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Abstract: Soil moisture is a key parameter in hydrological research and drought management. The
inversion of soil moisture based on land surface temperature (LST) and NDVI triangular feature
spaces has been widely used in various studies. Remote sensing provides regional LST data with
coarse spatial resolutions which are insufficient for field scale (tens of meters). In this study, we
bridged the data gap by adopting a Data Mining Sharpener algorithm to downscale MODIS thermal
data with Vis-NIR imagery from Sentinel-2. To evaluate the downscaling algorithm, an unmanned
aerial system (UAS) equipped with a thermal sensor was used to capture the ultra-fine resolution LST
at three sites in the Tang River Basin in China. The obtained fine-resolution LST data were then used
to calculate the Temperature Vegetation Dryness Index (TVDI) for soil moisture monitoring. Results
indicated that downscaled LST data from satellites showed spatial patterns similar to UAS-measured
LST, although discrepancies still existed. Based on the fine-resolution LST data, a 10-m resolution
TVDI map was generated. Significant negative correlations were observed between the TVDI and in-
situ soil moisture measurements (Pearson’s r of −0.67 and −0.71). Overall, the fine-resolution TVDI
derived from the downscaled LST has a high potential for capturing spatial soil moisture variation.

Keywords: temperature vegetation dryness index; land surface temperature; data mining sharpener;
soil moisture; unmanned aerial systems

1. Introduction

As a key variable of the climate system, soil moisture (SM) affects the water, energy,
and biogeochemical cycles [1]. Mapping large-scale soil moisture with a fine temporal and
spatial resolution is, therefore, critical to many scientific studies and applications, such as
climate prediction, crop growth modeling, and droughts forecasting [2–4]. Particularly in
the agricultural field, soil moisture is considered one potential resource for agricultural
drought monitoring, which is vital for food security [5].

In general, SM can be estimated in two ways: through in-situ measurements or via
remote sensing data [6,7]. The conventional in-situ measurement is the most accurate; how-
ever, this is laborious, time-consuming, and lacks representativeness, making it unsuitable
at the regional scale [8,9]. On the other hand, remote sensing methods are promising since
they can provide an effective way to monitor large-scale SM at a low cost. Nevertheless,
the estimation of SM by remote sensing involves a number of parameters (e.g., land cover
and surface roughness), whose uncertainty reduces retrieval accuracy. Thus, it is crucial
to calibrate and validate SM remote sensing products using in-situ measurements. The
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emergence of new remote sensing methods, such as the GNSS—reflectometry in field
scale [10], as well as radiometry [11] show high potential to improve the accuracy.

Remote sensing techniques enable monitoring SM through microwave methods or
optical (visible and infrared)/TIR methods [12]. Microwave-based remote sensing is rec-
ognized as one of the best ways for global monitoring of SM because it is sensitive to SM
and unaffected by atmospheric conditions [13]. The existing products derived from active
and passive microwave satellites can provide large-scale SM estimates, e.g., Advanced
Scatterometer (ASCAT) [14], the Soil Moisture Active and Passive (SMAP) [15], and the Eu-
ropean Space Agency’s Climate Change Initiative (ESA CCI) [16]. It should be noted, how-
ever, that these microwave products are limited by vegetation and surface roughness [17],
as well as their coarse resolution, which limits their applicability in many studies.

Optical-based remote sensing uses the spectral reflectance properties of soil and
vegetation [18], which has great potential to indirectly estimate soil moisture with finer
spatial resolutions. A number of studies have been conducted to establish the empirical
relationships between SM and the soil reflectivity/vegetation indexes extracted from the
optical bands [19–22]. Most of these studies have failed to address the apparent time lag
between vegetation indexes and the actual moisture state, and other factors like temperature
and soil properties are not taken into account. TIR-based remote sensing, on the other
hand, can effectively generate land surface temperature (LST) to monitor changes in soil
thermal properties under bare soil and sparsely vegetated surfaces, which can be used to
derive SM [23,24]. However, in dense vegetation area, the LST is more representative of
vegetation temperature and it is difficult to obtain soil temperature to invert SM. Synergistic
use of optical and TIR bands is an important direction, which could provide vegetation
water stress conditions and SM information. One of the most well-known approaches is the
“trapezoid” or “triangle” method [25,26]. The temperature vegetation dryness index (TVDI),
proposed by Sandholt et al. [27], is based on a triangle feature space established using a
scatterplot of LST and a normalized difference vegetation index (NDVI). TVDI can represent
the relative soil moisture [28] and is widely used as a soil moisture indicator [2,29,30].

So far, the optical and TIR data have been available from multiple sources. For
instance, the Moderate Resolution Imaging Spectroradiometer (MODIS) provides the NDVI
at a 250-m resolution and LST at a 1-km resolution, and Landsat 8 satellite provides
NDVI at a 30-m resolution and LST at a 100-m resolution. Due to the resolution trade-off
and the lower number of thermal sensors, current satellite missions cannot provide as
detailed TIR images as visible and NIR images do [31,32]. The most commonly used
method to enhance the spatial resolution of the satellite LST is statistical downscaling (also
called thermal sharpening), which enhances the resolution of the LST by using spatially
distributed auxiliary data that are statistically correlated to the LST [32]. A number of
sharpening methods have been applied for sharpening coarse spatial resolution TIR data
with higher spatial resolution Vis-NIR observations, such as DisTrad [33], STARFM [34],
TsHARP [35], Artificial Neural Networks [36], the Data Mining Sharpener (DMS) [37], and
NL-DisTrad [38]. The sharpening method can also take advantage of multiple satellite
data. For example, MODIS/COPERNICUS Sentinel-3 TIR images with Sentinel-2 Vis-NIR
images together could provide LST at fine spatial and temporal resolutions [39,40].

Despite the growth in studies of downscaling methods, the evaluation of thermal
sharpening techniques has traditionally been performed with cross-validation on the
original Landsat or ASTER TIR-derived LST products, which have spatial resolutions of
60–100 m and 90 m, respectively [39], making it difficult to meet the needs of evaluating
sharpening to 30 m or even 10 m. To verify the effect of downscaling methods, the finer
resolution thermal image is required as a reference. Unmanned aerial systems (UAS)
equipped with compact sensors can potentially bridge the scale gap between satellite and
ground-based observations. The unique advantages, such as economy, flexibility, high
accessibility, and high spatial resolution, make UAS remote sensing an increasingly popular
technique [41].
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Relying on fine-resolution LST data based on downscaling algorithms, soil moisture
products with a finer spatial resolution (e.g., 10–30 m) can be obtained. Bai et al. [39]
acquired the 30-m resolution LST product by blending Landsat and MODIS data and then
used a downscaled LST successfully to estimate the SM of two fields in north China based
on the temperature vegetation index method. Ahmed et al. [35] introduced both data fusion
and random forest models by integrating multi-source data (including the fused data with
MODIS LST and the Landsat LST) to generate daily SM at 30 m × 30 m in the Haihe
basin in north China. In order to capture detailed (extremely fine resolution) SM spatial
variability within two pro-glacial valleys in the Cordillera Blanca, Peru, Oliver et al. [42]
used a UAS with sub-meter resolution multi-spectral sensors to measure the SM based on
the TVDI method. The principal limitation of the experimental approach is that the TVDI
method requires a study region with large variations in the NDVI and SM [12], a requisite
not always met by UAS images. On the other hand, satellite data, with its large-scale and
long-term measurements, will become an ideal source for TVDI-based SM monitoring.
Taken together, detailed large-scale soil moisture monitoring could be performed by using
finer-resolution TVDI data derived from downscaled LST.

In this context, the objectives of this study were to (1) produce a fine-resolution LST
by downscaling MODIS TIR data using the DMS algorithm; (2) compare the downscaled
result with UAS TIR imagery; (3) estimate TVDI values based on the NDVI and down-
scaled LST; (4) evaluate the performance of the downscaled TVDI to monitor SM using
in-situ measurements.

2. Study Area and Data Preparation
2.1. Study Area

The Tang River Basin in China is a 4200 square kilometers watershed, which is located
in the mid-temperate zone and features a continental monsoon climate. Annual precipi-
tation is about 530–660 mm, with the majority of precipitation falling as rain during the
summer. The main cropping pattern in the basin comprises winter wheat and summer
maize. The proposed LST downscaling method was applied over an experimental area
in the middle of the Tang River basin (between longitudes 114◦40′E and 115◦10′E and
latitudes 38◦50′N and 39◦10′N, covering 780 km2). Figure 1a,b show the location of the
study area within the Tang River basin in Hebei Province in north China. From the digital
elevation model (DEM) map and geomorphological map [43] in Figure 1c,d, the study area
is characterized by mountains, hills, and plains, with elevations ranging from 85 to 1100 m.
According to the China Meteorological Data Service Centre, the temperature of August 2021
for the whole region varied between 17 °C and 32 °C. In addition, the mean precipitation
was 133 mm in August.

In the downscaling area, three flight sites with cropland and grassland land cover were
selected for thermal validation. The flight sites used for validation lie along the Tang River
(dark blue line). The first site (38◦59′N, 114◦52′E) is a relatively dense corn farmland close
to the Gu Daokou village. The second site (39◦3′N, 114◦43′E) is a mixed farmland with
variable vegetation covers, including bare land, corn, and grass, close to the Xi Shenggou
village. The third site (38◦57′N, 114◦55′E) belongs to a hillside covered with uniform grass,
and it is located near the Xi Dabei village.

2.2. Satellite Data

In this study, both fine-resolution optical data and coarse-resolution thermal data were
used. The fine-resolution optical data were obtained from the COPERNICUS/Sentinel-2
mission. This Sentinel-2 product provides 14 spectral bands with multiple spatial resolu-
tions of 10 m, 20 m, and 60 m. In the downscaling workflow, only the 10-m resolution bands
2, 3, 4 (490–665 nm), and 8 (842 nm) were adopted. Additionally, Bands 4 and 8 were used to
calculate the NDVI. To carry on the analysis, the Level-2A atmospherically-corrected image
taken on 5 August 2021 was used. Cloud masking was performed to exclude bad-quality
data in the image using the s2cloudless dataset, which provides the cloud probability for
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each pixel based on a machine learning algorithm. The coarse-resolution thermal data
were taken from the MODIS MOD11A1 product (Collection 6) on 7 August 2021, near
the Sentinel-2 overpassing date. The SRTM 30-m DEM products were adopted for the
LST correction. All these satellite data were preprocessed and downloaded using the
Google Earth Engine platform (https://developers.google.com/earth-engine, accessed on
25 November 2022).

Figure 1. (a) Location map of Tang River basin in China; (b) Location map of the downscaling area in
the Tang river basin; (c) The elevation map of the downscaling area; (d) Geomorphological map of
the downscaling area.

2.3. UAS Data

We used a DJI Phantom 4 Pro UAS to collect RGB optical data and a DJI Matrice 600
Pro UAS equipped with a thermal camera to collect TIR imagery. DJI Matrice 600 Pro
is a six-rotor UAS equipped with a FLIR Tau 2 640 thermal camera from FLIR Systems,
USA (focal length 13 mm; F/1.25; Thermal Sensitivity: 50 mK) characterized by an image
dimension of 640 × 512 pixels and an FOV of 45◦ × 37◦. With a 50-m height above ground
level, the TIR flights provided approximately a 10-cm resolution. Visible and thermal
ground control points (GCPs) were established prior to UAS flights at the two study sites.
In the later orthomosaic generation process, GCPs were used to improve image alignment.
Following Oliver et al. [42], thermal GCPs were 30-cm foam boards with white squares on a
black background and insulating coats on the downward sides. The UAS survey campaigns
were performed on 5 August 2021, 6 August 2021, and 7 August 2021 in three flight sites,
respectively. In clear sky conditions, the duration of the DJI Matrice 600 Pro campaign
was approximately 1 h. The total flight lasted approximately 2–3 h for each site, between
10:00 and 15:00. The overlap between the RGB and TIR images was 85% when flying at
3 m/s. Before constructing the orthomosaic TIR imagery, we conducted a non-uniformity
drift compensation caused by an uncooled thermal camera. The processing was completed
using the general workflow implemented in Agisoft PhotoScan software.

https://developers.google.com/earth-engine
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2.4. In-Situ SM Measurements

During flights, in-situ soil moisture was measured at two sites (34 points at Site 2,
and 29 points at Site 3) within the survey area. The position of each sampling point was
recorded with a GPS. Each soil moisture measurement is an average of three SM samples
taken within a 10 cm radius of each survey point location at a depth of 0–10 cm with
an MP406 Moisture Probe. Using the standing wave principle, the MP406 sensor (ICT
International Pty Ltd., Armidale, Australia) can measure moisture content by detecting
changes in the soil’s dielectric constant as water content changes. The MP406 sensor
measurements were positively tested in comparison with gravimetric measurements and
calibrated to the volumetric soil moisture using soil samples under different moisture
conditions at the sites. As the ground measurement points were shadowed by cornfields
and there were many irrigated areas with saturated SM, Site 1 was not suitable for SM
sampling. Therefore, in-situ SM measurements were only conducted at the mixed farmland
of Site 2 and the uniform grassland of Site 3.

3. Methods
3.1. Experimental Procedure

The flowchart in Figure 2 illustrates the process of evaluating the downscaled TVDI to
monitor SM with in-situ data in detail. The following steps were carried out to achieve the
main objectives of this study.

Figure 2. Flowchart of this study.

Step 1: First, the 1-km resolution TIR data from MODIS and the 10-m resolution
Vis-NIR data from Sentinel-2 after preprocessing were input into the DMS model to obtain
downscaled 10-m LST (Section 3.2). The preprocessing included cloud masking, band
calculation, and re-projection.

Step 2: The UAS TIR images were obtained to construct the orthomosaic UAS LST
images at three flight sites. For comparison, 10-cm orthomosaic LST images of UAS were
aggregated to the 10-m resolution as downscaled LST data based on the Stefan-Boltzmann
law, following Gao et al. [37].

Step 3: The NDVI was calculated using the NIR and red bands of Sentinel-2 images.
The fine-resolution TVDI distribution map of the downscaling area is obtained by calculat-
ing the triangle feature space with the NDVI and downscaled LST. There is one thing that
needs to be noted when calculating the TVDI: Under the same NDVI conditions, where
the elevation is higher, the lower-temperature air will take away more surface heat, which
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leads to a decrease in the LST value, and the distribution of LST−NDVI points is biased to
the wet edge. Therefore, it is necessary to correct the original LST with DEM before the
TVDI calculation so that the TVDI of high elevation is closer to the actual soil moisture.
The DEM correction formula is shown as follows [44]:

LST2 = LST1 + m ∗ H (1)

where: LST2 is the corrected LST; LST1 is the original LST before correction; H is the
elevation; m is the degree to which LST is affected by elevation, m is set as 0.006, which is
consistent with the influence coefficient of elevation on air temperature.

Step 4: Finally, ground SM samples were used to further verify the relationship
between the TVDI derived from downscaled LST and soil moisture in two flight areas.

3.2. Data Mining Sharpener (DMS)

The Data Mining Sharpener (DMS) algorithm proposed by Gao et al. [37] was adopted
to generate fine-resolution LST images in this study. The DMS is implemented by relating a
suite of Vis-NIR reflectance to the TIR data using regression trees. First, fine-resolution Vis-
NIR images are aggregated to match the coarse resolution of the TIR bands. The coefficient
of variation threshold determines whether the Vis-NIR data are homogeneous. Then, the
homogeneous Vis-NIR data and corresponding TIR data at the same coarse resolution are
used to build the LST and Vis-NIR relationship using the regression tree method, which
is performed both locally and globally. Local regression trees are built using samples
close to the sharpened pixels in a moving window manner. Global regression trees are
trained with samples selected from the whole scene. In the next step, this regression tree
is applied to the Vis-NIR images at fine pixel resolution to estimate the downscaled LST.
Sentinel-2 includes spectral bands of variant resolutions at 10 m, 30 m, and 60 m. To avoid
the difference between variant resolution spectral and LST regression relationships, we only
selected the spectral band with 10-m resolution as the training data. Finally, the gaussian
filtering residuals between the original training LST and regression outputs are added to the
fine-resolution LST maps, ensuring energy conservation during the downscaling process.

3.3. The Temperature Vegetation Dryness Index (TVDI)

The TVDI has been widely applied as a water stress indicator to estimate soil moisture.
Based on a simplified triangular feature space (shown in Figure 3) constructed from the LST
and NDVI, the TVDI represents isolines in the LST/NDVI space. The triangle is enclosed
by two meaningful edges—dry edge and a wet edge. The dry upper edge represents pixels
with maximum water-stressed conditions for a range of the NDVI, and the lower wet edge
represents a fully wet area or a place with unlimited water. The slopes of triangles are
related to evapotranspiration rates.

Figure 3. Simplified triangular feature space.
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Both the maximum surface temperature LSTmax and the minimum surface temperature
LSTmin are analyzed by linear fitting equations to improve the inversion accuracy. The
calculation formula is as follows:

TVDI =
LST− LSTmin

LSTmax − LSTmin
=

LST− (a2 + b2 ∗NDVI)
(a1 + b1 ∗NDVI)− (a2 + b2 ∗NDVI)

(2)

where NDVI is the NDVI value in a given pixel, LST is the DEM corrected temperature
after downscaling process in the corresponding pixel, LSTmin refers to the minimum LST,
LSTmax and is the maximum LST in the triangle space at a given NDVI. Among the equation,
LSTmax = a1 + b1 ∗NDVI is called the dry edge; LSTmin = a2 + b2 ∗NDVI is called the wet
edge; a1, b1 and a2, b2 represent the fitting coefficient of the dry edge and wet edge equation
respectively. The common NDVI range of green vegetation area is 0.2–0.8 [45]. Only the
NDVI value within the range was selected. Then the corresponding TVDI value could be
calculated according to the position in the LST-NDVI feature space. The TVDI value ranges
from 0 to 1 and was negatively related to soil moisture.

4. Results

To investigate the performance of the DMS sharpening algorithm, the downscaled
results were compared with the thermal infrared data captured by the UAS at three flight
sites. TVDI calculations were then carried out using downscaled LST data, and soil moisture
sampling at two flight sites was used to confirm the results.

4.1. Performance of Downscaled LST

The 10-m Sentinel-2 Vis-NIR data (Figure 4a only exhibits the RGB bands compositing
image, not including NIR band) were used to sharpen the original 1-km MODIS TIR image
(Figure 4b). The relationship between the Vis-NIR and LST data of coarse resolution was
applied to the fine resolution Vis-NIR data with residuals to obtain the downscaled 10-m
resolution LST image (Figure 4c). As shown in Figure 4, while persisting the pattern of
the original MODIS LST map, the downscaled LST data also enhances the spatial features
in detail based on the Sentinel-2 image. The bias is −0.075 K, and Root Mean Square
Difference (RMSD) is 1.257 K between the original MODIS TIR image and the downscaled
LST aggregated to 1-km resolution. Analyzing the data from a coarse resolution perspective,
it is evident that DMS can build a good relationship between Vis-NIR and TIR bands across
multiple satellites. Sentinel-2 provides fine-resolution Vis-NIR data with 4–5 days of
revisiting time, while MODIS provides coarse-resolution LST data on a daily basis. By
combining these two readily accessible satellite data, LST data with fine spatial-temporal
frequencies can be generated using the downscaling method.

Figure 4. Input data ((a) 10-m Sentinel-2 RGB, (b) 1-km MODIS TIR) and output data ((c) 10-m
downscaling TIR) in downscaling area.

4.2. Evaluation of Downscaled LST Data with LST from UAS

To evaluate the performance of the DMS method in the study area, the downscaled
LST data of each scene was compared with the thermal data from the UAS flights at three
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different sites (Gu Daokou, Xi Shenggou, Xi Dabei). The results were evaluated visually
and quantitatively against the aggregated LST data from the UAS.

The orthophotos (Figure 5, row 1) show the surface conditions of the three flight
sites. To facilitate the validation, the ultra-fine-resolution TIR images acquired by the UAS
(Figure 5, row 2) were aggregated to 10-m resolution (Figure 5, row 3), which follows
the pixel size of the Sentinel-2 imagery. As shown in row 4 and row 5 of Figure 5, the
downscaled LST data and the original MODIS 1-km LST data were clipped to the sites’
area. Clearly, under 1 km resolution, one pixel of the MODIS LST data is much larger
than the site area, making it impossible to provide adequate LST information at the field
scale. By implementing the downscaling algorithm, a more detailed LST distribution was
recovered, which further shows a similar pattern as the one aggregated from the UAS LST
data. Compared with the maps of the original MODIS LST data, although deviation still
exists between the two data sets, the downscaled data show good differentiation between
high-temperature bare land and low-temperature vegetation coverage areas.

Figure 5. Comparisons among UAS orthophotos (first row), spatial distributions of UAS LST (second
row, 0.1 m), UAS aggregated LST (third row, 10 m × 10 m), downscaled LST from MODIS (fourth
row 10 m × 10 m), MODIS LST (last row, 1 km × 1 km) in three flight sites (Gu Daokou, Xi Shenggou,
Xi Dabei at three columns respectively).
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Further analysis of the differences between the downscaled data and UAS data was
done with a quantitative approach. The boxplots in Figure 6 display the range of UAS
aggregated LST and DMS downscaled LST at three flight sites. Boxplots show the quartiles
(the black box), median (straight red line in the box), whiskers (straight line out the box),
and outliers (black dots). It is intuitively displayed that the DMS method predicts a
higher median LST value than the UAS observation value in all three sites. Several factors,
including atmosphere, emissivity, and the instrument’s height, can affect the performance
of UAS and satellite sensors [46], which may result in the bias shown above. However,
since in the following procedures, the TVDI will be calculated based on the normalized
LST data, only minor influence will be introduced by the bias between the absolute value
of the downscaled and UAS LST data. Moreover, the downscaled LST data is relatively
concentrated (mostly in upper and lower quartiles), whereas aggregated LST data from
UAS has a higher degree of dispersion. Due to the original MODIS LST data representing
the average temperature over 1 km2 area, the downscaled LST variations tend to be small,
even with fine-resolution NDVI data. From the first column of Figure 5, it can be seen that
the outliers in Figure 6a are mainly the LST of the road. These outliers are not the wrong
value; they just represent a much higher road LST than the farmland LST that dominated the
image. The UAS LST data show a wider variation and have more outlier points, suggesting
that the UAS still has advantages in capturing more detailed ground information.

Figure 6. Boxpltos of UAS aggregated LST and DMS downscaled LST at three flight sites.

Figure 7 shows the scatter plots comparing the aggregated LST data measured by the
UAS with the downscaled LST data collected by the satellite at three flight sites. R2 (Coef-
ficient of Determination), RMSE (Root Mean Squared Error), and MAE (Mean Absolute
Error) were computed to observe the consistency and uncertainty between downscaled LST
and UAS LST. Due to the uniform and dense vegetation covering Site 1, the temperature
distribution was highly concentrated, which introduced difficulties in establishing a proper
correlation. The other two sites (Xi Shenggou and Xi Dabei), however, showed a relatively
reliable linear relationship between the downscaled LST data and the actual UAS LST data
based on the R2 (0.74, 0.51 in two sites). The RMSE and MAE are 6.44 K, 5.94 K, and 5.72 K,
5.32 K for two sites.

Figure 7. Scatterplots of the UAS aggregated LST and DMS downscaled LST at three flight sites.
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Compared with the UAS LST data, the DMS downscaled LST data reconstructed the
spatial distribution of the LST quite well. There were still discrepancies in the obtained
median values and data distributions. Due to the lack of LST validation methods for
heterogeneous and across different scales, the harmonization of LST data was difficult, so
the comparison was only used as a reference for downscaling LST. Nevertheless, medium
correlations were still observed between the two data sets. Overall, considering the very
large ratio between the original resolution and the target resolution (1 km to 10 m), the
results indicate a good performance of the DMS algorithm in generating fine-resolution LST
images. Even though the downscaling method cannot fully restore the LST distribution
captured by the UAS, it has improved greatly compared to the satellite data. Since these
satellite data are readily available, this method has high practical potential.

4.3. Calculation and Spatial Distribution of the TVDI

The DEM corrected LST is shown in Figure 8a. As introduced in Section 3, the TVDI is
based on the scatterplot of the NDVI and downscaled, DEM-corrected LST of corresponding
pixels. The maximum and minimum LSTs vary along with the NDVIs and can be linearly
regressed to dry edge and wet edge, respectively. Figure 9 shows dry/wet edges and their
fitting equations derived from density scatterplots. For this study, the fitted dry and wet
edge functions are as follows:

LSTdry = 313.934− 9.063 ∗NDVI,

LSTwet = 304.267− 3.166 ∗NDVI.
(3)

The coefficient of determination of the corresponding dry edge is high (R2 > 0.55), and
the R2 of most wet edges is above 0.36.

Figure 8. Input data ((a) 10-m DEM Corrected LST, (b) 10-m NDVI) and output data ((c) 10-m TVDI)
of TVDI method in downscaling area.

As shown in Figure 8a–c, the downscaled, DEM-corrected LST data, the NDVI data,
and the calculated TVDI data at a resolution of 10 m display similar spatial distributions
across the study area. Figures 1 and 8 show that in the western area of low-altitude
mountains, the LST is extremely high, and the TVDI is close to 1, indicating that these
regions are dry primarily due to high LST. It is likely that the sparse vegetation (low NDVI
values) in the southeastern low-altitude mountainous areas mainly contributes to the low
TVDI values. The low-altitude alluvial plains in the central and northeastern regions
are also relatively wet, with relatively low LST, moderate NDVI, and low TVDI values.
Combining the elevation map, geomorphological map, and TVDI distribution map, we
found that wet areas are mainly in low-elevation alluvial plains near rivers, which often
have underground aquifers and are rich in sand and gravel that can keep water.
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Figure 9. Dry/wet edges and their fitting equations derived from density scatterplots of NDVI and
downscaled LST.

4.4. Validation TVDI with In-Situ SM

To quantitatively validate the TVDI as an index for assessing soil moisture, in-situ soil
moisture measurements were conducted at two different sites (Site 2 and Site 3). Site 1,
where dense cornfields were watered, was not suitable for soil moisture sampling. Figure 10
shows the distribution of soil moisture sampling points on the UAS orthophotos and TVDI
maps. Thirty-four and twenty-nine soil moisture sampling points were taken in Site 2 and
Site 3, respectively. In Site 2, soil moisture varied greatly due to the heterogeneity of land
cover types. The heterogeneous land cover regions can be visually observed from the UAS
orthophoto. To reduce the errors and recover the overall soil moisture level for different
land cover types, it was reasonable to take the mean value of the measured volumetric soil
moisture under the same land cover at the 10-m Sentinel-2 grid. Thirty-four SM samples
at Site 2 were divided into 12 verifying groups based on land cover boundaries (blue
line). In the homogeneous land-covered Site 3, TVDI was validated against the in-situ
measurements for each grid.

Typically, the correlation analysis was used to assess the ability of TVDI to capture
the spatial-temporal soil moisture variations [29,30]. In this study, Pearson’s correlational
analysis was adopted to assess the downscaled TVDI performance. Figure 11 displays
the scatter plots for the obtained TVDI data and the in-situ measured SM in the two sites,
where a significant negative correlation was observed. The Pearson correlation coefficient
(r) values ranged from 0.67 to 0.71, with p-value smaller than 0.05. By validating at two
sites on individual days, it was suggested that the TVDI obtained through the downscaled
LST data could capture the spatial variation of the SM at fine resolution. The slightly higher
r at Site 2 may be attributed to the high diversity of land cover types. Furthermore, the
reduction of fluctuations by averaging multiple data points also helped to make the result
more reliable. At Site 3, the smaller p-value may partly be explained by the more statistics.
Linear relationships exist between the TVDI and the in-situ measured SM with R2 values
ranging from 0.44 (Site 3) to 0.50 (Site 2). It is possible to use downscaled TVDI to predict
the SM. Given the dry condition of the flight sites, soils with moisture greater than 15%
were not involved in our study.
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Figure 10. The distribution of soil moisture sampling points in the UAS orthophotos (first column)
and the TVDI maps (second column) in two sites.

Although many studies have proved the relationship between the soil moisture and
the TVDI [12,25], this study focuses on whether TVDI, after downscaling to 10 m, can
still effectively evaluate the soil moisture status. First, compared to the UAS LST data, it
was verified that the downscaled satellite LST data could reflect the spatial temperature
variation. Secondly, using downscaled LST data, the TVDI map still showed a reasonable
SM spatial pattern over the region. The downscaled TVDI also had a good correlation with
SM measurements, indicating that downscaled TVDI could reflect the condition of SM.

Figure 11. Scatterplots of the soil moisture and TVDI in two flight sites.
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5. Discussion
5.1. Limitations of the DMS Algorithm

In this study, a downscaling algorithm was adopted to produce higher-resolution data
sets. Generally speaking, the key point of most downscaling algorithms is to establish a
statistical relationship between low-resolution and single or multiple fine-resolution data.
To produce the required fine-resolution LST data, the DMS algorithm implemented by this
study took the MODIS TIR data as the sharpening candidate and the fine-resolution Vis-NIR
data from Sentinel-2 as the inputs. Among all the accessible bands of the Sentinel-2 data,
only four Vis-NIR bands of the 10-m resolution were chosen to provide the fine-resolution
information. The reason is that due to the discrepancies of the bands, a large systematic
error could be introduced if multiple bands with different resolutions were adopted in
the downscaling algorithm. On the other hand, to reduce the error of the correlation, it is
always preferred to include as much information as possible. To further improve the results
of this study, trying to incorporate other bands into the downscaling algorithm without
increasing the systematic error will be a promising direction.

It is also beneficial to investigate the correlation between different variables instead of
different bands. For instance, the linear relationship between the LST and the vegetation
indices was studied. However, this algorithm was not suitable for this study since it
averaged out the information on soil moisture, which was crucial for the LST-NDVI triangle
method. In contrast, by incorporating two more bands besides the ones used in the NDVI
calculation, the DMS algorithm presumably preserves the information of the soil moisture
and will propagate them into the downscaled LST data.

There is an inherent limitation in applying the DMS algorithm: The specific relation-
ship between different optical bands highly depends on the local climates, and the data
acquisition time, i.e., correlations need to be established for each study area separately.

Nevertheless, it is still reliable to implement the algorithm when the data sets are
spatially and temporally limited.

5.2. Differences between UAS LST and MODIS Downscaled LST

Compared to the UAS LST image, the downscaled LST data showed a similar distribu-
tion. However, discrepancies still existed. The main possible reasons are as follows:

Firstly, systematic errors could be introduced by the differences between the satellite
TIR instruments, whose data were directly related to the obtained LST image, and drone
thermal infrared camera sensors. A relevant study made by Combs et al. [47] compared
the NDVI datasets from Sentinel-2 and the UAS, concluding that the differences are mostly
due to sensor specifications and performance. It is necessary to modify LST based on the
surface emissivity during retrieval. UASs were evaluated on the basis of their broadband
emissivity product, while MODIS was evaluated on the basis of its emissivity product. For
MODIS, an emissivity product was used, and for UAS, broadband emissivity is considered
a constant for all pixels. An emissivity error can consequently lead to uncertainties in the
camera performance and in the final LST retrieval [48]. In addition, the satellite TIR sensor
is affected by atmospheric compounds and requires correction.

Second, the different working altitudes of the satellite and the UAS could also be one
source of the systematic error. Taking advantage of its low cruising altitude, the UAS can
naturally capture more pure pixels, which are relatively less smeared by adjacent pixels.
It enables the UAS to better distinguish different land cover types and, at the same time
to observe a wider temperature distribution. On the other hand, high-altitude satellites
are more affected by the smearing of the pixels, i.e., local fluctuations originating from the
small changes in the land cover tend to be mixed and averaged out. According to this, the
downscaled LST data were expected to have a more concentrated distribution and to pos-
sess less information about the spatially heterogeneous. According to Panagiotis et al. [49],
high homogeneity was observed in the downscaled LST data, where adjacent pixels are
similar, resulting in clumped patterns and hot spots.
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Thirdly, temporal consistency between the satellite data acquisition time and UAS
data collection time also needs to be carefully considered. Considering the circular velocity
of the satellite, with the fixed revisit time, one may assume that the satellite data were
acquired at the same time in a day, especially when the study area was limited. On the
other hand, a time difference always exists when collecting data at multiple sites using the
UAS. This deviation in the measuring time between different data acquisition methods
may result in the natural discrepancies in the measured LST distributions.

However, since that the UAS is extremely sensitive to temporal temperature fluctua-
tions and spatial outliers, it could also lead to an unreliable representation of the overall
area surface temperature.

5.3. TVDI Index Mapping SM

In this paper, the TVDI index was adopted to reflect the dry and wet conditions of
the soil. Although the method is simple and easy to implement, only two independent
variables are considered specifically: surface temperature and vegetation index. On the
other hand, climate, vegetation cover, and soil types vary widely across regions, all of
which may impact the soil conditions but instead be averaged out in the TVDI calculation.
With available auxiliary information, the results could be further improved.

Another potential issue shows up when the land cover classes are not sufficiently
diverse at variable levels of wetness. In this case, the LST-NDVI triangular feature space
may not be successfully derived. Therefore, a certain part of the Tang River Basin was
chosen as the area of interest to ensure that there were enough types of surface covers.
Similar requirements also apply when collecting data with drones. To successfully acquire
LST-NDVI triangles, it is required to cover as many surface types as possible, which is,
however, difficult to meet. This indicates the potentially higher feasibility of SM monitoring
using satellites.

Although the linear correlation between the TVDI and the SM was clearly seen in
this study, there is still one caveat that the TVDI represents only relative soil moisture.
Difficulties exist when trying to retrieve the absolute volumetric soil moisture due to the
lack of extensive long-term in-situ monitoring SM data. However, it still has great potential
when being used in environmental applications such as soil moisture monitoring and
drought severity assessments. Incorporating more correction steps (such as correcting LST
images) and including a wider range of SM points may improve the reliability of the results.

6. Conclusions

LST data provide vital information for remote sensing monitoring soil moisture, but
the corresponding fine-resolution TIR sensor required for field-scale applications is lacking.
This study aims to investigate the feasibility of using the downscaled LST data from remote
sensing to monitor soil moisture via the TVDI method. A robust data mining sharpener
(DMS) approach has been applied to downscale LST data, using a cubic regression tree
method to establish functional relationships between the TIR and Vis-NIR bands. Due to the
lack of fine-resolution TIR data for benchmarking, the downscaled LST data was evaluated
using UAS observations and then applied to calculate the TVDI values. A correlational
analysis was adopted between TVDI data and soil moisture in-situ measurements as a final
step. The main findings and conclusions of this article are as follows:

1. The overall downscaling LST enhanced the spatial features based on the Sentinel-2
Vis-NIR bands while preserving the overall LST information of the original MODIS
data. The bias was -0.075 K, and the RMSD was 1.257 K between the original MODIS
TIR image and the downscaled LST aggregated to a 1-km resolution. Examined from
a coarse resolution perspective, it shows that the DMS technique can build a good
relationship between Vis-NIR and TIR band across multiple satellites.

2. The UAS ultra-fine resolution LST images are aggregated to the same 10-m resolution
as the comparing reference of downscaled LST. Examined from a fine resolution
perspective, the results showed that a more detailed LST distribution was recovered
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by implementing the DMS algorithm. The downscaled LST data can reflect the
spatial distribution of temperature to a certain extent, though discrepancies still exist
from the absolute values. DMS provides a feasible way for obtaining LST data at
finer resolution.

3. Based on downscaled LST data, we obtained a reasonable TVDI distribution map.
Compared with in-situ SM measurements, the downscaled TVDI could capture the
spatial variations of soil moisture effectively. The TVDI derived from downscaled
LST data showed a reasonable SM spatial pattern over the region, and a strong
correlation with soil moisture content measurements, with Pearson’s r values, ranged
from 0.67 to 0.71.

Our study demonstrates that the TVDI method based on the downscaled LST has
a high potential to provide large-scale SM monitoring. However, further research is still
needed to fully cover the scale gap between the satellite data and in-situ measurements.
By adopting additional spatial and temporal information, the algorithm could be further
validated. Moreover, by adding more factors to the downscaling algorithm, such as the
cover types, or combining different sharpening methods, the systematic error can be
further reduced.

Author Contributions: Conceptualization, X.M. and L.C.; methodology, L.C. and S.L.; software, L.C.;
validation, L.C., X.M., S.L., S.H., H.Z. and C.X; investigation, X.M., S.L., L.C., S.H., H.Z. and C.X.;
resources, X.M., P.B.-G., S.N. and H.G.; writing—original draft preparation, L.C.; writing—review
and editing, X.M., S.L., S.H. and P.B.-G.; visualization, L.C.; supervision, X.M. and S.L.; project
administration, X.M. and S.L.; funding acquisition, X.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was funded by the project of the National Key Research and Development
Program of China (Grant Nos. 2018YFE0106500, 2022YFF0801804) and CHINA WATERSENSE (file
number 8087-00002B).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Satellite data for TVDI calculation is publicly available at the Google
Earth Engine platform (https://developers.google.com/earth-engine, accessed on 25 November
2022) and is described in the main document.

Acknowledgments: We thank all the data providers.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SM Soil moisture
NDVI Normalized difference vegetation index
LST Land surface temperature
TVDI Temperature vegetation dryness index
UAS Unmanned aerial systems
TIR Thermal infrared
DMS Data mining sharpener

References
1. Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil mois-

ture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. .
0.02.004. [CrossRef]

2. Holzman, M.E.; Rivas, R.; Piccolo, M.C. Estimating soil moisture and the relationship with crop yield using surface temperature
and vegetation index. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 181–192. [CrossRef]

https://developers.google.com/earth-engine
http://doi.org/10.1016/j.earscirev.2010.02.004
http://dx.doi.org/10.1016/j.jag.2013.12.006


Remote Sens. 2023, 15, 744 16 of 17

3. Brocca, L.; Moramarco, T.; Melone, F.; Wagner, W.; Hasenauer, S.; Hahn, S. Assimilation of Surface- and Root-Zone ASCAT Soil
Moisture Products Into Rainfall–Runoff Modeling. IEEE Trans. Geosci. Remote Sens. 2011, 50, 2542–2555. [CrossRef]

4. Cunha, A.P.M.; Alvalá, R.C.; Nobre, C.A.; Carvalho, M.A. Monitoring vegetative drought dynamics in the Brazilian semiarid
region. Agric. For. Meteorol. 2015, 214–215, 494–505. . [CrossRef]

5. Liu, D.; Mishra, A.K.; Yu, Z.; Yang, C.; Konapala, G.; Vu, T. Performance of SMAP, AMSR-E and LAI for weekly agricultural
drought forecasting over continental United States. J. Hydrol. 2017, 553, 88–104. . [CrossRef]

6. Western, A.W.; Blöschl, G. On the spatial scaling of soil moisture. J. Hydrol. 1999, 217, 203–224. . [CrossRef]
7. Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A review of the methods available for estimating soil moisture and its

implications for water resource management. J. Hydrol. 2012, 458–459, 110–117. . [CrossRef]
8. Sagan, V.; Maimaitijiang, M.; Sidike, P.; Maimaitiyiming, M.; Erkbol, H.; Hartling, S.; Peterson, K.T.; Peterson, J.; Burken, J.;

Fritschi, F. UAV/Satellite Multiscale Data Fusion for Crop Monitoring and Early Stress Detection. Int. Arch. Photogramm. Remote
Sens. Spat. Inf. Sci. 2019, XLII-2/W13, 715–722. [CrossRef]

9. Verstraeten, W.W.; Veroustraete, F.; Feyen, J. Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales
of Observation. Sensors 2008, 8, 70–117. [CrossRef]

10. Garrison, J.L.; Shah, R.; Kim, S.; Piepmeier, J.; Vega, M.A.; Spencer, D.A.; Banting, R.; Raymond, J.C.; Nold, B.; Larsen, K.; et al.
Analyses Supporting Snoopi: A P-Band Reflectometry Demonstration 2020. In Proceedings of the IGARSS 2020—2020 IEEE
International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 3349–3352. .
[CrossRef]

11. Dai, E.; Venkitasubramony, A.; Gasiewski, A.; Stachura, M.; Elston, J. High Spatial Soil Moisture Mapping Using Small Unmanned
Aerial System. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium,
Valencia, Spain, 22–27 July 2018; pp. 6496–6499. . [CrossRef]

12. Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products & future
trends. Phys. Chem. Earth Parts A/B/C 2015, 83–84, 36–56. . [CrossRef]

13. Escorihuela, M.J.; Quintana-Seguí, P. Comparison of remote sensing and simulated soil moisture datasets in Mediterranean
landscapes. Remote Sens. Environ. 2016, 180, 99–114. . [CrossRef]

14. Naeimi, V.; Bartalis, Z.; Wagner, W. ASCAT Soil Moisture: An Assessment of the Data Quality and Consistency with the ERS
Scatterometer Heritage. J. Hydrometeorol. 2009, 10, 555–563. [CrossRef]

15. Entekhabi, D.; Njoku, E.; O’Neill, P.; Kellogg, K.H.; Crow, W.; Edelstein, W.N.; Entin, J.; Goodman, S.; Jackson, T.; Johnson, J.; et al.
The Soil Moisture Active and Passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [CrossRef]

16. Dorigo, W.A.; Gruber, A.; De Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.;
et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395.
[CrossRef]

17. Njoku, E.G.; Wilson, W.J.; Yueh, S.H.; Dinardo, S.J.; Li, F.K.; Jackson, T.J.; Lakshmi, V.; Bolten, J. Observations of soil moisture
using a passive and active low-frequency microwave airborne sensor during SGP99. IEEE Trans. Geosci. Remote Sens. 2002,
40, 2659–2673. [CrossRef]

18. Kaleita, A.; Tian, L.F.; Hirschi, M. Relationship between soil moisture content and soil surface reflectance. Trans. ASAE 2005,
48, 1979–1986. [CrossRef]

19. Weidong, L.; Baret, F.; Xingfa, G.; Qingxi, T.; Lanfen, Z.; Bing, Z. Relating soil surface moisture to reflectance. Remote Sens. Environ.
2002, 81, 238–246. . [CrossRef]

20. Gao, Z.; Xu, X.; Wang, J.; Yang, H.; Huang, W.; Feng, H. A method of estimating soil moisture based on the linear decomposition
of mixture pixels. Math. Comput. Model. 2013, 58, 606–613. [CrossRef]

21. Wang, L.; Qu, J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote
sensing. Geophys. Res. Lett. 2007, 34. [CrossRef]

22. Casamitjana, M.; Torres-Madroñero, M.C.; Bernal-Riobo, J.; Varga, D. Soil Moisture Analysis by Means of Multispectral Images
According to Land Use and Spatial Resolution on Andosols in the Colombian Andes. Appl. Sci. 2020, 10, 5540. [CrossRef]

23. Verstraeten, W.W.; Veroustraete, F.; van der Sande, C.J.; Grootaers, I.; Feyen, J. Soil moisture retrieval using thermal inertia,
determined with visible and thermal spaceborne data, validated for European forests. Remote Sens. Environ. 2006, 101, 299–314.
[CrossRef]

24. Matsushima, D.; Kimura, R.; Shinoda, M. Soil Moisture Estimation Using Thermal Inertia: Potential and Sensitivity to Data
Conditions. J. Hydrometeorol. 2012, 13, 638–648. [CrossRef]

25. Toby, C. An Overview of the “Triangle Method” for Estimating Surface Evapotranspiration and Soil Moisture from Satellite
Imagery. Sensors 2007, 7, 1612. [CrossRef]

26. Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote sensing of soil moisture
applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 52–68. [CrossRef]

27. Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index space for
assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. . [CrossRef]

28. Mallick, K.; Bhattacharya, B.K.; Patel, N.K. Estimating volumetric surface moisture content for cropped soils us-
ing a soil wetness index based on surface temperature and NDVI. Agric. For. Meteorol. 2009, 149, 1327–1342. .
03.004. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2011.2177468
http://dx.doi.org/10.1016/j.agrformet.2015.09.010
http://dx.doi.org/10.1016/j.jhydrol.2017.07.049
http://dx.doi.org/10.1016/S0022-1694(98)00232-7
http://dx.doi.org/10.1016/j.jhydrol.2012.06.021
http://dx.doi.org/10.5194/isprs-archives-XLII-2-W13-715-2019
http://dx.doi.org/10.3390/s8010070
http://dx.doi.org/10.1109/IGARSS39084.2020.9323547
http://dx.doi.org/10.1109/IGARSS.2018.8518730
http://dx.doi.org/10.1016/j.pce.2015.02.009
http://dx.doi.org/10.1016/j.rse.2016.02.046
http://dx.doi.org/10.1175/2008JHM1051.1
http://dx.doi.org/10.1109/JPROC.2010.2043918
http://dx.doi.org/10.1016/j.rse.2014.07.023
http://dx.doi.org/10.1109/TGRS.2002.807008
http://dx.doi.org/10.13031/2013.19990
http://dx.doi.org/10.1016/S0034-4257(01)00347-9
http://dx.doi.org/10.1016/j.mcm.2011.10.054
http://dx.doi.org/10.1029/2007GL031021
http://dx.doi.org/10.3390/app10165540
http://dx.doi.org/10.1016/j.rse.2005.12.016
http://dx.doi.org/10.1175/JHM-D-10-05024.1
http://dx.doi.org/10.3390/s7081612
http://dx.doi.org/10.1016/j.rse.2017.05.041
http://dx.doi.org/10.1016/S0034-4257(01)00274-7
http://dx.doi.org/10.1016/j.agrformet.2009.03.004


Remote Sens. 2023, 15, 744 17 of 17

29. Zhu, W.; Jia, S.; Lv, A. A time domain solution of the Modified Temperature Vegetation Dryness Index (MTVDI) for continuous
soil moisture monitoring. Remote Sens. Environ. 2017, 200, 1–17. [CrossRef]

30. Sun, L.; Sun, R.; Li, X.; Liang, S.; Zhang, R. Monitoring surface soil moisture status based on remotely sensed surface temperature
and vegetation index information. Agric. For. Meteorol. 2012, 166–167, 175–187. . [CrossRef]

31. Zhan, W.; Chen, Y.; Zhou, J.; Wang, J.; Liu, W.; Voogt, J.; Zhu, X.; Quan, J.; Li, J. Disaggregation of remotely sensed land surface
temperature: Literature survey, taxonomy, issues, and caveats. Remote Sens. Environ. 2013, 131, 119–139. [CrossRef]

32. Bai, L.; Long, D.; Yan, L. Estimation of Surface Soil Moisture With Downscaled Land Surface Temperatures Using a Data Fusion
Approach for Heterogeneous Agricultural Land. Water Resour. Res. 2019, 55, 1105–1128. [CrossRef]

33. Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating subpixel surface temperatures and energy fluxes from the
vegetation index–radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. . [CrossRef]

34. Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat
surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [CrossRef]

35. Agam, N.; Kustas, W.P.; Anderson, M.C.; Li, F.; Neale, C.M.U. A vegetation index based technique for spatial sharpening of
thermal imagery. Remote Sens. Environ. 2007, 107, 545–558. [CrossRef]

36. Yang, G.; Pu, R.; Huang, W.; Wang, J.; Zhao, C. A Novel Method to Estimate Subpixel Temperature by Fusing Solar-Reflective and
Thermal-Infrared Remote-Sensing Data With an Artificial Neural Network. IEEE Trans. Geosci. Remote Sens. 2009, 48, 2170–2178.
[CrossRef]

37. Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote
Sens. 2012, 4, 3287–3319. [CrossRef]

38. Bindhu, V.M.; Narasimhan, B.; Sudheer, K. Development and verification of a non-linear disaggregation method (NL-DisTrad) to
downscale MODIS land surface temperature to the spatial scale of Landsat thermal data to estimate evapotranspiration. Remote
Sens. Environ. 2013, 135, 118–129. [CrossRef]

39. Sánchez, J.M.; Galve, J.M.; González-Piqueras, J.; López-Urrea, R.; Niclòs, R.; Calera, A. Monitoring 10-m LST from the
Combination MODIS/Sentinel-2, Validation in a High Contrast Semi-Arid Agroecosystem. Remote Sens. 2020, 12, 1453. [CrossRef]

40. Guzinski, R.; Nieto, H. Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspiration
estimations. Remote Sens. Environ. 2019, 221, 157–172. [CrossRef]

41. Xiang, T.Z.; Xia, G.S.; Zhang, L. Mini-Unmanned Aerial Vehicle-Based Remote Sensing: Techniques, applications, and prospects.
IEEE Geosci. Remote Sens. Mag. 2019, 7, 29–63. [CrossRef]

42. Oliver, W.; Bryan, M.; Jeffrey, M.; Michel, B.; Laura, L. Sub-metre mapping of surface soil moisture in proglacial valleys of the
tropical Andes using a multispectral unmanned aerial vehicle. Remote Sens. Environ. 2019, 222, 104–118. [CrossRef]

43. Wang, J. 1:1,000,000 Geomrphological Map of Beijing, Tianjin and Hebei Region. Available online: https://data.casearth.cn/sdo/
detail/5c19a5670600cf2a3c557b37 (accessed on 13 December 2022).

44. Zhao, J.; Zhang, X.; Liao, C.; Bao, H. TVDI based Soil Moisture Retrieval from Remotely Sensed Data over Large Arid Areasin.
Remote Sens. Technol. Appl. 2011, 26, 742–750. (In Chinese)

45. Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early
onset of plant disease and stress. Plant Methods 2017, 13, 80. [CrossRef] [PubMed]

46. Awais, M.; Li, W.; Hussain, S.; Cheema, M.J.M.; Li, W.; Song, R.; Liu, C. Comparative Evaluation of Land Surface Temperature
Images from Unmanned Aerial Vehicle and Satellite Observation for Agricultural Areas Using In Situ Data. Agriculture 2022, 12,
184. [CrossRef]

47. Combs, T.P.; Didan, K.; Dierig, D.; Jarchow, C.J.; Barreto-Muñoz, A. Estimating Productivity Measures in Guayule Using UAS
Imagery and Sentinel-2 Satellite Data. Remote Sens. 2022, 14, 2867. [CrossRef]

48. García-Santos, V.; Cuxart, J.; Jiménez, M.A.; Martínez-Villagrasa, D.; Simó, G.; Picos, R.; Caselles, V. Study of Temperature
Heterogeneities at Sub-Kilometric Scales and Influence on Surface–Atmosphere Energy Interactions. IEEE Trans. Geosci. Remote
Sens. 2019, 57, 640–654. [CrossRef]

49. Sismanidis, P.; Keramitsoglou, I.; Kiranoudis, C.T.; Bechtel, B. Assessing the Capability of a Downscaled Urban Land Surface
Temperature Time Series to Reproduce the Spatiotemporal Features of the Original Data. Remote Sens. 2016, 8, 274. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.rse.2017.07.032
http://dx.doi.org/10.1016/j.agrformet.2012.07.015
http://dx.doi.org/10.1016/j.rse.2012.12.014
http://dx.doi.org/10.1029/2018WR024162
http://dx.doi.org/10.1016/S0034-4257(03)00036-1
http://dx.doi.org/10.1109/TGRS.2006.872081
http://dx.doi.org/10.1016/j.rse.2006.10.006
http://dx.doi.org/10.1109/TGRS.2009.2033180
http://dx.doi.org/10.3390/rs4113287
http://dx.doi.org/10.1016/j.rse.2013.03.023
http://dx.doi.org/10.3390/rs12091453
http://dx.doi.org/10.1016/j.rse.2018.11.019
http://dx.doi.org/10.1109/MGRS.2019.2918840
http://dx.doi.org/10.1016/j.rse.2018.12.024
https://data.casearth.cn/sdo/detail/5c19a5670600cf2a3c557b37
https://data.casearth.cn/sdo/detail/5c19a5670600cf2a3c557b37
http://dx.doi.org/10.1186/s13007-017-0233-z
http://www.ncbi.nlm.nih.gov/pubmed/29051772
http://dx.doi.org/10.3390/agriculture12020184
http://dx.doi.org/10.3390/rs14122867
http://dx.doi.org/10.1109/TGRS.2018.2859182
http://dx.doi.org/10.3390/rs8040274

	Introduction
	Study Area and Data Preparation
	Study Area
	Satellite Data
	UAS Data
	In-Situ SM Measurements

	Methods
	Experimental Procedure
	Data Mining Sharpener (DMS)
	The Temperature Vegetation Dryness Index (TVDI)

	Results
	Performance of Downscaled LST
	Evaluation of Downscaled LST Data with LST from UAS
	Calculation and Spatial Distribution of the TVDI
	Validation TVDI with In-Situ SM

	Discussion
	Limitations of the DMS Algorithm
	Differences between UAS LST and MODIS Downscaled LST
	TVDI Index Mapping SM

	Conclusions
	References

