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Abstract: Ecosystems provide multiple valuable services that play an essential role in preventing
meteorological risks, combating sandy land expansion, and ensuring sustainable development
in the West Liao River Basin. The trade-off among ecosystem services (ES) is inevitable because
of biophysical constraints and societal preferences. The production possibility frontier (PPF) is
increasingly deemed an appropriate tool for representing trade-off relationships among ES. In this
study, we developed a feasible approach for estimating PPF, which includes three steps. First, the
annual water yield model, the sediment delivery ratio model, the carbon storage and sequestration
model, and the habitat quality model of InVEST models were used to quantify temporal changes
in four key ES, including water retention, soil conservation, carbon sequestration, and habitat
improvement, in five-year periods from 1990 to 2020. Second, after the standardization of ES
quantities, the functional forms of PPF curves for six pairs of ES trade-offs were derived by adopting
a two-term exponential function of the curve fitting tool in MATLAB. Third, the trade-off intensity
for each ES pair was defined and calculated based on the distance from the mean point to the PPF
curve. Compared to the existing approaches, our approach has the advantage of fitting functional
forms of PPF curves, handling both positive and negative values of ES, and calculating trade-off
intensities. This study has three implications. First, showing the trade-offs between ES by PPF
is helpful for providing knowledge on the existence of turning points and a complex relationship
between certain ES pairs, thus avoiding unintended and large-scale shifts in the provision of ES.
Second, PPF curves are a useful tool for visualizing the nature of ES relationships and the changes in
trade-off intensity, thus supporting decision-makers to identify optimal solutions and make land use
planning that can increase the overall efficiency over multiple ES. Third, socioeconomic components
should be integrated into the assessment of ES trade-offs in order to understand the influences of
societal choices on and examine stakeholders’ preferences regarding efficient ES combinations.

Keywords: ecosystem services trade-off; production possibility frontier; trade-off intensity; InVEST
model; West Liao River Basin

1. Introduction

Ecosystem services (ES) are the direct or indirect benefits that people derive from
the ecological components, processes, and functions of functioning ecosystems [1,2]. The
concept of ES has been popularly used in recent decades to enable the understanding of
ecosystem potentials for the sustainable supply of various services, such as provisioning,
regulating, cultural, and supporting ES, and the incorporating of ES into concerned key
themes, such as biodiversity conservation, economic valuation of natural capital, and
landscape planning, etc. [3,4].

The simultaneous supply of multiple ES is usually restricted by biophysical constraints
to a certain extent, making trade-offs inevitable [5]. The ES trade-offs refer to the situation
that the increase in one ES leads to a decrease in the other ES and vice versa, which is
prominent among different ES types and occurs at both a spatial and temporal scale [6–8].
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Trade-offs between ES can be attracted to two types of mechanisms: direct interactions
between ES [9] or indirect interactions via the effects of common drivers influencing ES [10],
such as the ecological processes underlying ES [11]. Since humankind nowadays is con-
fronted with severe challenges, including climate change, population growth, and resource
exhaustion [12], “trade-off thinking” contributes to examining the existing shortcomings,
improving management approaches, and making the most reasonable choices under lim-
ited conditions [13]. It is challenging to analyze ES trade-offs because of the potential
non-linearity of their temporal and spatial variations [14]. The research trend indicates that
current studies deal more with static spatial correlations among ES but consider temporal
dynamics of ES trade-offs less; therefore, insufficient studies were carried out to capture
the comprehensive understanding of ES interactions at the river basin scale [4].

Various methodological approaches exist to assess ES trade-offs, including statistical
analysis [15], spatial mapping [16], model simulation [17], and economic valuation [18]. In
the recent literature, the application of production possibility frontiers (PPF) to characterize
ES trade-offs has drawn increasing attention [19–21]. PPF, also known as efficiency frontiers,
is a basic concept in welfare economics and production theory that represents the combi-
nation of the largest amount of various commodities produced in an economy with given
resources and technology conditions [22]. In analogy, PPF has been developed to describe
combinations of multiple ES supplies and can be accommodated within a landscape given
its ecological characteristics and human inputs, indicating the optimal balance between two
conflicting ES [23,24]. PPF is determined by biophysical and socio-economic constraints
and thus varies with geographical locations, climatic characteristics, physical disturbance
(e.g., fire, extreme events), and human interference (e.g., land use change, management
practices) [8,25,26]. However, a general operational approach for estimating PPFs, as well
as their functional forms, is still missing [19,24,27,28]. Furthermore, an appropriate index
that represents the intensity of trade-offs should be explored [29].

The West Liao River Basin (WLRB) is a sub-watershed of the Liao River Basin that is
one of seven large river basins in China. The WLRB is a typical agro-pastoral transitional
zone located in the semi-arid region, where the long-term tendency of drought and intensive
crop production and grazing has resulted in the drying up of the West Liao River, along with
water decline in the major lakes and reservoirs, and groundwater depletion [30,31]. The
issues of water scarcity, soil erosion, and climate change exacerbated grassland degradation
and desertification, making ecosystems in the WLRB vulnerable [32,33]. The ES and
their relationships play an important role in preventing meteorological risk, maintaining
stable agricultural production, combating sandy land expansion, and ensuring sustainable
development in this region. However, studies that investigate ES and its trade-offs have
still not been found in this important region.

Therefore, the main purpose of this paper was to develop an operational approach
for estimating functional forms of PPFs and calculating trade-off intensities. Taking the
WLRB as a case study, we apply this approach to the temporal variations of ES interactions
at the river basin scale. Because of the great significance of water, soil, air, and biodiversity
in adapting to water scarcity, soil erosion, climate change, and habitat degradation in the
WLRB region, respectively, we focused on four fundamental ES, including water retention
(WR), soil conservation (SC), carbon sequestration (CS), and habitat improvement (HI).
Thus, the interactions of six pairs of ES have been considered for trade-off analysis, WR-SC,
WR-CS, WR-HI, SC-CS, SC-HI, and CS-HI.

2. Materials and Methods
2.1. Study Area

The WLRB is located in the southeastern corner of Inner Mongolia in Northeast China,
adjacent to Hebei, Liaoning, and Jilin (Figure 1a). Its geographic position ranges between
116◦–125◦E and 41◦–46◦N, covering an area of 126,528 km2. The climate is characterized
by the temperate continental monsoon type with an annual mean air temperature of 5.0°C
to 6.5°C and an annual average precipitation of about 376 mm, which is concentrated in
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July and August [34]. The overall topography decreases from west to east and relates
to the main land cover types (Figure 1b). Forests are fragmentarily distributed on the
western mountains, grasslands and sparse vegetation are distributed in the mountain-plain
transitional region, the eastern plain is mainly covered by dry farmlands and paddy fields,
the central bare area is the Horqin Sandy Land, and the major built-up areas are Tongliao
City and Chifeng City (Figure 1c).
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Figure 1. (a) Geographical location, (b) Elevation, and (c) Land cover of the West Liao River Basin.

2.2. Data Sources and Pre-Processing

Multi-source spatial data were collected, among which data on land use/land cover,
precipitation, and evapotranspiration included temporal variations for the years 1990, 1995,
2000, 2005, 2010, 2015, and 2020 (Table 1). In order to run InVEST models, the usually
different original projections and resolutions of these spatial data were standardized by re-
projecting and resampling using ArcGIS Desktop 10.6 [35]. The resampling was performed
using the built-in CUBIC technique of ArcGIS software, which calculates the value of
each pixel by fitting a smooth curve based on the surrounding 16 pixels, thus producing
the smoothest image. Since InVEST models are based on land use/land cover data, they
are resampled to the spatial resolution of 30m × 30m in order to maintain the original
data quality.
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Table 1. Multi-source spatial data.

Data Type Resolution Source Reference

Digital Elevation Model Raster 30 m × 30 m
https://asterweb.jpl.nasa.gov/

GDEM.asp
(accessed on 27 January 2023)

[36]

Land Use/Land Cover Raster 30 m × 30 m https://data.casearth.cn
(accessed on 27 January 2023) [37]

Rainfall Erosivity Raster 1 km × 1 km http://clicia.bnu.edu.cn/data
(accessed on 27 January 2023) [38]

Soil Erodibility Raster 250 m × 250 m http://data.tpdc.ac.cn
(accessed on 27 January 2023) [39]

Precipitation Raster 1 km × 1 km http://data.tpdc.ac.cn
(accessed on 27 January 2023) [40]

Evapotranspiration Raster 1 km × 1 km http://data.tpdc.ac.cn
(accessed on 27 January 2023) [41]

Soil Depth Raster 250 m × 250 m https://data.isric.org
(accessed on 27 January 2023) [42]

Volumetric Water Content Raster 250 m × 250 m https://data.isric.org
(accessed on 27 January 2023) [43]

Railroad Vector 1:250000 https://www.webmap.cn
(accessed on 27 January 2023) [44]

Road Vector 1:250000 https://www.webmap.cn
(accessed on 27 January 2023) [45]

2.3. Quantifying ES and Temporal Changes

Considering the most important ecological indicators of water, soil, air, and biology,
four ES were selected for analysis, namely water retention (WR), soil conservation (SC),
carbon sequestration (CS), and habitat improvement (HI). Correspondingly, we used the
annual water yield model, the sediment delivery ratio model, the carbon storage and
sequestration model, and the habitat quality model of InVEST 3.12 to quantify these four
ES [46].

The annual water yield model estimates the relative contributions of water from
different parts of a landscape, offering insight into how changes in land use/land cover
patterns affect the annual surface of water yield. The sediment delivery ratio model
spatially and explicitly computes the amount of annual soil loss from each pixel at the
spatial resolution of the input digital elevation model raster, then computes the sediment
delivery ratio, which is the proportion of soil loss that actually reaches the stream. The
carbon storage and sequestration model aggregates the amount of carbon stored in four
carbon pools according to land use/land cover maps and classifications: aboveground
biomass, belowground biomass, soil, and dead organic matter. The habitat quality model
combines information on land use/land cover and threats to biodiversity in order to
produce habitat quality maps, which represent the relative extent and degradation of
different habitat types in a region (Table 2) [47].

The model performances generated 28 datasets (four ES, i.e., water yield, soil depo-
sition, carbon storage, habitat quality, in seven years, i.e., 1990, 1995, 2000, 2005, 2010,
2015, and 2020) for each pixel out of a total of 140,723,294 pixels in the WLRB. The positive
and negative changes in ES between the years can be interpreted as ecological processes
(Table 3). Thus, 28 datasets are calculated into 24 new datasets that represent the changes
in the four ES (WR, SC, CS, and HI) in six periods (1990–1995, 1995–2000, 2000–2005,
2005–2010, 2010–2015, and 2015–2020) by using the Raster Calculator tool in the ArcGIS
Desktop 10.6 [35].

https://asterweb.jpl.nasa.gov/GDEM.asp
https://asterweb.jpl.nasa.gov/GDEM.asp
https://data.casearth.cn
http://clicia.bnu.edu.cn/data
http://data.tpdc.ac.cn
http://data.tpdc.ac.cn
http://data.tpdc.ac.cn
https://data.isric.org
https://data.isric.org
https://www.webmap.cn
https://www.webmap.cn
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Table 2. Quantifying methods of InVEST models.

ES Model Algorithm Description

Water yield Annual Water Yield Wi =
(

1 − AETi
Pi

)
× Pi

Pi refers to the annual precipitation (mm/yr)
on pixel i, AETi refers to the annual actual

evapotranspiration (mm/yr) on pixel i, and
AETi/Pi refers to the approximation of the

Budyko curve.

Soil deposition Sediment Delivery Ratio
Si = Ai × (1 − SDRi)

Ai = Ri × Ki × LSi × Ci × SPi
SDRi =

SDRmax
1+e(IC0−ICi /k)

Ai refers to the amount of annual soil loss
(ton/ha/yr) on pixel i, given by the revised
universal soil loss equation, where Ri is the
rainfall erosivity factor (MJ•mm/ha/hr/yr),

Ki is the soil erodibility factor
(ton•ha•hr/MJ/ha/mm), LSi (unitless) is the
slope length-gradient factor, Ci (unitless) is

the cover management factor; and SPi
(unitless) is the support practice factor.

SDRi refers to the sediment deliver ratio for
pixel i derived from the conductivity index,
where SDRmax is the maximum theoretical

SDR; IC0 and k define the shape of the
SDR-IC relationship.

Carbon storage Carbon Storage and
Sequestration Ci = Ca + Cb + Cs + Cd

Ca is aboveground biomass (ton/ha), Cb is
belowground biomass (ton/ha), Cs is soil

carbon storage (ton/ha), Cd is dead organic
matter (ton/ha).

Habitat quality Habitat Quality Qij = Hj ×
(

1 − Dz
ij

Dz
ij+mz

) Hj refers to the habitat suitability of land use
type j, Dij is the total threat level for land use

type j on pixel i, and m is half of the
maximum value of Dij.

Table 3. The interpretation of temporal ES changes.

Change Positive Negative

Water yield (m3) Water retention Water loss
Soil deposition (tons) Soil conservation Soil loss
Carbon storage (tons) Carbon sequestration Carbon emission
Habitat quality (score) Habitat improvement Habitat degradation

2.4. Estimating PPF Curves

In order to make multiple ES comparable, the value of ES should be nondimensional-
ized and standardized. The arc-tangent function was selected for standardization because
it is a monotone-increasing function that converts the original values into values between
−1 and 1 regardless of negative or positive values. The standardization was processed
by the Raster Calculator tool in ArcGIS Desktop 10.6 [35]. Owing to the limits of both
hardware and software, not all 140,723,294 pixels in the WLRB could be taken into account;
a sampling of 50,000 pixels was needed for the use of the Create Random Points tool in
ArcGIS Desktop 10.6 [35]. Thus, we obtained 50,000 pixels for further analysis, each of
which included 24 values (4 ES × 6 periods).

The pairwise comparison between ES was conducted, generating six pairs, including
WR-SC, WR-CS, WR-HI, SC-CS, SC-HI, and CS-HI, in six periods, respectively. Taking
the pair of WR-SC in the period 1990–1995 as an example, the values of WR and SC in
50,000 pixels were used to build two-dimension scatter points with the value of WR as
the x-axis and the value of SC as the y-axis. We used the boundary function in MATLAB
R2021b [48] to identify the boundary points, which were distributed in four quadrants.
We then selected the boundary points in the first quadrant to estimate PPF because the
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other points were assumed to be enveloped by the frontier emerging from these boundary
points. We adopted the two-term exponential function of the Curve Fitting tool in MATLAB
R2021b [48] to fit the PPF curves:

y = k1 + k2 × e
x−k0

k4 + k3 × e
x−k0

k5 , (1)

where k0, k1, k2, k3, k4, and k5 are coefficients to be fitted, and x and y are variables that
denote the value of two ES.

2.5. Calculating Trade-Off Intensity

We also took the pair of WR-SC in the period 1990–1995 as an example. After the
functional form of the PPF curve was identified, a point with the average value of WR and
SC in this period could be found from 50,000 points and was noted as the mean point M.
The line that connects the origin O and point M intersects the PPF curve at a point noted as
A. The trade-off intensity is defined as the ratio of segment lengths MA and OA (Figure 2).
This calculation was performed in GeoGebra Classic [49]. The larger the ratio, the stronger
the trade-off relationship between two ES that are compared, implying that the mean point
is farther from the PPF curve. The whole approach is illustrated in Figure 3.
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3. Results
3.1. Quantity of ES and Temporal Changes

Figure 4 shows the results of InVEST models for four ES over seven years in the
WLRB. The water yield service experienced a large fluctuation. There was a sharp decline
in 1990–2000, from about 3800 million cubic meters to about 1300 million cubic meters.
From 2000 to 2010, it slowly recovered to about 2100 million cubic meters and finally
recovered to about 2800 million cubic meters after the turning point in 2015. Overall, the
water yield service decreased by about 1000 million cubic meters (Figure 4a). The soil
deposition service continually increased year by year after a slight decline in 1995, from
about 240 million tons to about 270 million tons, with a total increase of about 30 million
tons (Figure 4b). The carbon storage service exhibited a generally stable, slightly fluctuating,
and slightly decreasing trend, from about 110 million tons in 1990 to 107 million tons in 2020
(Figure 4c), while the habitat quality service presented an overall stable, slightly fluctuating,
and slightly increasing trend, from a score of about 65 million in 1990 to a score of about
67 million in 2020 (Figure 4d). The spatial variations of the four ES at the pixel level can be
found in Supplementary Materials Figures S1–S4.

Based on the modeling results, the temporal changes in these four ES are calculated
for six periods in the WLRB. The amount of WR varied significantly with periods ranging
from −2559 in 1990–1995 to 1287 million m3 in 2015–2020, while the amount of SC, CS, and
HI remained relatively stable within the range of ±3 million, except for 26 million tons of
SC in 1995–2000 (Table 4). Detailed spatial distributions of the temporal changes at the
pixel level can be found in Supplementary Materials Figures S5–S8.
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Figure 4. Temporal changes in (a) Water yield, (b) Soil deposition, (c) Carbon storage, and (d) Habitat
quality from 1990 to 2020.

Table 4. Temporal changes of water retention, soil conservation, carbon sequestration, and habitat
improvement in six periods.

ES change 1990–1995 1995–2000 2000–2005 2005–2010 2010–2015 2015–2020

WR (million m3) −2559.42 −1049.11 1234.51 568.58 −512.02 1287.38
SC (million tons) −1.94 26.42 1.37 1.86 0.97 2.70
CS (million tons) −2.18 −3.12 −0.08 1.66 2.21 −0.64

HI (million/score) −0.18 −1.84 0.07 0.91 1.64 1.33

3.2. PPF Curves for Pairwise ES Trade-Offs

Figure 5 illustrates the PPF curves for six pairs of ES in the WLRB for six periods. The
shapes of PPF curves vary with the periods, implying that the biophysical constraints in
different years lead to changes in multiple ES, which changes the relationships between
ES. In general, a monotonic convex form represents a clear trade-off between two ES, e.g.,
the relationships between SC and CS in 1990–1995 (column 5 row 1 in Figure 5), meaning
that the increase in SC results in a decrease in CS. However, a non-monotonic convex form
indicates a more complex relationship between two ES, e.g., the relationship between WR
and HI in 2010–2015 (column 3 row 5 in Figure 5), meaning that the synergy and trade-off
may simultaneously exist. The increase in WR leads to an increase in HI before a given
turning point, and the continuing increase in WR leads to a decrease in HI after that point.
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3.3. Changes in Trade-Off Intensity

Based on the estimated PPF curves and the mean points of two ES, the trade-off
intensity for six pairs of ES during six periods was calculated. Six sequences of trade-off
intensity can be grouped into two patterns; the intensities of WR-SC, WR-CS, and WR-HI
saw significant fluctuations with an obviously decreasing trend, while the intensities of
SC-CS, SC-HI, and CS-HI stabilized at around one (Figure 6). Noticing the quantity of the
water yield (Figure 4a) and the temporal changes in water retention (Table 4), this result
could possibly be attributed to the drastic changes in WR and the slight fluctuations in SC,
CS, and HI. The trade-off intensities related to WR, such as WR-SC, WR-CS, and WR-HI,
also exhibit significant variations, while the intensities between SC-CS, SC-HI, and CS-HI
remain stable.
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4. Discussion
4.1. Approaches for Estimating PPF

The PPF has been increasingly deemed an appropriate tool for representing trade-offs
between ES. There mainly exist four approaches for depicting the PPF. Ruijs et al. developed
a two-stage semi-parametric estimation approach by non-parametrically estimating the
PPF and the distance of each observation to the PPF using the output-oriented robust
conditional free disposal hull method in the first stage and parametrically approximating
the non-parametric PPF with a flexible translog function in the second stage [24]. This
approach was limited to the positive datasets and performance capabilities of soft- and
hardware and thus could not deal with negative ES changes with large data amounts. Bryan
et al. provided an approach to calculate PPF by the maximizing the land use allocation
of the joint production weights of two ES. This approach was dependent on maximum
economic potential of land use [27]. Vallet et al. suggested an approach to detect the
production possibility set of each pair of ES by plotting ES values against one another
where scenario simulations of ES combinations were necessary [8]. Yang et al. adopted an
approach to creating PPF by identifying combinations of ES that had the maximum summed
total value, thus ignoring a large number of combinations that might have belonged to the
production possibility set [29]. Furthermore, the latter two approaches failed to deliver the
functional forms of PPF curves.

The approach developed in this paper is easily operational for estimating the PPF
curves of ES pairs and calculating the intensities of ES trade-offs, which has the following
advantages. First, it is able to derive functional forms of PPF curves, which allow the
graphical illustrations of the shape of ES relationships and the quantitative calculations
of trade-off intensities. Second, it can deal with the positive or negative values of the
ES-derived from modeling results without the need for performing scenario simulations.
Third, the calculation of the trade-off intensity is potentially useful for the comparison of
ES trade-offs in different time periods or in different geographical regions. The results are
mainly limited by the precision of the spatial data adopted and the models for quantifying
ES. This approach could further be improved by using more appropriate functional forms
for fitting the PPF curves, by developing new methods for calculating the trade-off intensity,
or by increasing the number of the sampled value.

4.2. Implications

The approach developed in this paper makes contributions to quantitatively revealing
the interactions between ES and to understanding the inherent linkages within ecosystems.
Interpreting PPF leads to new insights on ES relationships, but at the price of complexity
because much evidences of relationships must be simultaneously considered. For example,
some ES pairs show a simple relationship of trade-off (e.g., WR-SC in 1995–2000), but
some ES pairs include a turning point where the relationships of synergy and trade-off
successively exist (e.g., WR-CS in 2000–2005). Showing the trade-offs between ES by
PPF is helpful for providing knowledge on the existence of turning points and complex
relationships between certain ES pairs and thus avoiding unintended and large-scale shifts
in the provision of ES.

Points inside the PPF in economics represent economically inefficient situations due to
the insufficient use of resources or technical constraints etc., while points outside the PPF
represent situations that cannot be achieved under current resources or technology [22].
In this study, all of the mean points are inside the PPF curves, suggesting that the current
ES combinations are far from efficient and that landscape optimization rarely exists in
the river basin. Therefore, the joint improvement of multiple ES can be reached if the
targeted ES are corrected and selected. For example, the changes in WR are relevant to the
fluctuations of trade-off intensities for ES pairs, including WR, and increasing or stabilizing
the provision of WR may lead to the joint improvement of SC, CS, and HI. Combined with
simulations of plausible hypothetical scenarios for targeted ES, PPF curves are a useful tool
for visualizing the nature of ES relationships and the changes in trade-off intensity, thus
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supporting decision-makers to identify optimal solutions, which correspond to the shortest
path from a point to the PPF curve, and to make land use planning that increase the overall
efficiency over multiple ES.

The movement of PPF curves in economics generally results from the increase in
resource supply and the progress of production technology etc., in a dynamic economy [22].
Similarly, changing patterns of natural constraints and human activities may move the PPF
curves between ES. Therefore, the driving factors that are responsible for the movement
of PPF should be identified, involving not only the biophysical drivers of the landscape
but, more importantly, the socio-economic drivers in the region [50]. ES relationships
provide insightful information about the trade-offs that must be considered when one
ES combination is preferred over another, which is supposed to be reflected in societal
preferences regarding what is efficient and desirable [51]. Hence, it is needed to integrate
socio-economic components into the assessment of ES trade-offs in order to understand
the influences of societal choices on and examine stakeholders’ preferences for efficient ES
combinations [52].

5. Conclusions

Taking the WLRB in the semi-arid region of China as an example, this study develops
an operational approach to estimate the PPF that represents the temporal trade-offs among
four key ES, including WR, SC, CS, and HI. Based on the InVEST models, we visualized
the spatial patterns of four ES in 1990, 1995, 2000, 2005, 2010, 2015, and 2020, respectively,
and calculated their temporal changes over six periods. We then derived the functional
forms of PPF curves for six pairs of ES trade-offs and illustrated the temporal variations
of the PPF curves in six periods. According to the PPF functions and the mean points
of each ES pair in each period, we calculated the trade-off intensities and showed their
changing trends over the past 30 years. Compared to the existing approaches for estimating
PPF, our approach has the advantages of fitting functional forms of PPF curves, handling
both positive and negative values of ES, and calculating trade-off intensities. This study
has three implications. First, showing the trade-offs between ES by PPF is helpful for
providing knowledge on the existence of turning points and the complex relationships
between certain ES pairs, thus avoiding unintended and large-scale shifts in the provision
of ES. Second, PPF curves are a useful tool for visualizing the nature of ES relationships
and the changes in trade-off intensity, thus supporting decision-makers to identify optimal
solutions and make land use planning that can increase the overall efficiency of multiple ES.
Third, socioeconomic components should be integrated into the assessment of ES trade-offs
in order to understand the influences of societal choices on and examine stakeholders’
preferences for efficient ES combinations.
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