling cost requirement. This method
aimed to use posteriori probability of classification to query samples that had a conflicting
probability of being classified into different categories, providing the DLSN with a few
high-value samples on which to focus for more indistinguishable feature relationships. In
addition, regarding the problem that traditional active learning only considers the value of
a sample on one side of the decision boundary, an active learning architecture, based on
inter-class uncertainty (ICUAL), was designed. By feeding original samples of different
categories into the DLSN, deep features were extracted and fused. After multiple nonlinear
projections, the inter-class uncertainty was evaluated by using the output of the negative
sample pairs. Those with high inter-class uncertainty were queried, and combined with all
positive sample pairs to construct lightweight training sample pair sets. Finally, the network
was fine-tuned to improve the classification accuracy.

To sum up, the main innovations of this study can be generalized as follows:

• A DLSN is designed to extract features of HSI. The network consists of a contrastive
learning module and a classification module. The former contrastively learns deep
relationships between sample pairs, and the latter learns the features of samples and
guides classification.

• We propose an adversarial uncertainty-based active learning method (AUAL) which
is able to query class-adversarial samples at the edge of the decision boundary for
fine-tuning the network.

• We propose an active learning architecture based on inter-class uncertainty (ICUAL).
By measuring the uncertainty of sample pairs, the instances located on both sides of
the inter-class decision boundary are queried and sent to the training set. The classifi-
cation ability of the model can be optimized by strengthening the inter-class feature
comparison.

2. Related Work
2.1. Siamese Network

The siamese network consists of a dual branch with shared parameters. Since the
input of the siamese network is a sample pair, constructed by two samples, the training data
set can be augmented through sample pairing. The siamese network can learn differences
between features by extracting the deep feature of a sample pair and judging the similarity
with specific matching functions, which is called contrastive learning. The aim of the
siamese network is to cluster intra-class samples and separate out samples of inter-class.
Specifically, during the training process, when matched, the distance of a sample pair is
reduced by the constructive loss function. If unmatched, the sample pair forces the loss
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function to increase the distance. The contrastive loss function of the siamese network is
defined by:

loss = ȳ ∗ d2 + (1− ȳ) ∗max(margin− d, 0)2, (1)

where ȳ indicates whether the sample pair belong to the same class or not. If two samples
belong to the same class, ȳ = 1. Otherwise, ȳ = 0. d denotes the similarity distance
between two sides of a sample pair. margin is the threshold that controls the loss of
negative sample pairs. The traditional siamese network can only obtain the similarity
between samples, which makes it difficult to perform the classification task. To integrate
the siamese network and the classifier into an end-to-end framework, Cao [37] added
a classification structure to the siamese network, calculating the loss of each individual
sample and training the classifier. Xue [38] designed a lightweight siamese structure for
feature fitting and fast classification.

2.2. Active Learning-Based DL Model

Active learning is an advanced strategy to obtain the most valuable samples through
iterative queries for the model to effectively fine-tune. Active learning strategies have
been widely used in the field of machine learning, such as breaking ties [39], normalized
entropy [29], uncertainty sampling [40] and Margin sampling [41]. Since DL models are
usually composed of CNN and classifiers, active learning can evaluate the uncertainty score
by the posterior probability of sample categories that the deep learning model predicts and
thereby select valuable samples. The combination of active learning and DL models has
been studied for HSI classification. Specifically, Li [30] proposed a framework combining
a multi-class-level uncertainty criterion with stacked auto-encoder. Cao [42] unified best-
versus-second best (BvSB) [43] and CNN into a single framework, exploiting the powerful
feature extraction capability of CNN as well as the effective labeling efficiency of active
learning. Xue [44] designed a deep active learning method based on BvSB to measure the
spatial uncertainty and information diversity of candidate samples.

3. Proposed Framework

In this section, we first explain the operation of ALSN and then explain the various
parts of the framework. As shown in Figure 1, ALSN consists of the DLSN, AUAL and
ICUAL. Firstly, the DLSN, which consists of a contrastive learning module and a classifica-
tion module, is pre-trained by a few samples and sample pairs. The remaining samples and
negative sample pairs together form the candidate pool. Then, the pre-trained DLSN uses
the classification module to extract deep features of the candidate samples and output the
probabilities that the candidate samples belong to each class. According to the class proba-
bility provided by the DLSN, AUAL actively queries the class-adversarial samples from
the candidate pool into the training data set, which are used with pre-training samples to
fine-tune the network. After AUAL, the newly labeled and previous training samples form
the sample pairs. Positive sample pairs are directly sent to the training set, and negative
sample pairs are sent to the candidate pool. The contrastive learning module fuses features
of the negative sample pair and outputs the probability that the candidate sample pair
belongs to a negative class. Next, ICUAL queries the negative sample pairs with inter-class
uncertainty from the candidate pool, constructs the lightweight sample pair training set,
and optimizes the model from both ends of the decision boundary through fine-tuning,
which further enhances the classification ability of the DLSN.
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Figure 1. Graphical illustration of active learning-driven siamese network (ALSN). First, the clas-
sification module of DLSN is used to actively query instances for fine-tuning and new sample pair
construction. Second, the contrastive learning module is used to actively query instances with
inter-class uncertainty from the negative sample pair pool for fine-tuning.

3.1. Dual Learning-Based Siamese Network

As shown in Figure 2, our proposed dual learning-based siamese network (DLSN)
includes a contrastive learning module and a classification module. To facilitate the in-
troduction of these two modules, we first introduce two training data formats of the
model. The HSI dataset includes C categories of ground objects. We set D samples
in each class as the training datasets. The training dataset of the Cth class could be
represented as XC = [x(C,1), ..., x(C,D)]. The label of training samples could be denoted
by YC = [y(C,1), ..., y(C,D)] and y(C,1) =, ...,= y(C,D). Thus, the training data set of the
classification module was A = [(X1, Y1), ..., (XC, YC)]. For any two samples xi and xj,
i, j ∈ 1, ..., C×D, a sample pair Hij = [xi, xj] was constructed, which was the data set of the
contrastive learning module. The label was formulated as below:

f(x) =

{
0 , yi = yj

1 , yi 6= yj
(2)

Figure 2. Graphical illustration of dual learning-based siamese network (DLSN).

In the contrastive learning module, we first used a two-branch DLSN with shared
weight parameters to extract the features of sample xi and xj in the sample pair Hij. Then,
two sets of features h(xi) and h(xi) were fused as hij and fed into the nonlinear projection
layer [45] to obtain refined features of the sample pair. Finally, we used the binary classifier
to match the probability of sample pairs. We used a binary cross-entropy loss function to
partly adjust the network in this module, which is described as:

l = −ȳ ∗ log(ŷ)− (1− ȳ) ∗ log(1− ŷ), (3)
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where ȳ and ŷ denote class probability and the label of a sample pair Hij. During train-
ing, the module constantly contrasts the feature similarity of Hij to learn the ability of
distinguishing the relationship feature between positive and negative sample pairs.

For the classification module, we used the DLSN trained by the contrastive learning
module to extract the deep features from labeled training samples and we used multi-
category cross-entropy loss for supervisory learning, represented as:

L = −
C

∑
k=1

yk ∗ log(ỹk), (4)

where C represents the number of the category, y is the kth label, and ỹk is the probability
of the kth label the model predicts.

The detailed structure of DLSN is shown in Table 1. The encoder includes a 3D convo-
lution layer, 2D convolution layer, batch normalization layer and ReLU layer. The adaptive
global pooling layer was adopted to further down sample the features. Then, in the con-
trastive learning module, the nonlinear projection head is composed of a fully connected
layer and ReLU layer, designed to learn fused sample pair feature representation. Finally,
the two modules all use the fully connected layer for classification.

Table 1. Details of the dual learning-based siamese network (considering PaviaU dataset as an
instance).

Layer Output Shape Output Shape Layer

Input (1,20,15,15) × 2 (1,20,15,15) Input
Conv3d (8,14,13,13) ×2 (8,14,13,13) Conv3d

BatchNorm3d (8,14,13,13) ×2 (8,14,13,13) BatchNorm3d
ReLU (8,14,13,13) ×2 (8,14,13,13) ReLU

Conv3d (16,10,11,11) ×2 (16,10,11,11) Conv3d
BatchNorm3d (16,10,11,11) ×2 (16,10,11,11) BatchNorm3d

ReLU (16,10,11,11) ×2 (16,10,11,11) ReLU
Conv3d (32,8,9,9) ×2 (32,8,9,9) Conv3d

BatchNorm3d (32,8,9,9) ×2 (32,8,9,9) BatchNorm3d
ReLU (32,8,9,9) ×2 (32,8,9,9) ReLU

Conv2d (64,7,7) ×2 (64,7,7) Conv2d
BatchNorm2d (64,7,7) ×2 (64,7,7) BatchNorm2d

ReLU (64,7,7) ×2 (64,7,7) ReLU
AdaptiveAvgPool2d (64,4,4) ×2 (64,4,4) AdaptiveAvgPool2d

Linear (1024) ×2 (1024) Linear
Concatenate (2048) - Concatenate

Linear (512) (512) Linear
ReLU (512) (512) ReLU
Linear (128) (9) Linear
ReLU (128) - -
Linear (32) - -
ReLU (32) - -
Linear (2) - -

Contrastive learning module Classification module

Since each sample forms multiple pairs with other samples, abundant sample pairs
heavily increase the training cost of the DLSN. Further, negative sample pairs outnumbered
the positive. If there are no constraints on the model, DLSN pays serious attention to
inter-class distance, while ignoring the convergence of intra-class distance. So we adopted
a random selection strategy [38] to choose a few equal proportions of positive and negative
sample pairs for training during each epoch. The random selection strategy was proved to
ensure a balance of positive and negative sample pairs and accelerated the training speed.
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3.2. Adversarial Uncertainty-Based Active Learning (AUAL)

The common goal of the siamese network and of active learning is to acquire stronger
classification ability with the least labeling cost. Therefore, we believe that the combination
of these two methods is meaningful for dealing with limited labeled samples problem.
However, if the siamese network, with high classification ability, is taken as the backbone
network of active learning, it is a problem as to whether the active learning method, based
on posterior probability, can query the really valuable samples under the requirement of
minimal labeling cost.

Based on this problem, we propose a method called adversarial uncertainty-based
active learning (AUAL) to accurately query valuable samples under small sample problems.
First, the posterior probability-based active learning method measures the uncertainty of
samples through the backbone network, aiming at the confusion degree of samples in the
feature space. We believe that a sample set queried in this way can still be subdivided into
class-adversarial samples and class-chaotic samples. Class-adversarial samples are those
that have conflicting probability of being classified into a limited number of categories
during the classification process. These samples are usually located close to the decision
boundaries of specific groups of categories. The class-chaotic samples refer to the instances
with relatively balanced and generally low probability of being classified into various
categories in the classification process. These samples are located at multiple sets of the
edge of decision boundaries. Class-adversarial samples and class-chaotic samples can be
queried as Equations (5) and (6):

argmin[(1− Pfirst ∗ Psecond) ∗ (Pfirst − Psecond + q)], (5)

argmin[(Pfirst ∗ Psecond) ∗ (Pfirst − Psecond + q)], (6)

where Pfirst stands for the best posterior probability of category and Psecond denotes the
second-largest posterior probability of category. q is a constant used to prevent invalid
calculation due to the same Pfirst and Psecond.

We believe that in the limited labeled samples problem, it is more valuable to provide
class-adversarial samples for the backbone network with high classification ability. Training
these samples can precisely fine-tune some missing decision boundaries and help the model
learn a more complete data distribution. Class-chaotic samples are more suitable for the
backbone network with low classification ability. By training these samples, multiple
decision boundaries can be optimized simultaneously with less labeling costs.

Therefore, in our framework, DLSN is set as the backbone network, and Formula (5)
is iteratively used to query class-adversarial samples for labeling. After these samples are
sent to the data set, the classification ability of the DLSN can be improved by fine-tuning at
minimal labeling cost.

3.3. Inter-Class Uncertainty-Based Active Learning (ICUAL)

In our framework, as the iteration progresses, new instances and previous samples
form many negative sample pairs. There are many redundant instances that cannot provide
effective features in these negative sample pairs. Therefore, we believe that by eliminating
abundant invalid negative sample pairs and mining valuable instances, the model can
accurately learn and distinguish the characteristics of inter-class relationship, and avoid
underfitting. However, traditional active learning, based on posteriori probability, queries
individual samples at the decision boundary. This method essentially queries the samples
that unilaterally change the decision boundary by fine-tuning the feature encoder, which
is not suitable to measure inter-class relationships. Inspired by the siamese network, we
propose an active learning architecture based on inter-class uncertainty (ICUAL). By ac-
tively querying inter-class instances located at both ends of the decision boundary, we
constructed a lightweight sample pair data set. The decision boundary could be purposely
optimized by simultaneously strengthening the inter-class feature contrast on both sides of
the decision boundary.
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Specifically, in the pre-training process of the model, we only used all the positive
sample pairs and the same number of negative sample pairs as the positive sample pairs to
construct a pre-training data set, and the rest were sent to the candidate pool. Meanwhile,
we paired the samples queried in each iteration with the training samples. The positive
sample pairs were added to the training data set, and the negative sample pairs were added
to the candidate pool. After each iteration of AUAL, the ICUAL started in time. Through
purposeful iterative screening, we formed a small and precise sample pair training set,
providing more valuable inter-class features for the model. It is worth mentioning that,
at the end of contrastive learning module we designed there is a binary classifier, which
provides a metric method of inter-class uncertainty. As shown in the Figure 3, we input the
entire sample pair candidate pool, and the features of each unit in the sample pair fused after
being extracted by the encoder. After multiple layers of nonlinear projection, the classifier
output the classification probability of negative instances. We used the following formula
to query instances that lay on the binary classification boundary:

argmin[|0.5− PNegative(Hij)|], (7)

where PNegative indicates the probability of negative class. In this way, all positive sample
pairs and selected negative sample pairs could be regarded as a small and refined training
set. Under the premise of using positive sample pairs to ensure intra-class aggregation,
the samples on both sides of the decision boundary were fully mined. The decision
boundary was jointly optimized through precise fine-tuning of negative sample pairs
composed of bilateral samples. At the same time, in order to achieve the coordination of
training cost and classification accuracy, we conducted multiple rounds of ICUAL after
each iteration of AUAL. By means of dynamic supplementation, DLSN could be prevented
from losing valuable features. Therefore, by training these valuable negative sample pairs,
the ability of the contrastive learning module to distinguish inter-class or intra-class features
could be greatly improved, thereby enhancing the ability of the DLSN to capture the global
feature distribution and make classification decisions.

Figure 3. Graphical illustration of inter-class uncertainty-based active learning (ICUAL).

Synthesizing the above methods, the pseudo code of the ALSN algorithm can be seen
in Algorithm 1.
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Algorithm 1 Active Learning-driven Siamese Network (ALSN) for Hyperspectral Im-
age Classification.

1: Input:

D_1 training sample set

D_2 training sample pair set

U_1 candidate unlabeled sample set

U_2 candidate labeled sample pair set

N_1 the number of samples to query

N_2 the number of negative sample pairs to query

R_1 max iteration to query samples

R_2 max round to query sample pairs

2: Initialization: k = 0, i = 0

3: for k = 0 to R1-1 do

4: calculate class probability of candidate sample in U_1

5: select N_1 instances from U_1 by AUAL

6: update D_1=D_1
⋃

N_1 and U_1=U_1 \N_1

7: fine-tune the DLSN

8: for i = 0 to R2-1 do

9: calculate class probability of candidate sample pair in U_2

10: select N_2 instances from U_2 by ICUAL

11: update D_2=D_2
⋃

N_2 and U_2=U_2 \N_2

12: fine-tune the DLSN

13: end for

14: end for

15: Output: Make predictions for the testing data with the trained DLSN.

4. Experiments
4.1. Data Sets

• University of Pavia (PaviaU): The PaviaU HSI was captured on July 8 by ROSIS.
The wavelength of this HSI was in the range of 0.43–0.86 µm, which was divided into
103 Spectral bands. The image sizes of PaviaU were 610 pixels high and 340 pixels
wide, with 1.3m spatial resolution. The false-color sample image of PaviaU and the
ground-truth classification map are shown in Figure 4a,b. A total of 9 different classes
and 42,776 labeled samples were contained in the ground-truth map. Specific class
information of ground objects can be seen in Table 2.

• Salinas: The second dataset was Salinas HSI, which was acquired in Salinas Valley,
California by AVIRIS. The wavelength of this HSI was in the range of 0.4–2.5 µm,
which was divided into 204 Spectral bands. The image sizes of Salinas were 512 pixels
high and 217 pixels wide. This data set was characterized by a spatial resolution of 3.7
m. The false-color sample image of the Salinas and the ground-truth classification map
are shown in Figure 5a,b. A total of 16 different classes and 54,129 labeled samples
were contained in the ground-truth map. Specific class information of ground objects
can be seen in Table 2.
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(a) (b)

Figure 4. PaviaU. (a) False-color image, (b) Ground-truth map.

(a) (b)

Figure 5. Salinas. (a) False-color image, (b) Ground-truth map.
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• Yellow River Delta (YRD): The third data set was YRD, which was recently captured
over the Yellow River Delta wetland in China by ZY-02D AHSI. The wavelength of
this HSI was in the range of 0.395–2.501 µm, which was divided into 119 Spectral
bands. The image sizes of YRD were 1147 pixels high and 1600 pixels wide. This data
set was characterized by a spatial resolution of 30 m. The false-color sample image of
the YRD and the ground-truth classification map are shown in Figure 6a,b. A total of
23 different classes and 9825 labeled samples were contained in the ground-truth map.
Specific class information of ground objects can be seen in Table 2.

(a) (b)

Figure 6. Yellow River Delta. (a) False-color image, (b) Ground-truth map.

4.2. Experimental Settings

• For hyperparameters: For DLSN, the learning rate parameters of training samples and
sample pairs were initialized with 0.001. The reduced dimension after PCA for the
three datasets were 20, 40, 40. The patch size was set as 15 × 15. The above settings
were discussed in the hyperparameter analysis. Respectively, we set the weight decay
of the classification module to 0.00005 during training. The batch size and training
epoch were set as 64 and 40. Since there are two stages of pre-training and fine-tuning
in ALSN, we set 20 epochs for pre-training, and 10 and 15 epochs for fine-tuning after
AUAL and ICUAL.

• For sample selection: There were two sampling selection strategies in this paper. For
naive DLSN, we randomly selected 10 samples per class for hyperparameter analysis
and 19 samples per class for comparison analysis. For ALSN, we set 15 iterations for
ablation analysis. We randomly selected 10 samples per class for pre-training. Then
9, 16 and 23 samples were individually queried during each active learning iteration
for the three datasets. In addition, the number of negative sample pairs selected by
ICUAL were discussed in ablation analysis.

• For performance comparison: Three-dimensional convolutional neural network (3-D
CNN) [17], spectral—spatial residual network (SSRN) [46], spectral–spatial unified
network (SSUN) [47], similarity-based deep metric model (S-DMM) [34] and deep
active learning (CNN–AL–MRF) [42] were adopted to be compared with our proposed
DLSN and ALSN. The five methods included three commonly used DL models, one
advanced few-shot learning model, and one advanced deep active learning model.

• Experiment environment and Indicators: We used PyTorch 1.71 with Intel Core i5
(10,300 H) CPU GeForce RTX 2060 (6 GB) and 16 GB random access memory to
perform a series of experiments. All experiments were performed independently and
the average results of ten runs were saved. Meanwhile, we adopted overall accuracy
(OA), average accuracy (AA), and Kappa coefficient (κ) to evaluate the experimental
results. Moreover, train time (s) and test time (s) were used for complexity comparison.
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Table 2. Classes of ground objects with number of labeled samples for three data sets.

PaviaU Salinas YRD

Class Object Number Class Object Number Class Object Number

Asphalt 6613
Broccoli

green
weeds 1

20,093 Reed 310

Meadows 18,649
Broccoli

green
weeds 22

3726 Spartina
alterniflora 187

Gravel 2099 Fallow 1976 Salt filter
pond 247

Trees 3064 Fallow
rough plow 1394

Salt evapo-
ration
pond

300

Painted
metal
sheets

1345 Fallow
smooth 2678 Dry pond 140

Bare soil 5029 Stubble 3959 Tamarisk 127
Bitumen 1330 Celery 3579 Salt pan 306

Self-
Blocking

Bricks
3682 Grapes

untrained 11,271 Seepweed 218

Shadows 947
Soil

vineyard
develop

6203 River 584

Corn
senesced

green
weeds

3278 Sea 4694

Lettuce
romaine

4wk
1068 Mudbank 14

Lettuce
romaine

5wk
1927 Tidal creek 67

Lettuce
romaine

6wk
916 Fallow land 459

Lettuce
romaine

7wk
1070

Ecological
restoration

pond
310

Vineyard
untrained 7268 Robinia 111

Vineyard
vertical
trellis

1807 Fishpond 124

Pit pond 128
Building 398
Bare land 87

Paddyfield 508
Cotton 332

Soybean 71
Corn 103

Total 42,776 54,129 9825

4.3. Hyperparameter Analysis

In this part, we used 10 samples per class and all sample pairs as the data set. Dur-
ing each epoch, with the aim of analyzing the impacts of learning rate on DLSN, the learning
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rate of sample and sample pair were set in [1× 10−5, 5× 10−5, 1× 10−4, 5× 10−4, 1× 10−3,
5× 10−3, 1× 10−2]. The evolution curve of OA, influenced by the learning rate of sample
and sample pair, is demonstrated in Figure 7a,b. From the curve change results, OA was
generally higher than the others when the two learning rates were set to 1× 10−3. Therefore,
the learning rates of DLSN were fixed as 1× 10−3.

With the aim of analyzing the influence on the number of PCs on OA, we set this
parameter in the range of [10, 20, · · · , 100, 103] in PaviaU, [10, 20, · · · , 200, 204] in Salinas,
and [10, 20, · · · , 110, 119] in YRD. The evolution curve of OA influenced by this parameter
is demonstrated in Figure 7c. Specifically, for PaviaU, DLSN could get the highest OA when
the number of PCs were retained as 20, so we retained 20 PCs for this data set. Likewise,
for the other two data sets, we set the number of PCs as 40.

Regarding the input sample size, we set the patch size in the range of [9, 11, 13, 15, 17,
19]. The evolution curve of OA influenced by this parameter is demonstrated in Figure 7d.
As can be seen, with the increase of the patch size, the OA of classification gradually
improved. When the patch size was set to 15 × 15, the OA of DLSN basically stopped
increasing, so the patch size was determined to be 15 × 15.

(a) (b)

(c) (d)

Figure 7. Evolution of OA (%) as a function of (a) Learning rate of sample, (b) Learning rate of
sample pair, (c) The number of PCs, (d) Patch size.

4.4. Ablation Analysis
4.4.1. Adversarial Uncertainty-Based Active Learning (AUAL)

In this experiment, we used 10 samples per class and all sample pairs as a pre-training
data set. A total of 15 iterations of each active learning strategy were conducted for the
three above HSI datasets. The backbone network used was DLSN. The experiment using
this method was repeated 10 times.

We first compared the labeling value of class-chaotic samples and class-adversarial
samples in the small sample problem. We visualized the classification probability of class-
chaotic sample and class-adversarial sample in Table 3. The probability of each category of
the class-chaotic sample was relatively average and low. Marking and training such samples
could optimize multiple decision boundaries simultaneously. Meanwhile, the probabilities
of class 3 and 8 of class-adversarial sample were similar and far higher than that of other
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categories. Labeling and training of such samples could improve the classification ability
of these two categories purposefully.

Table 3. The classification probability obtained by DLSN for class-chaotic and class-adversarial
samples (considering PaviaU dataset as an instance).

Class-Chaotic Sample Class-Adversarial Sample

Input Class5: 0.018 input Class5: 0.000

Class1: 0.269 Class6: 0.104 Class1: 0.000 Class6: 0.000

Class2: 0.265 Class7: 0.003 Class2: 0.012 Class7: 0.000

Class3: 0.108 Class8: 0.042 Class3: 0.488 Class8: 0.488

Class4: 0.068 Class9: 0.123 Class4: 0.003 Class9: 0.009

Then, we compared the impact of labeling these two types of samples on the classifica-
tion accuracy of the model, namely, adversarial uncertainty-based active learning (AUAL)
and chaotic uncertainty-based active learning (CUAL). We also added three classical active
learning methods for comparison, namely, BvSB, entropy measure (EP) [43] and random
sampling (RS). We report the evolution of OA values for iterations [1, 3, 6, 9, 12, 15] in
Figure 8.

(a) (b) (c)

Figure 8. Evolution of OA (%) obtained by different active learning strategies as a function of iteration.
(a) PaviaU, (b) Salinas, (c) YRD.

As can be seen, under the condition that there were only a few labeling costs in each
iteration, the improvement effect of querying class-adversarial samples on model classifi-
cation ability was continuously higher than that of class-chaotic samples. This confirmed
our idea that in the small sample problem, the backbone network with higher classification
accuracy needs to learn the missing distribution features more by supplementing the class-
adversarial samples. In addition, compared with the other three active learning methods,
AUAL could achieve the best performance, which verified the rationality of AUAL.
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4.4.2. Inter-Class Uncertainty-Based Active Learning (ICUAL)

To verify the effectiveness of ALSN with ICUAL, we first analyzed the number of
negative instances and iterations required by ICUAL after the first iteration of AUAL. We
chose 10 samples per class, all the positive sample pairs and a few negative sample pairs
equal to the number of the positive as the pre-training data set. After choosing samples
by AUAL, we first fine-tuned the DLSN and then set the rounds of ICUAL from [1, 2, 3,
4, 5]. The number of negative sample pairs were selected from [100, 200, 300, 400, 500].
The average OA are shown in Figure 9. Considering the classification accuracy, we set the
optimal combination of [4, 200] for PaviaU, [2, 300] for Salinas and [2, 200] for YRD.

(a) (b)

(c)

Figure 9. The impact of different ICUAL rounds and number of sample pairs on OA (after the first
AUAL iteration). (a) PaviaU, (b) Salinas, (c) YRD.

Then, we conducted the experiment with 15 iterations of ALSN to evaluate the superi-
ority of ICUAL. As can be seen in Figure 10, with the combination of AUAL and ICUAL,
DLSN achieved higher classification accuracy. The averaged OA of 9 iterations and total
number of training sample pairs are summarized in Table 4. The OA of ALSN with AUAL
and ICUAL exceeded ALSN with naive AUAL on three data sets. Furthermore, the number
of pairs for training, when using AUAL and ICUAL, was much smaller than whenusing
naive AUAL. We believe that this was because AUAL provided a huge sample pair set,
which was full of a large number of contradictory or invalid inter class features. Therefore,
DLSN with high classification ability would not only fail to really learn useful knowledge
in the training process, but also encounter over-fitting. From the perspective of active
learning, ICUAL queries the samples at both ends of the decision boundary and sends
them into the training set in the form of negative sample pairs. This not only reduces the
redundancy of the sample pair, but also optimizes the classifier by comparing the features
at both ends of the decision boundary.
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(a) (b)

(c)

Figure 10. Evolution of OA (%) obtained by AUAL and AUAL+ICUAL as a function of iteration. (a)
PaviaU, (b) Salinas, (c) YRD.

Table 4. Comparison of AUAL and AUAL + ICUAL after 9 iterations.

Data Sets Method OA Num of Pairs

PaviaU AUAL 96.06 ± 1.56 14,535
AUAL+ICUAL 96.97 ± 0.87 8884

Salinas AUAL 96.87 ± 0.87 46,056
AUAL+ICUAL 97.55 ± 0.74 10,267

YRD AUAL 96.23 ± 0.87 95,266
AUAL+ICUAL 97.20 ± 0.28 7660

Note: Num of pairs represents the total number of sample pairs that participated in the training.

4.5. Classification Results

In order to validate the superior effects of DLSN and ALSN, we compared the clas-
sification performance of different methods when 9 iterations for ALSN were conducted.
The parameters of ALSN were consistent with the results in the ablation analysis. For none
active learning methods, 19 samples per class were randomly selected as the training set.
In total, 171, 304 and 437 labeled samples in the three datasets were respectively used
for comparison.

According to the Table 5, ALSN acquired the best OA of 96.97 ± 0.87% on PaviaU data
set, which was 4.27–18.96% higher than the other DL methods. For specific accuracy of each
class, ALSN obtained the best results for 4 classes, including asphalt, meadows, bare soil
and self-blocking bricks. In addition, ALSN also achieved great performance in terms of AA
and KAPPA compared to others. For other methods, CNN-AL-MRF had good classification
results for most of the ground objects, but poor performance in the third class, which was
only correctly classified 78.53% of ground objects. S-DMM obtained the OA of 92.02± 2.71%
with a good classification ability in the classes of few ground objects. We believe that S-
DMM is equipped with a specific design to learn the complete feature distribution under
small training set scenario, which is suitable for few-shot learning naturally. For 3-D CNN,
SSRN and SSUN, the classification accuracies of these three methods were relatively low.
The classification maps are shown in Figure 11. As can be seen, ALSN could accurately
classify the samples with complex surrounding ground objects.
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According to Table 6, ALSN exceeded other methods with the best classification
effect on Salinas data set. Specifically, ALSN acquired an OA of 97.55 ± 0.74%, which
was 2.47–9.01% better than the other models. Meanwhile, ALSN also achieved great
performance on AA and KAPPA. For specific accuracy of each class, ALSN obtained
the best results for 4 classes, including grapes untrained, soil vineyard, corn senesced
green weeds and vineyard untrained. In addition, DLSN achieved the second-highest
classification accuracy after ALSN and maintained high accuracy for the test results of each
class. For CNN-AL-MRF, although equipped by the active learning method, the backbone
network of this method was not suitable for the small sample problem, resulting in 6.35%
lower than the OA of ALSN. The classification maps are shown in Figure 12. Compared to
the other methods, the whole classification map predicted by ALSN retained more detail
with less noise.

For the YRD data set, according to Table 7, ALSN achieved the best classification
results in terms of OA and KAPPA, with OA of 97.20 ± 0.28%, which had a 6.32% (3-D
CNN), 1.58% (SSRN), 10.85% (SSUN), 1.72% (S-DMM), 6.29% (CNN-AL-MRF) accuracy
increase over OA. For specific accuracy of each class, ALSN obtained the best results for
2 classes. In addition, DLSN also obtained the highest classification accuracy of 4 classes.
For specific accuracy of each class, S-DMM reached the greatest AA of 96.89 ± 0.62%.
Figure 13 shows the whole classification maps. According to the results, ALSN and DLSN
obtained more accurate results of ground feature distribution.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Classification maps predicted by different methods for PaviaU dataset. (a) Ground-truth,
(b) 3-D CNN (78.01%), (c) SSRN (88.58%), (d) SSUN (84.49%), (e) S-DMM (92.02%), (f) CNN-AL-MRF
(91.50%), (g) DLSN (92.70%), (h) ALSN (96.97%).
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Table 5. Classification accuracy (%) for PaviaU dataset (9 iterations for AL methods and 19 labeled
samples per class for other methods).

Class 3-DCNN [17] SSRN [46] SSUN [47] S-DMM [34]
CNN-AL-

MRF
[42]

DLSN (Ours) ALSN (Ours)

1 87.76 ± 3.95 93.67 ± 10.09 84.25 ± 2.78 93.30 ± 3.91 86.91 ± 4.57 90.75 ± 8.12 94.45 ± 4.76
2 93.09 ± 1.37 93.47 ± 5.83 80.38 ± 6.21 88.62 ± 4.74 92.85 ± 3.99 93.55 ± 2.53 99.35 ± 0.47
3 52.90 ± 7.36 72.86 ± 12.39 72.08 ± 8.23 92.06 ± 5.08 78.53 ± 13.66 89.66 ± 5.27 87.3 ± 7.13
4 70.84 ± 6.02 84.60 ± 15.21 97.53 ± 1.81 96.88 ± 2.19 94.07 ± 1.71 93.98 ± 2.6 93.83 ± 5.39
5 99.08 ± 1.61 99.98 ± 0.03 99.19 ± 1.20 100.00 ± 0.00 100.00 ± 0.00 99.95 ± 0.11 98.22 ± 3.66
6 64.57 ± 12.07 84.49 ± 9.10 84.14 ± 8.49 95.52 ± 3.53 95.64 ± 3.24 94.19 ± 11.23 98.51 ± 1.42
7 59.41 ± 9.41 82.97 ± 5.83 89.44 ± 3.79 99.74 ± 0.14 97.33 ± 1.65 99.02 ± 1.56 98.75 ± 1.16
8 66.40 ± 3.33 82.72 ± 4.31 91.65 ± 2.79 90.42 ± 5.07 85.71 ± 5.99 84.14 ± 9.23 94.04 ± 4.13
9 69.08 ± 3.35 91.99 ± 7.82 99.61 ± 0.30 99.97 ± 0.04 97.95 ± 0.83 98.46 ± 1.17 98.39 ± 1.42

OA (%) 78.01 ± 3.35 88.58 ± 3.76 84.49 ± 2.09 92.02 ± 2.71 91.50 ± 1.50 92.70 ± 2.00 96.97 ± 0.87
AA (%) 73.68 ± 2.82 87.42 ± 3.57 88.70 ± 1.34 95.17 ± 1.55 92.11 ± 0.94 93.75 ± 1.97 95.87 ± 1.02
κ×100 71.92 ± 3.80 84.93 ± 5.06 80.07 ± 2.45 89.66 ± 3.39 88.88 ± 1.88 90.41 ± 2.66 95.99 ± 1.15

Table 6. Classification accuracy (%) for Salinas dataset (9 iterations for AL methods and 19 labeled
samples per class for other methods).

Class 3-D CNN [17] SSRN [46] SSUN [47] S-DMM [34]
CNN-AL-

MRF
[42]

DLSN (Ours) ALSN (Ours)

1 99.91 ± 0.17 100.00 ± 0.00 96.52 ± 3.39 99.84 ± 0.28 99.88 ± 0.24 99.75 ± 0.61 98.94 ± 1.99
2 99.17 ± 0.39 99.96 ± 0.07 95.14 ± 3.68 99.78 ± 0.19 98.96 ± 2.40 99.29 ± 1.63 99.88 ± 0.31
3 93.07 ± 3.02 97.37 ± 1.55 98.46 ± 1.48 99.11 ± 2.06 98.68 ± 1.63 99.95 ± 0.10 99.77 ± 0.54
4 97.76 ± 1.66 98.16 ± 1.49 99.91 ± 0.20 99.83 ± 0.20 97.51 ± 3.16 99.81 ± 0.18 99.14 ± 1.21
5 95.36 ± 2.68 97.91 ± 1.38 98.54 ± 0.53 99.42 ± 0.36 94.54 ± 3.13 98.41 ± 1.83 98.16 ± 1.61
6 99.74 ± 0.40 100.00 ± 0.0 99.72 ± 0.37 99.94 ± 0.08 99.24 ± 0.82 99.79 ± 0.23 99.49 ± 1.06
7 98.48 ± 1.67 99.97 ± 0.05 96.80 ± 2.39 99.95 ± 0.05 99.57 ± 0.53 99.95 ± 0.07 99.49 ± 1.06
8 81.9 ± 2.74 86.78 ± 2.08 79.66 ± 7.52 82.02 ± 8.19 77.70 ± 9.18 87.33 ± 4.02 95.02 ± 3.63
9 98.18 ± 1.34 99.61 ± 0.30 99.55 ± 0.48 99.63 ± 0.59 99.89 ± 0.19 99.67 ± 0.36 99.92 ± 0.17
10 91.11 ± 3.10 93.85 ± 3.94 95.06 ± 2.60 96.17 ± 1.30 91.30 ± 3.70 96.33 ± 1.94 98.07 ± 2.04
11 95.36 ± 3.20 97.82 ± 2.67 98.40 ± 0.71 99.53 ± 0.72 99.41 ± 0.53 99.93 ± 0.10 99.44 ± 0.89
12 90.88 ± 3.73 99.18 ± 0.99 99.53 ± 0.98 100.00 ± 0.00 99.72 ± 0.34 98.83 ± 3.01 99.44 ± 1.16
13 90.80 ± 3.53 99.83 ± 0.27 99.38 ± 0.52 99.76 ± 0.23 98.62 ± 3.14 99.46 ± 0.58 98.52 ± 2.82
14 85.57 ± 6.95 95.33 ± 5.03 98.56 ± 1.40 99.39 ± 0.43 99.31 ± 0.52 96.78 ± 6.12 97.64 ± 4.58
15 64.21 ± 6.02 77.38 ± 4.09 83.32 ± 10.42 81.85 ± 5.32 78.33 ± 7.93 87.43 ± 9.92 92.92 ± 4.54
16 99.12 ± 0.74 99.31 ± 1.75 97.13 ± 2.05 98.87 ± 4.55 97.14 ± 3.01 98.66 ± 1.10 99.23 ± 0.46

OA (%) 88.54 ± 1.34 93.23 ± 0.59 92.14 ± 0.94 93.37 ± 1.39 91.20 ± 0.93 95.08 ± 1.21 97.55 ± 0.74
AA (%) 92.54 ± 0.85 96.40 ± 0.57 95.98 ± 0.67 97.19 ± 0.41 95.61 ± 0.45 97.59 ± 0.76 98.47 ± 0.52
κ×100 87.27 ± 1.47 92.47 ± 0.65 91.27 ± 1.04 92.62 ± 1.53 90.23 ± 1.01 94.52 ± 1.35 97.27 ± 0.82
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Classification maps predicted by different methods for Salinas dataset. (a) Ground-truth,
(b) 3-D CNN (88.54 %), (c) SSRN (93.23%), (d) SSUN (92.14%), (e) S-DMM (93.37%), (f) CNN-AL-MRF
(91.20%), (g) DLSN (95.08%), (h) ALSN (97.55%).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Classification maps predicted by different methods for YRD dataset. (a) Ground-truth,
(b) 3-D CNN (90.88%), (c) SSRN (95.62%), (d) SSUN (86.35%), (e) S-DMM (95.48%), (f) CNN-AL-MRF
(90.91%), (g) DLSN (94.22%), (h) ALSN (97.20%).
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Table 7. Classification accuracy (%) for YRD dataset (9 iterations for AL methods and 19 labeled
samples per class for other methods).

Class 3-D CNN [17] SSRN [46] SSUN [47] S-DMM [34]
CNN-AL-

MRF
[42]

DLSN (Ours) ALSN (Ours)

1 83.53 ± 4.05 93.70 ± 5.70 68.14 ± 7.43 84.22 ± 6.62 65.39 ± 13.13 87.01 ± 5.33 84.43 ± 5.79
2 93.67 ± 6.41 99.51 ± 0.60 80.06 ± 5.87 98.57 ± 3.11 94.94 ± 4.21 95.36 ± 5.72 93.17 ± 4.83
3 98.74 ± 1.30 98.05 ± 3.90 93.68 ± 3.85 98.15 ± 5.24 98.89 ± 1.39 96.05 ± 6.13 97.52 ± 3.73
4 89.82 ± 6.48 99.02 ± 1.61 81.49 ± 6.68 97.79 ± 3.28 96.62 ± 6.30 98.97 ± 2.08 97.16 ± 3.64
5 90.75 ± 6.67 95.86 ± 7.06 86.78 ± 9.02 96.69 ± 3.30 96.06 ± 2.75 96.86 ± 3.66 95.86 ± 3.52
6 72.79 ± 6.74 83.08 ± 3.83 88.52 ± 4.08 95.09 ± 5.54 91.14 ± 4.36 92.50 ± 3.69 92.47 ± 3.32
7 96.17 ± 8.74 100.00 ± 0.00 96.27 ± 2.20 100.00 ± 0.07 96.01 ± 3.17 98.78 ± 2.05 99.0 ± 2.17
8 97.24 ± 2.26 97.79 ± 2.32 83.42 ± 5.66 98.94 ± 1.15 99.66 ± 0.49 96.18 ± 4.39 96.61 ± 3.63
9 98.87 ± 1.83 98.21 ± 3.31 99.42 ± 0.41 100.00 ± 0.0 100.00 ± 0.00 99.33 ± 0.82 99.54 ± 1.38
10 99.49 ± 0.51 99.93 ± 0.15 89.82 ± 2.75 94.30 ± 3.14 91.47 ± 3.60 93.69 ± 4.58 99.64 ± 0.35
11 86.08 ± 20.34 85.00 ± 30.00 92.86 ± 11.52 100.00 ± 0.00 100.00 ± 0.00 94.29 ± 17.14 100.00 ± 0.0
12 34.57 ± 28.53 62.78 ± 36.85 88.54 ± 7.64 97.29 ± 2.80 92.22 ± 4.81 90.00 ± 6.31 85.83 ± 7.84
13 97.14 ± 2.28 95.21 ± 2.91 74.95 ± 3.54 98.68 ± 1.66 93.79 ± 4.81 92.32 ± 5.41 96.41 ± 6.06
14 73.70 ± 13.55 86.97 ± 15.37 74.09 ± 10.67 93.12 ± 5.66 80.77 ± 8.46 92.85 ± 5.06 91.87 ± 8.27
15 84.14 ± 10.81 90.77 ± 12.55 96.30 ± 3.80 100.00 ± 0.0 95.35 ± 5.01 100.00 ± 0.0 96.69 ± 6.07
16 65.22 ± 14.69 84.48 ± 16.12 90.00 ± 4.35 97.61 ± 3.44 91.32 ± 9.41 96.95 ± 3.99 98.4 ± 3.41
17 66.97 ± 30.15 84.45 ± 28.28 87.61 ± 8.77 95.32 ± 3.31 84.15 ± 5.09 97.61 ± 3.87 96.72 ± 2.5
18 97.48 ± 2.13 97.66 ± 1.98 58.28 ± 8.74 99.10 ± 1.05 91.91 ± 5.97 95.09 ± 4.44 93.98 ± 2.79
19 80.66 ± 15.14 81.73 ± 12.45 92.06 ± 6.97 100.00 ± 0.0 99.09 ± 1.31 97.79 ± 3.56 97.09 ± 3.95
20 92.42 ± 3.47 93.43 ± 4.31 92.17 ± 4.72 95.64 ± 1.97 87.68 ± 4.58 90.57 ± 6.56 93.27 ± 3.443
21 87.94 ± 6.88 95.61 ± 2.03 65.24 ± 4.89 91.62 ± 4.40 69.37 ± 6.72 90.42 ± 5.21 90.92 ± 3.74
22 63.92 ± 15.61 71.42 ± 17.61 98.46 ± 2.69 97.69 ± 2.95 95.17 ± 4.68 98.65 ± 2.44 94.18 ± 6.95
23 90.76 ± 6.91 99.05 ± 1.00 89.64 ± 4.58 98.69 ± 0.35 99.22 ± 0.51 97.62 ± 3.69 98.69 ± 1.07

OA (%) 90.88 ± 3.39 95.62 ± 2.95 86.35 ± 1.82 95.48 ± 1.49 90.91 ± 2.03 94.22 ± 2.65 97.20 ± 0.28
AA (%) 84.44 ± 2.72 91.03 ± 3.61 86.56 ± 1.37 96.89 ± 0.62 91.75 ± 0.79 95.17 ± 0.88 95.19 ± 0.50
κ×100 88.08 ± 4.08 94.14 ± 3.80 82.02 ± 2.24 93.99 ± 1.94 88.10 ± 2.52 92.34 ± 3.37 96.24 ± 0.38

5. Discussion
5.1. Feature Separability Analysis

In order to demonstrate the effectiveness of our method for distinguishing inter-class
and intra-class features, we used the same number of samples and iterations involved
in the comparison experiment for training and reduced the high-dimensional features
acquired by ALSN to two dimensions for separability visualization. As shown in Figure 14,
for the PaviaU dataset, the features obtained by ALSN exhibited significantly improved
feature separation to those obtained by naive DLSN. For example, trees and self-blocking
bricks could maintain a certain distance from other classes while ensuring the intra-class
aggregation. For the salinas dataset, it can be seen from the two-dimensional scatter plot
that our proposed AUAL and ICUAL could also improve the separability of features. More
obviously, after being enhanced by the two active learning methods, the model improved
the intra-class aggregation and inter-class discrimination of grapes untrained and vineyard
untrained noticeably. For the YRD dataset, most of the samples belonged to the sea class.
Compared with DLSN, ALSN further reduced the intra-class distance of the sea class
and increased the inter-class distance with other classes. The feature separability of the
remaining classes was also improved.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 14. Feature separability for different methods in the three data sets. (a) DLSN, (b) ALSN
with AUAL, and (c) ALSN with AUAL and ICUAL for PaviaU. (d) DLSN, (e) ALSN with AUAL,
and (f) ALSN with AUAL and ICUAL for Salinas. (g) DLSN, (h)ALSN with AUAL, and (i) ALSN
with AUAL and ICUAL for YRD.

5.2. Generalization Analysis

We compared the generalization performance of DLSN and ALSN with different
deep learning methods on three common HSI datasets. For ALSN and CNN-AL-MRF, we
conducted 15 iterations. For none active learning methods, 11–25 samples were randomly
selected from each class as the training data set, and the remaining samples were sent to
the testing data set. Figure 15 records the OA of all methods, as the number of iterations
increased. As can be seen, the generalization performance of DLSN ranked among the
top in different cases in the three data sets. ALSN achieved good improvement compared
with DLSN and apparently acquired the best results under most circumstances for different
iterations. Meanwhile, the generation performance of S-DMM on PaviaU and YRD data sets
was higher than those of traditional DL models and CNN-AL-MRF. While CNN-AL-MRF
combined active learning strategy, due to the poor classification ability of its backbone
network, this method was unable to achieve great improvement of accuracy with less
labeling cost. Therefore, We consider the prominent generalization performance of DLSN
and ALSN demonstrate the effectiveness of our methods. We also believe the following
factors led to the result. First, DLSN optimized the decision boundary by learning inter-
class and intra-class features. Second, AUAL could query high-value samples for DLSN to
fine-tune under the small sample problem, and further improved the model’s ability to fit
the feature distribution. Finally, ICUAL eliminated a large number of redundant negative
sample pairs, enabling DLSN to accurately capture useful inter-class information.
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(a) (b)

(c)

Figure 15. Evolution of OA obtained by different methods as a function of iteration. (a) PaivaU,
(b) Salinas, (c) YRD.

5.3. Time Complexity Analysis

To analyze the time complexity of ALSN, we used the same number of samples
and iterations involved in the comparison experiment. The training and testing time are
reported in Table 8. As can be seen, compared to methods of limited labeled samples
problem, classic deep learning methods, including 3-D CNN, SSRN and SSUN, all had
less training time and testing time. This was because these methods only had two steps
of sample feature extraction and classification, while methods of limited labeled samples
problem require additional learning cost for few samples problems during the training
period. S-DMM needs to divide the training data into support set and query set, which
perform multiple feature matching calculations. DLSN has to use many neurons to fuse
features or every sample pair. ALSN and CNN-AL-MRF constantly obtain new effective
data in an iterative way, which has high time costs. Although the training cost of our
method was higher than that of traditional DL models, it was comparable to other methods
of limited labeled samples problem.

Table 8. Time cost (s) of different methods.

Data Sets Metrics 3-D CNN [17] SSRN [46] SSUN [47] S-DMM [34]
CNN-AL-

MRF
[42]

DLSN (Ours) ALSN (Ours)

PaviaU Training 17.25 85.72 13.29 3069 696.79 29.23 471.90
Testing 5.72 25.21 3.59 95.91 10.98 12.83 14.38

Salinas Training 30.45 306.96 20.51 3572 1292 69.8 907.45
Testing 7.16 41.38 5.07 135.90 15.28 27.14 25.81

YRD Training 39.92 144.63 31.96 33242 748.33 80.71 1268
Testing 1.27 12.41 1.88 126.12 5.55 4.81 7.59

6. Conclusions

This paper proposes an active learning-driven siamese network (ALSN) for HSI
classification. A dual learning-based siamese network (DLSN), consisting of a contrastive
learning module and a classification module was first designed. Secondly, an active
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learning method based on adversarial uncertainty (AUAL) was proposed to query valuable
samples with conflicting probability of being classified into different categories, providing
DLSN with a few high-value samples for better classification. Finally, an active learning
architecture, based on inter-class uncertainty (ICUAL), was designed. By querying negative
sample pairs with uncertainty, lightweight training sets were constructed, which were
used to optimize the classification capability from both ends of the decision boundary.
Experiments on three common datasets demonstrated the effectiveness of our proposed
DLSN, AUAL and ICUAL. At the same time, ablation experiments showed that iterative
active query was more suitable for network learning feature distribution than random
selection of quantitative training samples.

Although our proposed model has some advantages compared with other methods,
there are still other shortcomings of ALSN that can be further studied: (1) Use of semi-
supervised learning method for labeling the selected samples automatically; (2) Design
more useful active learning-based measures to select informative samples.
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