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Abstract: Recent research has shown the advantages of incorporating multisource geospatial data 
into the classification of urban functional zones (UFZs), particularly remote sensing and social sens-
ing data. However, the effects of combining datasets of varying quality have not been thoroughly 
analyzed. In addition, human mobility patterns from social sensing data, which capture signals of 
human activities, are often represented by origin-destination pairs, thus ignoring spatial relation-
ships between UFZs embedded in mobility trajectories. To address the aforementioned issues, this 
study proposed a graph-based UFZ classification framework that fuses semantic features from high 
spatial resolution (HSR) remote sensing images, points of interest, and GPS trajectory data. The 
framework involves three main steps: (1) High-level scene information in HSR remote sensing im-
ageries was extracted through deep neural networks, and multisource semantic embeddings were 
constructed based on physical features and social sensing features from multiple geospatial data 
sources; (2) UFZ mobility graph was constructed by spatially joining trajectory information with 
UFZs to construct topological connections between functional parcel segments; and (3) UFZ seg-
ments and multisource semantic features were transformed into nodes and embeddings in the mo-
bility graphs, and subsequently graph-based models were adopted to identify UFZs. The proposed 
framework was tested on Zhuhai and Singapore datasets. Results indicated that it outperformed 
traditional classification methods with an overall accuracy of 76.7% and 84.5% for Zhuhai and Sin-
gapore datasets, respectively. The proposed framework contributes to literature in heterogeneous 
data fusion and is generalizable to other UFZ classification scenarios where human mobility pat-
terns play a role. 

Keywords: urban functional zone; graph convolutional network; taxi trajectory; location-based  
service data; remote sensing 
 

1. Introduction 
Urban functional zones (UFZs), defined as the irregular urban blocks segmented by 

roads and carrying meaningful interpretations of urban social functions and economic 
activities [1], are widely employed as the basic spatial units for studying spatial and social 
structures of the urban environment [2,3,4] since an ideal UFZ spatial configuration alle-
viates negative consequences of urbanization, such as traffic congestion, air pollution, and 
urban heat island [5,6]. To identify UFZs effectively, accurate recognition of their func-
tional layouts is critical [7]. For this task, geographic data describing landscape structures, 
social sensing data reflecting socioeconomic properties, and the combination of remote 
and social sensing data describing human mobility, are required to extract information 
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that captures both the physical and social characteristics of UFZs [8–10]. In terms of ex-
tracting the physical characteristics of UFZs, which include landscape compositions and 
urban morphological structures, high spatial resolution (HSR) remote sensing images 
have provided detailed information (e.g., spectrums, textures, shapes, angles) of ground 
objects useful for LULC classification in urban areas and thereby the subsequent UFZ clas-
sification [8]. Moreover, the physical features extracted from HSR images are useful for 
identifying objects of specific land-use types that reflect urban functions, e.g., buildings, 
forests, and water bodies. Furthermore, the spatial patterns of various land uses are re-
lated to the socioeconomic characteristics of individual land parcels. Zhang et al. [7] iden-
tified UFZs from a collection of HSR remote sensing images using the convolutional neu-
ral network (CNN) model. To achieve UFZ classification in high spatial resolution, Zhou 
et al. [11] proposed super object convolutional neural network (SO–CNN) to classify UFZs 
from very high resolution (VHR) remote sensing images. In addition to deep learning 
methods, Zhang et al. [12] combined bottom-up classification with top-down feedback to 
improve the results of functional zone mapping based on high-resolution remote sensing 
images. 

However, the visual features from HSR images and static physical representations of 
individual land use categories do not fully capture urban functions since UFZ is, by defi-
nition, a heterogeneous region containing various land use types and diverse objects. 
Therefore, the location-based social sensing data, such as point of interest (POI) data 
[11,12], social media check-in data [13,14], mobile phone positioning data [10,15], and GPS 
trajectory data [16–18], are often used to infer urban functional regions. By integrating 
extensive social sensing data, the development of data mining methods and GIS analysis 
techniques enable the discovery of semantic spatial patterns of social functions. 

Many attempts have been made to combine heterogeneous data sources for under-
standing the spatial patterns of urban functions. Using POI data and a simplified 
Place2vec model, Zhai et al. [19] detected functional regions at a neighborhood scale. 
Combining POI data with HSR images, Zhang et al. [20] applied hierarchical semantic 
cognition methods to identify UFZs from HSR images based on POI semantics. By extract-
ing semantic features from topic models, Du et al. [21] realized a large-scale urban func-
tional identification method combining HSR images and POI data. Based on topic models, 
Tu et al. [22] also extracted social semantics from POIs and integrated them with physical 
semantics from remote sensing images to perform classifications of urban functional seg-
ments at different scales. Nevertheless, data of POIs are often scarce in suburbs and green 
space regions as opposed to other POI types, resulting in data imbalance issues [21]. In 
addition, POI data fall short of reflecting dynamic human mobilities since most POIs are 
names of places or functions of facilities. New social sensing data sources provide more 
information that represents human mobility and economic activities with high spatial and 
temporal resolution. Taxi trajectory data [16,23], real-time user data [24,25], and bicycle 
rental records [26] were all being integrated with POIs to separate functional semantics 
for different urban structures. 

Parallel to adopting disparate data sources for features useful for UFZ classification, 
recent developments in approaches for UFZ classification explored machine learning 
models in natural language processing (NLP) to improve UFZ classification accuracy. Du 
et al. [27] employed topic models and SVM to accurately identify urban functions based 
on multi-model transportation data, such as POIs, taxi trajectory data, and bicycle rental 
records. Xu et al. [28] employed ensemble learning and active learning to balance the ac-
curacy of functional zone identification using HSR images and social sensing data. To bet-
ter understand the correlations between different data sources, Zhang et al. [25] devel-
oped a new cross-correlation mechanism to infer urban functions combining HSR image, 
POI, and real-time user (RTU) data. 

These approaches, which focus more on identifying the categories of UFZs based on 
different classification models, fall short of distinguishing the influence of different com-
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binations of metrics on UFZ classification [29–31]. For instance, Tu et al. [32] adopted clus-
ter analysis to integrate landscape metrics with human activity patterns on the grid level 
in Shenzhen, China, which achieved low accuracy on a large scale UFZ classification and 
failed to demonstrate the advantages of incorporating human mobility data in UFZ clas-
sification. To generalize the relationships between different features critical for UFZs 
recognition, Xu et al. [28] utilized ensembled models to perform UFZ classification based 
on multiple metrics from buildings, landscapes, POIs, and human activities. The func-
tional zone recognition of one district in Beijing demonstrated varying importance of mul-
tisource metrics; however, the study was limited in spatial scale and model generalization 
ability. Whilst some research has been carried out on multisource data combinations of 
UFZ classification, the effectiveness of different types of data has not been fully under-
stood [2,28,33,34]. 

Another challenging problem in UFZ classification using multiple data sources is the 
integration of human mobility information. Existing studies [17,23,24] utilizing transpor-
tation data have considered only their temporal characteristics when using taxi GPS tra-
jectory data, and most UFZ classification approaches conveniently downplay or neglect 
the fact that both the spatial transitions and time-series changes must be considered to-
gether to properly characterize human mobility. A recent study by Hu et al. [35] applied 
a graph convolutional neural network (GCNN) approach to taxi trajectory data to identify 
the functions of road segments when using road segments as the basic study unit. Previ-
ous literature has limited findings on the mobility data fusion and feature extraction for 
UFZ classification from the perspective of contextual and topological connections repre-
sented by the human movements between UFZs. Effective incorporation of the spatial 
relationships between the urban units using human mobility data on the UFZ level re-
mains a research gap. 

This study proposes a graph-based multimodal data-fusion framework for UFZ clas-
sification that leverages remote sensing, social sensing data, and human mobility patterns. 
It contributes to UFZ classification literature in three ways. First, the proposed framework 
investigates the efficiency of graph-based models for urban functional zone classification. 
Second, the contributions of latent features from multisource data are evaluated and the 
results demonstrate the combination of remote sensing data and social perception data 
that improve the accuracy of model predictions. Third, the evaluations of classification 
performances reveal that human mobility patterns can improve UFZ classification by min-
ing the connections between human movements and urban functions. Additionally, the 
study shed light on how the classification performances are affected by multiple data 
sources, classifiers, and parameters of classification models through the experiments in 
Zhuhai and Singapore. 

2. Study Areas and Datasets 
2.1. Study Areas 

We evaluated the proposed UFZ classification framework on two cities: Zhuhai, 
Guangdong Province of China, and Singapore. The locations of the two cities are pre-
sented in Figure 1.  

Zhuhai (22°16′N, 113°34′E), a prefecture-level city with a population of 2.44 million 
in 2020, is one of China’s four original special economic zones (SEZs) established in the 
1980s. It covers 1724.32 km2, which in addition to its mainland includes 217 islands. 
Zhuhai has experienced tremendous changes in urban morphological composition and 
landscape structure due to the rapid urbanization since it is granted the SEZ status. The 
changes in its urban space are attributed to various human activities, making Zhuhai an 
ideal location for UFZ identification. The study site focused on the mainland of Zhuhai, 
covering 1507.07 km2, with a complex urban functional structure and a diverse range of 
land cover patterns. Singapore (1°29′N, 103°85′E) is a highly urbanized city-state in South-
East Asia, with a population of 5.45 million. The land reclamation projects increased the 
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land area of Singapore to 724.2 km2 by 2020. Since the past century, Singapore has been 
undergoing an accelerated process of urbanization with rapid land-use/land cover trans-
formations. Our study region covers the main island area of Singapore, occupying a total 
area of 692.28 km2, and contains various urban functional areas. The different morpholog-
ical compositions and urbanization processes between the two cities provide good com-
parisons for UFZ classification as well as evidence to demonstrate generalizability of our 
proposed method. 

 
Figure 1. Geographic locations of study areas. 

2.2. Datasets 
The corresponding data sources, including HSR remote sensing images, POIs, build-

ing footprints, forest canopy height, OpenStreetMap (OSM) road networks, and trajectory 
data were mainly collected from crowdsourced datasets and government websites as de-
scribed in Table 1. HSR remote sensing images with three bands (i.e., red, green, and blue) 
covering both of the study areas in 2019 were collected from Google Earth, and the spatial 
resolution is 0.6 m. These HSR images contain rich geometric, textural, and spectral infor-
mation of geographic objects that enables extracting physical features of urban subregions 
useful for UFZ classification. The POI data of Zhuhai in 2018 were extracted from Gaode 
map (lbs.amap.com/. Accessed 1 Dec. 2020), in which POIs were point features with in-
formation including latitude, longitude, and triple category. The POI data of Singapore 
were derived from OSM, google places, and a government website (Data.gov.sg) in 2019. 
The 3D building data of Zhuhai were collected from the 3D maps produced by Baidu map. 
The original datasets include 3D building objects with attributes of height, shape, and 
area. The 3D building data of Singapore were collected from OSM buildings (3dbuild-
ings.com/. Accessed 7 Dec. 2020). The forest canopy height data were extracted from a 
raster dataset that measured the global canopy height in 2019 produced by NASA [36]. 
The vector data of OSM road networks were obtained from OSM in 2019, including ad-
ministrative boundaries of Zhuhai and Singapore. Figure 2 and Figure 3 show a section in 
Zhuhai and in  Singapore as examples of data used in this study. 
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Table 1. Data sources. 

  Data used Time Spatial information Data source 

Zhuhai 

OSM data 2019 parcel-based OpenStreetMap 
HSR imagery 2019 0.6 m/pixel Google Earth 

POI data 2019 point-based Baidu map 
Forest canopy 

height data 2019 30 m/pixel 
Global Forest Canopy 

Height [35] 
Building data 2019 parcel-based Baidu map 

Taxi GPS data 
2019/8/01- 

point-based Didi taxi dataset 
2019/8/31 

Singapore 

OSM data 2020 parcel-based OpenStreetMap 
HSR imagery 2020 0.6 m/pixel Google Earth 

POI data 2020 point-based Data.gov 
Forest canopy 

height data 2019 30 m/pixel 
Global Forest Canopy 

Height [36] 
Building data 2020 parcel-based OpenStreetMap 

Mobility data 
2020/9/01- 

point-based CITYDATA 
2020/9/30 

 
Figure 2. HSR image, road network, building data, forest canopy height, and POIs in Zhuhai. 

 
Figure 3. HSR image, road network, building data, forest canopy height, and POIs in Singapore. 

Trajectory data, such as taxi GPS trajectory data and location-based service data, re-
veal the socioeconomic activities that people engage in since these activities lead to com-
muting between different locations [23,37], and it was suggested that taxi trips account for 
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a significant portion of urban residents’ mobility [38]. To map the patterns of mobility 
across different urban zones, the GPS trajectory dataset generated by 9,075 taxis in Zhuhai 
between 1 August 2019 and 31 August 2019 was used to extract the pick-up and drop-off 
locations (i.e., O/D points) for trips. The original dataset includes information of taxi ID, 
longitude, latitude, timestamp, direction, speed, and the number of passengers. The 
crowdsourced mobility data in Singapore were obtained from CITYDATA citydata.ai/. 
Accessed 1 Jun. 2021). The trajectory dataset includes 368,135 trip hops obtained from 5000 
location-based service devices in September 2020. 

3. Methods 
In this paper, a graph-based analysis framework is proposed to classify UFZ by inte-

grating multisource data. As shown in Figure 4, the proposed framework consists of four 
components, UFZ segmentation, multisource feature fusion, mobility graph construction, 
and graph-based classification. First, the spatial units for UFZ identification were seg-
mented using OSM road networks. Then, multisource feature vectors describing the phys-
ical and socioeconomic characteristics of UFZs were developed from HSR images, POIs, 
building footprints, and forest canopy height maps. Next, the UFZs, along with multi-
source features, were converted into nodes with semantic embeddings of directed graphs 
based on the trajectory information extracted from mobility data. In the last step, the 
Graph SAGE model was introduced to identify the categories of UFZs based on the geo-
semantic embeddings and mobility connections. 

 
Figure 4. The proposed UFZ classification framework. 
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3.1. UFZ Segmentation 
In urban functional identification analysis, the traffic analysis zones (TAZs) based on 

road network are commonly adopted as the basic research unit [37,39,40]. In this study, 
the TAZs segmented from multilevel road networks form the initial UFZs. UFZ segmen-
tation was conducted using the OSM road network of two study areas dividing the study 
areas into multiple TAZs. We used the primary, secondary, and tertiary roads from OSM 
as the main road networks primarily since they offer the appropriate resolution for delin-
eating functional zones that avoided smaller or tiny zones that do not carry meaningful 
activities with respect to common urban functions. 

The original OSM road network in vector format was projected onto the HSR images 
and subsequently transformed into raster image patches with the same resolution as the 
HSR images. Morphological operations, including dilation and thinning, were applied to 
eliminate the overpasses and outlying roads in the raster road network. The binary road 
network in a raster format was then converted into the (vector) polygons by creating mul-
tipart features based on the connectivity between pixels. The boundaries of TAZs obtained 
from morphological operations do not correspond exactly to the road centerlines. The 
skeleton road network obtained after morphological operations divided the study areas 
with a buffer distance from the road centerlines, which facilitated the analysis of mobility 
connections between UFZs based on the origin/destination (O/D) points extracted from 
taxi trajectories or other mobile devices. 

3.2. Multisource Feature Extraction 
The UFZ classification differs from land use/land cover (LULC) classification since 

UFZs are heterogeneous zones composed of multiple objects with different LULC types 
[22]. As a result, the spatial distribution of ground components and their types plays sig-
nificant roles in UFZ recognition. In addition to these physical attributes, socioeconomic 
attributes are equally essential, given that UFZs are defined with human activities which 
are a major consideration. To capture the physical and socioeconomic attributes, the mul-
tisource data introduced in Section 2.2 are employed, and semantic features were ex-
tracted and then integrated to characterize UFZs. 

3.2.1. HSR Image Scene Composition 
UFZs are composed of heterogenous ground objects, such as buildings, playgrounds, 

and green lands. To classify UFZs, the physical characteristics of images at the pixel level 
are commonly used [20,21,28,41]. Nevertheless, pixel-level features often fail to represent 
the socioeconomic functions of an urban zone since the UFZ is composed of various socio-
economic information bearing objects—a residential UFZ may include residential build-
ings, roads, and green land, and a public service UFZ may include functional buildings, 
playgrounds, and green land. In this study, rather than pixel-level features, we opted for 
describing UFZs through scene composition. Here, a scene refers to a square image patch 
representative of a ground object and the composition refers to the proportions of indi-
vidual ground objects within the UFZ. Scene composition is adopted since the socioeco-
nomic functions of UFZ can be inferred through the occurrences of ground objects. Spe-
cific steps to extract scene composition are described in the next section. 

3.2.2. Image Scene Composition Extraction 
To obtain the scene composition, a CNN-based method, which uses the hierarchical 

deep architecture of CNN to automatically learn high-level features of remote sensing im-
ages, is generally used. In this study, we adopted Resnet-50, a widely used CNN-based 
method that achieved high accuracy in the scene classification task in several benchmark 
remote sensing scene classification datasets [42–44].  

The extraction of image scene composition features was realized by the following 
steps (Figure 5). First, we generated the datasets of image scenes with a size of 256×256 
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clipped from each UFZ. A total of 32,203 image scenes were randomly selected from 
Zhuhai and Singapore image datasets. Second, we labeled the image scenes with 11 clas-
ses, including agriculture, bare land, commercial buildings, forest, functional buildings, 
green land, industrial, playground, residential, road, and water, based on the categories 
from the land use maps of Zhuhai and Singapore obtained from the global land cover 
dataset [45]. The sample dataset was divided into a training set, a validation set, and a test 
set by the ratio of 6:1:3. Third, Resnet-50, which was pretrained on ImageNet and later 
fine-tuned with the sample data to reach 88.7% classification accuracy on our test set, was 
employed to predict the classes of all the image scenes generated within UFZs. The num-
ber of scenes for each land use class was counted for each UFZ, the percentages of each 
scene class are considered as the features of image scene composition. After classifying 
the HSR image patches based on deep learning features, the image scene composition of 
each UFZ can be represented by a vector with 11 elements, with each one reflecting the 
percentage of a land use category within the UFZ. For 𝑟𝑟-th UFZ, the feature vector of scene 
distribution is represented as:  

 𝑠𝑠𝑟𝑟 = 𝑐𝑐1,𝑟𝑟 , 𝑐𝑐2,𝑟𝑟 ,  𝑐𝑐3,𝑟𝑟 , … , 𝑐𝑐11,𝑟𝑟 ,  𝑟𝑟 ∈ 1,2,3, … ,𝑛𝑛 (1) 

where 𝑐𝑐1,𝑟𝑟 , 𝑐𝑐2,𝑟𝑟 ,  𝑐𝑐3,𝑟𝑟 , . . .   indicates the percentage of different classes of land use appearing 
in 𝑟𝑟-th UFZ and n is the total number of UFZs. 

 
Figure 5. Procedures for extracting image scene compositions for UFZs. 

3.2.3. Socioeconomic Features from POIs 
POI categories can be viewed as virtual words that reflect socioeconomic properties. 

Therefore, the number and distribution of POIs in each UFZ indicate the land use patterns 
and socioeconomic functions. The original POI data collected in Zhuhai include 23 classes 
of POIs that are not entirely mutually disjoint, resulting in duplication and ambiguity. 
Therefore, we reclassified level-1 POIs into 14 categories by merging or splitting some of 
their classes, as displayed in Table 2. For example, places such as schools and hospitals 
represent specific social functions; therefore, they were divided into independent classes. 
Transportation service, road facility, and pass facility have similar functions, and then 
they were merged into the category of public services. Correspondingly, the POIs in Sin-
gapore were reclassified into 11 classes by integrating categories with similar functions, 
as shown in Table 3.  

The socioeconomic characteristics of UFZ are described through the spatial distribu-
tion of different categories of POIs. To minimize the biases caused by unbalanced data 
volumes between POI categories, the POI feature vector is constructed using the fre-
quency density of 𝑖𝑖-th POI category, defined as: 
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𝑣𝑣𝑖𝑖,𝑟𝑟 = 𝑃𝑃𝑃𝑃𝐼𝐼𝑖𝑖,𝑟𝑟
𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑟𝑟

, 𝑖𝑖 ∈ {1, 2, …, m}, r ∈ {1,2, … , n} (2) 

where 𝑣𝑣𝑖𝑖,𝑟𝑟 is the frequency density of 𝑖𝑖-th POI category in 𝑟𝑟-th UFZ, 𝑃𝑃𝑃𝑃𝐼𝐼𝑖𝑖,𝑟𝑟 represents the 
number of POI points of 𝑖𝑖-th POI category within 𝑟𝑟-th UFZ, and 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑟𝑟  is the total area of 
𝑟𝑟-th UFZ. While 𝑚𝑚 is the total number of POI categories (i.e., Zhuhai has 14 POI classes 
and Singapore has 11 POI classes) and 𝑛𝑛 is the total number of UFZs. The POI feature 
vector of 𝑟𝑟-th UFZ is denoted as follows: 

𝑝𝑝𝑟𝑟 = �𝑣𝑣1,𝑟𝑟 ,  𝑣𝑣2,𝑟𝑟 ,  … ,  𝑣𝑣𝑚𝑚,𝑛𝑛� (3) 

Table 2. Statistics of segmented UFZs and POIs of Zhuhai data. 

Zhuhai data Attribute Count 
UFZs Initial segmented UFZs  1276 

POIs 

Category   14  
Company    14228 
Factory   379 
Food and beverage   19231  
Government agencies and public organizations  4277 
Health facilities  3375  
Hospital  101 
Living services  33122  
Public services  749 
Recreational services  2184  
Residence  17697  
School  354 
Scientific institutions and educational services  4689  
Shops  30775  
Transportation facilities  15450 
Total counts  146611 

Table 3. Statistics of segmented UFZs and POIs of Singapore data. 

Singapore Data Attribute Count 
UFZs Initial segmented UFZs 886 

 Category 11 
 Company 1599 
 Industry 607 
 Food and beverage 1599 
 Government agencies and public organizations 1759 
 Health facilities 1600 

POIs Living services 1597 
 Recreational services 2032 
 Residence 3206 
 Scientific institutions and educational services 638 
 Shops 1600 
 Transportation facilities 2913 
 Total counts 19150 

3.2.4. Morphological Features of Buildings and Trees 
The building features are calculated based on the building footprints with 2D and 3D 

information. The metrics used in our studies are presented in Table 4. For building met-
rics, nine indicators are used to describe the structures of buildings in UFZ parcels based 
on their physical properties, including three 2D metrics—area, perimeter, and building 
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structure ratio—and one 3D metric—height. Building structure ratio is calculated by di-
viding the building area by the perimeter. These metrics are included as they tend to ex-
hibit different levels of variations, e.g., commercial UFZs tend to exhibit high variations 
whereas residential UFZs tend to exhibit less variations. In addition, commercial UFZs 
tend to have more complex building shapes. Building heights, which reflect 3D character-
istics of the buildings, can potentially contribute to UFZ classification since they may re-
flect the different activities that take place within, e.g., commercial buildings tend to be 
higher while residential buildings tend to be of similar heights. Along with other metrics 
considered in this study, they account for important urban morphological attributes in-
dicative of varying activity intensities. 

In addition to the 2D and 3D metrics of buildings, tree canopy height is included as 
a metric in this study as its variations reflect the morphology of urban green space, which 
helps differentiate green spaces and agricultural UFZs from others. Accordingly, the mean 
value and standard deviation (std) value of tree canopy height are regarded as significant 
indicators for UFZ classification. The feature vector of 2D and 3D metrics for 𝑟𝑟-th UFZ is 
shown as: 

𝑚𝑚𝑟𝑟 = {𝑏𝑏𝑏𝑏_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 , 𝑏𝑏𝑏𝑏_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 , 𝑏𝑏𝑏𝑏_𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 , 𝑏𝑏𝑏𝑏_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 , 𝑏𝑏𝑏𝑏_𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 , 𝑏𝑏𝑏𝑏𝑏𝑏_𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟 , 𝑏𝑏𝑏𝑏𝑏𝑏_𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟 , 

𝑏𝑏ℎ𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 , 𝑏𝑏ℎ𝑠𝑠𝑡𝑡𝑡𝑡𝑟𝑟 , 𝑡𝑡ℎ𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒𝑟𝑟 , 𝑡𝑡ℎ𝑠𝑠𝑡𝑡𝑡𝑡𝑟𝑟}, 𝑟𝑟 ∈ {1,2,  … ,𝑛𝑛} (4) 

3.2.5. Feature Generation 
The feature vectors described from Sections 3.2.1 to 3.2.3 form the complete set of 

features for distinguishing individual UFZs. In this study, these feature vectors were con-
catenated in order that the full set of semantic features of each UFZ can be readily used in 
the proposed graph-based approach. The concatenated semantic feature vector for r-th 
UFZ is represented as: 

𝑥𝑥𝑟𝑟 = {𝑠𝑠𝑟𝑟 , 𝑝𝑝𝑟𝑟 ,𝑚𝑚𝑟𝑟}, 𝑟𝑟 ∈ {1,2,  … ,𝑛𝑛} (5) 

Table 4. Morphological indices of buildings and tree height. 

Morphological Index Description 

2D metrics 

Building area 
ba_density Building density in one UFZ 
ba_mean Mean of building area 

ba_std Standard deviation of building area 
Building pe-

rimeter 
be_mean Mean of building perimeter 

be_std Standard deviation of building perimeter 
Building bsr_mean Mean of building structure ratio 

structural ra-
tio 

bsr_std Standard deviation of building structure ratio 

3D metrics 

Building 
height 

bh_mean Mean of building height 
bh_std Standard deviation of building height 

Tree height 
th_mean Mean of tree height 

th_std Standard deviation of tree height 

3.3. Graph-based UFZ Classification 
To utilize trajectory information, it is required to first construct the corresponding 

mobility graph before the second, which is to classify individual zones using a combina-
tion of the features mentioned in the preceding section and the constructed graph. 

3.3.1. Construction of Mobility Graph 
Graph theory is widely used in analyzing the spatial distributions of remote sensing 

image units and modeling GIS data-based transportation networks. Specifically, studies 
in human mobilities have shown that trajectories, which lead naturally to graph-based 
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models, are one of the indicators for human activities associated with the socioeconomic 
characteristics of UFZs [26,37,46]. Transforming UFZs to mobility graphs is a critical step 
in the graph-based classification framework. Following the calculations of multisource 
features for initial UFZs, we integrated the trajectory information with topological link-
ages of UFZs to capture the contextual information for classifying UFZs. 

Table 5. Statistics of trajectory data used in our study. 

Data Source  Attributes Count  

Zhuhai 
taxi GPS dataset 

Taxis  4390 
Effective days  30  
Pick-up points  44654 
Drop-off points  42718 

Trajectories 17955 

Singapore  
mobility dataset 

Mobile devices 4738 
Effective days 30 
Leaving points 368135 
Arriving points 368135 

Trajectories 21647 
The preprocessing of trajectory data includes extracting O/D points, cleaning outlier 

data points, and recording effective trips between corresponding origin and destination 
points. The statistics of preprocessed trajectory data are shown in Table 5. First, we locate 
O/D points in UFZs. The directions of trajectories from origin points to destination points 
represent the human movements between UFZs. Next, the UFZs are treated as nodes in a 
graph with multisource features and the directions of trajectories between UFZs represent 
the connections between UFZ nodes. The UFZ nodes are connected based on adjacency 
and directions of trajectories to form a mobility network from Figure 6a to Figure 6b. Fi-
nally, we use a mobility network to construct a directed graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), consisting of a 
set of nodes 𝑉𝑉 that are connected by edges 𝐸𝐸. Nodes 𝑉𝑉 refer to UFZs and edges 𝐸𝐸 refer to 
mobility connections between UFZs. Each UFZ node in the mobility graph is deemed as 
a node 𝑣𝑣𝑖𝑖 and each trajectory as an edge 𝑒𝑒𝑖𝑖,𝑗𝑗, with the direction of edge from the start node 
𝑣𝑣𝑖𝑖 to the end node 𝑣𝑣𝑗𝑗 of each trajectory. Each node 𝑣𝑣 has a feature vector 𝑥𝑥𝑣𝑣 , which is sum-
marized in a vector matrix 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛×𝑑𝑑, where n represents the number of nodes (i.e., the 
number of UFZs) and d is the dimension of the feature vector (i.e., the number of features), 
each row 𝑥𝑥𝑣𝑣 ∈ 𝑅𝑅𝑑𝑑 is the semantic feature vector for 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑣𝑣, as shown in Figure 6c. The 
adjacency matrix of 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ 𝐺𝐺 is defined as 𝐴𝐴 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛. 

   

 

(a) (b) (c)  

Figure 6. UFZ mobility graph generation: (a) UFZs contain O/D points and effective trajectories; (b) 
mobility network constructed based on UFZ points and movements; (c) mobility graphs with mul-
tisource feature embeddings transformed from mobility network. 

It should be noted that, while the 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ 𝐺𝐺 includes all UFZs as nodes, it is entirely 
possible that some nodes do not serve as an origin or a destination, i.e., no one boarded 
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or alighted on these UFZs. In Figure 6c, these UFZs were presented by the hollow nodes. 
For these nodes, their labels or types will not participate in the Graph SAGE classification 
process described in the next section; rather, their classification will be based only on non-
mobility features described in Section 3.2. 

3.3.2. Classification of UFZ using Graph SAGE 
To take advantage of the topological connections and the human movement infor-

mation built in the graph for UFZ classification, this study considered a graph convolution 
approach to aggregate the spatial context information of each UFZ. The approach contains 
two convolutional layers and a 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 layer that was used as the final classifier. The 
Adam algorithm was adopted to optimize the loss and predicted labels for nodes in the 
graphs. The algorithm used back propagation according to the difference between the 
predicted label and the ground truth label, and optimized the network weight until the 
weight parameter with the best prediction result was obtained. The training set and test 
set split randomly from the input graph at first and the attribute of each node is with the 
same dimensions as the feature vector. Spatial context information of each node was first 
extracted through two layers of graph convolutional layers. The dimension of the ex-
tracted feature was further reduced to six through a fully connected layer to match the 
number of categories. Then, the model prediction was obtained by applying 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 on 
top of it and selecting the category with the largest probability. 

In this study, the UFZs are regarded as graph entities and trajectories are transformed 
into directed edges. Following the construction of a directed graph based on the mobility 
features, two graph structures, graph convolutional networks (GCN) and Graph SAGE 
(SAmple and aggreGatE), were employed to identify the categories of nodes or UFZ cate-
gories.  

GCN, a two-layer model, operates directly on a graph and induces embedding vec-
tors of nodes based on the properties of their adjacent neighbors [47] . In the graph-based 
model, the graph semantic feature matrix 𝑋𝑋 and the adjacency matrix 𝐴𝐴 are taken as in-
puts for the multilayer GCN computation. The output for the first layer of GCN is repre-
sented as: 

𝐻𝐻(1) = 𝜎𝜎�𝐴𝐴�𝑋𝑋𝑊𝑊0�, (6) 

where 𝑊𝑊0 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 is a weight matrix of trainable parameters at the first layer and 𝜎𝜎 is an 
activation function, e.g., a rectified linear unit (ReLU) σ(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑥𝑥). We can aggregate 
high order neighborhood information by stacking multiple GCN layers: 

𝐻𝐻(𝑙𝑙+1) = 𝜎𝜎�𝐴𝐴�𝐿𝐿(𝑙𝑙)𝑊𝑊𝑙𝑙�, (7) 

where 𝑙𝑙 denotes the layer number and 𝐻𝐻(0) = 𝑋𝑋. When multiple GCN layers are stacked 
together, information about larger neighborhoods is captured, which reveals the spatial 
dependencies among UFZs. However, the simple GCN layers cannot reveal the hidden 
connections between nodes. To deeply discover the relationships between nodes and 
edges in a graph, we introduced Graph SAGE for classifying UFZs based on constructed 
mobility graphs. Developed from the structure of simple GCN layers, Graph SAGE is a 
general inductive framework that efficiently generates node embeddings for previously 
unseen data by leveraging node feature information (e.g., text attributes) [48]. The aggre-
gation process of Graph SAGE is illustrated in Figure 7.  
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Figure 7. Graph SAGE aggregation process. 

 
Rather than training a unique embedding vector for each node, a set of aggregator 

functions is trained that learns to aggregate feature information from a node’s immediate 
neighborhood. The data away from a given node are aggregated by each aggregator func-
tion from a set of search depths. Graph SAGE generates embeddings for previously un-
seen nodes by applying learned aggregation functions at test or inference time. The for-
ward propagation rule for Graph SAGE is expressed as Algorithm 1.  

Algorithm 1: Graph SAGE embedding generation (i.e., forward propagation) algo-
rithm 
Input: Mobility graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) constructed based on O/D points and UFZs; multi-
source features: 𝑥𝑥 = {𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝑣𝑣,,∀𝑣𝑣 ∈ 𝑉𝑉}; the number of layers of the network 𝐾𝐾 ; 
non-linearity 𝜎𝜎; mean aggregator functions 𝐴𝐴𝐴𝐴𝐴𝐴; neighborhood function N: 𝑣𝑣 → 2𝑣𝑣  
Initialization: 
1: ℎ0 ← 𝑥𝑥𝑣𝑣 ,∀𝑣𝑣 ∈ 𝑉𝑉 
2: for k = 1 to K do 
3:     for 𝑣𝑣 ∈  𝑉𝑉 do 
4:             ℎ𝑁𝑁(𝑣𝑣)

𝑘𝑘 ←  𝐴𝐴𝐴𝐴𝐴𝐴({ℎ𝑣𝑣𝑘𝑘−1,∀𝑢𝑢 ∈ 𝑁𝑁(𝑣𝑣)}) 
5:             ℎ𝑣𝑣𝑘𝑘 ←  𝜎𝜎(𝑊𝑊𝑘𝑘 ∙ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(ℎ𝑣𝑣𝑘𝑘−1, ℎ𝑁𝑁(𝑣𝑣)

𝑘𝑘 )) 
6:     end 
7:     ℎ𝑣𝑣𝑘𝑘 ←  ℎ𝑣𝑣𝑘𝑘/‖ℎ𝑣𝑣𝑘𝑘‖2,∀𝑣𝑣 ∈ 𝑉𝑉 
8:     𝑧𝑧𝑣𝑣 ←  ℎ𝑣𝑣𝑘𝑘 ,∀𝑣𝑣 ∈ 𝑉𝑉 
9: end  
Output: Vector representations for all 𝑣𝑣 ∈ 𝑉𝑉 

From Algorithm 1, 𝐾𝐾 is the number of layers of the network, ∀𝑢𝑢 is the eigenvector of 
the node 𝑢𝑢 , {ℎ𝑣𝑣𝑘𝑘−1,∀𝑢𝑢 ∈ 𝑁𝑁(𝑣𝑣)} denotes the embeddings of the neighbor 𝑢𝑢 of the node 𝑉𝑉 in 
the 𝑘𝑘 − 1 layer, and ℎ𝑣𝑣𝑘𝑘 represents the characteristics of all neighbors of node v at the k 
level. For each iteration, the nodes collect information from their local neighbors, and as 
the process continues, the nodes acquire progressively more information from the farther 
reaches of the graph. Therefore, the extraction of long-range contextual linkages occurs. 
The output of multilayer Graph SAGE is 𝐻𝐻𝐾𝐾. The cross-entropy error is utilized to punish 
the disparity between the network output and the labels of the original labeled samples, 
specifically: 

ℒ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −
1
𝑐𝑐
�𝑦𝑦𝑖𝑖 ∗ log (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐹𝐹𝐹𝐹(𝐻𝐻𝐾𝐾)))
𝐶𝐶

𝑖𝑖=1

 (8) 

where 𝑦𝑦𝑖𝑖  is the labeled examples set, C denotes the number of classes, and 𝐻𝐻𝐾𝐾  is the output 
of Graph SAGE with K layers. The detailed procedures of Graph SAGE classification are 
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shown in Algorithm 2. We considered feature matrix 𝑋𝑋 as the inputs and trained the mul-
tilayer network using the UFZ mobility graph 𝐺𝐺 as in Algorithm 2. We used two Graph 
SAGE convolutional layers to obtain the hidden relationships between UFZs. The number 
of epochs is set to 1000, while the learning rate is set to 0.001 and dropout to 0.2. The Graph 
SAGE model was constructed and trained through iterations. The output was the pre-
dicted label vectors for UFZs. In this study, we split the origin datasets by 7:3 for training 
and testing, respectively. We examined the impacts of different feature combinations on 
functional zone classification by combining different features as the inputs for various 
classification models. 

Algorithm 2: Proposed graph-based framework for UFZ classification 
Input: Multisource features of UFZs; trajectories between UFZs; number of graph con-
volution layers = 2; number of epoch T; learning rate = 0.001; dropout=0.2; Adam gra-
dient descent; python =3.7; pyTorch = 1.7.1 
 
1: Extract edge list from trajectories and node embeddings from multisource features; 
2: Construct mobility graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) 
3://Train Graph SAGE model 
4: for t = 1 to T do 
5:      //Graph convolution nodes feature 
6:       Perform graph learning at adjacent points spatial level by Algorithm 1 
7:       Batch normalization, dropout, and ReLU 
8:       Perform graph learning at adjacent points and farther points spatial level by Al-

gorithm 1 
9:       Batch normalization, dropout, and ReLU 
10:     Output the graph leaning feature of all nodes 
11:     Calculate the error term according to Equation (8) and update the weight matri-

ces using Adam gradient descent 
12: end for 
14: Conduct label prediction for all nodes based on the trained model 
Output: Predicted label for each UFZ 

4. Results 
4.1. Classification Results Using Graph-Based Models 
4.1.1. Results of the Zhuhai Dataset 

The proposed graph-based classification framework combines urban scenes, build-
ing objects, canopy height, and socioeconomic attributes to construct semantic features of 
functional zones. The spatial heterogeneity of ground objects and the variations in urban 
morphology reflect the distinct social functions of each urban subregion in different cities. 
We defined six types of functional zones in our study: Agriculture zones, commercial 
zones, industrial zones, public service zones, green space zones, and residential zones, 
which were set by referencing existing UFZ classification systems and published papers 
[7,8,11,13,21]. The classified UFZ map in Zhuhai is presented in Figure 8 (a). 
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Figure 8. UFZ classification maps based on Graph SAGE model: (a) The UFZ map of Zhuhai; (b) the 
UFZ map of Singapore. 

The proportion of scene distribution of each UFZ is extracted based on the deep learn-
ing features of HSR remote sensing imageries. The socioeconomic characteristics are de-
scribed through the spatial joining between POI densities and urban zones. Aside from 
the 2D physical features of buildings, the 3D morphological indices are calculated based 
on building objects and tree canopies. The integrated multisource features are applied to 
the graph-based model for UFZ classification in Zhuhai. The confusion matrix obtained 
by the proposed method using multisource features is shown in Table 6. The overall clas-
sification accuracy of our method is around 75.79% when using combined features on 
Zhuhai dataset. The commercial zones and public service zones have relatively lower pro-
ducer’s accuracy compared to other UFZ categories. Some public service zones in the test 
set are mistakenly classified into residential and commercial zones. The public service 
zones where administrative agencies and scientific institutions are located may include 
residential buildings and POIs for food and beverage or living services, which makes this 
type of UFZ difficult to be distinguished from others. 

Figure 9 zooms into the UFZs in Zhuhai which are misclassified by our proposed 
method. Most misclassifications are found in the central urban areas in the eastern part of 
Zhuhai. In correspondence to the confusion matrix, the model is not good at recognizing 
between public service zone and other UFZs; however, it performs well in most residential 
and agricultural zones. 

Table 6. Confusion matrix for the test dataset in Zhuhai using Graph SAGE model. 

Predicted 
Actual 

A C I P G R Producer’s ac-
curacy 

A 25 0 0 1 1 1 89.29% 
C 0 29 1 9 0 6 64.44% 
I 0 0 53 7 2 2 82.81% 
P 0 4 5 57 7 17 63.33% 
G 1 0 3 10 45 0 76.27% 
R 0 2 1 11 1 79 84.04% 

User’s accuracy 96.15% 82.86% 84.13% 60.00% 80.36% 75.24% OA=75.79% 
A: Agriculture zone; C: Commercial zone; I: Industrial zone; P: Public service zone; G: Green space 
zone; R: Residential zone; and OA: Overall accuracy. 
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Figure 9. Misclassification map in Zhuhai using Graph SAGE model. 

4.1.2. Results of the Singapore Dataset 
We evaluated the generalizability of the proposed method using the Singapore da-

taset. For Singapore, 886 UFZs with ground truth labels were obtained using the semi-
supervised sampling method with the land use maps in 2019. The image, building, tree, 
and POI features are extracted to construct the vector of semantic features. The location-
based service data are transformed into trajectories to establish the mobility graph. Results 
of the UFZ classification map are presented in Figure 8b, and quantitative evaluations are 
presented in Table 7. The overall accuracy of Graph SAGE reaches 84.5%, with a pro-
ducer’s accuracy of about 58% for commercial zones, 93% for industrial zones, 89% for 
public service zones, 61% for green space zones, and 92% for residential zones. 

The precisely classified numbers in the confusion matrix and evaluation metrics in 
the Singapore dataset demonstrated that the proposed model is suited for distinguishing 
the industrial and residential zones in Singapore; however, it has lower efficiency in iden-
tifying commercial and green space zones (Table 7). Figure 9 shows the mistakenly classi-
fied UFZs of our proposed method in Singapore. According to Figure 10, several commer-
cial, public service, and residential zones were misclassified using the graph-based model. 
The mixed functions in one building or a community are the main reason for the misclas-
sification. In Singapore, many shopping malls are located close to or within residential 
zones. Moreover, the high coverage of greenness in this city results in the complex mixture 
of green space with residential or public service regions, making it challenging for the 
model to accurately distinguish between these zones based on semantic features sharing 
similar patterns. Nevertheless, the experiments in Singapore demonstrate that the pro-
posed method is applicable for UFZ identification based on mobility data. 

Table 7. Confusion matrix for test dataset in Singapore using Graph SAGE model. 

Predicted 
Actual 

C I P G R 
Producer’s ac-

curacy 
C 21 3 6 1 5 58.33% 
I 0 37 0 1 2 92.50% 
P 3 0 25 0 0 89.29% 
G 3 1 1 14 4 60.87% 
R 3 5 1 2 127 92.03% 

User’s accuracy 70.00% 80.43% 75.76% 77.78% 92.03% OA=84.53% 
C: Commercial zone; I: Industrial zone; P: Public service zone; G: Green space zone; R: Residen-
tial zone; and OA: Overall accuracy. 



Remote Sens. 2023, 15, 730 17 of 24 
 

 

 
Figure 10. Misclassification map in Singapore using Graph SAGE model. 

4.2. Mobility patterns between Different UFZs 
Figure 11 illustrates a sample of human trajectories in Zhuhai and Singapore. For 

Zhuhai, we selected three taxis with the highest frequency of movements during the 30 
days and plotted their movements between UFZs. The directions of movements mostly 
point to the central urban areas that contain more O/D points. Taxis 2 and 3 seemed to 
drive across the city, while Taxi 1 mainly moved around the eastern part of the city. For 
Singapore, we selected top seven devices with the highest frequency of movements. Fig-
ure 12 shows that the mobility of mobile device users is more consistent spatially as the 
O/D points and directions of trajectory are concentrated on two or three specific UFZs. 
The difference between the spatial patterns of trajectories of Zhuhai and of Singapore is 
due to the nature of the datasets we collected from the two cities; a taxi driver more com-
monly drives a long distance and travels to more diverse locations in a city than a white-
collar or a student with mobile devices.  

 
Figure 11. Sampled taxi trajectories in Zhuhai. 



Remote Sens. 2023, 15, 730 18 of 24 
 

 

 
Figure 12. Sampled mobile trajectories in Singapore. 

Based on the identified UFZ categories, we analyzed the mobility patterns within 
different UFZs. Figure 13 shows the flow of taxis from an origin UFZ to a destination UFZ. 
The movements between public service, commercial, and residential zones account for 
over 80% of total trajectories in Zhuhai among which the public service zone contributes 
to most taxi trajectories. In the Singapore trajectory dataset, the movements between resi-
dential zones account for a considerable proportion of total trajectories (Figure 14). The 
flow between the different UFZs indicates that after leaving a residential zone, people are 
more likely to travel to another residential zone, and the second highest possibility is to a 
green space zone. For most people leaving commercial zones, public service zones, green 
space zones or industrial zones, the highest possibility is to travel back to residential 
zones. 

 
Figure 13. Sankey diagram of mobility flow between UFZs in Zhuhai. 
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Figure 14. Sankey diagram of mobility flow between UFZs in Singapore. 

5. Discussion 
This section first discusses the performance of the proposed graph-based framework 

with different combinations of features, and the contributions of features on the UFZ clas-
sification are thus evaluated. Second, the proposed framework is compared with existing 
methods to validate its effectiveness. Third, the limitations of the proposed framework are 
discussed. 

5.1. Comparisons of Different Feature Combinations 
Tables 8 and 9 show the classification accuracies produced by various combinations 

of multisource semantic features in Zhuhai and Singapore. Overall, the accuracy improves 
as more features are considered, notably for public service zones and residential zones. 
When only POI data were adopted in the classification, the accuracy of agricultural zones, 
commercial zones, and public service zones was relatively low, which can be attributed 
to the low densities of POIs in these zones. For other categories, it can be observed that 
POI data contribute significantly to identifying UFZs. However, the incorporation of so-
cial sensing data requires caution since the data tend to be biased toward specific catego-
ries which are often clustered in specific zones. For example, in Zhuhai, the number of 
living service POIs is approximately forty-four times the number of public service POIs, 
which causes great imbalances between different UFZs. 

In terms of 2D/3D morphological indices, it is observed that the integration of 2D/3D 
building information improves the classification accuracy in commercial zones while add-
ing tree canopy 3D metrics contributes positively to the classification accuracy of indus-
trial zones. The improvements can be attributed to the variations in 3D morphological 
landscapes of different UFZs. 

In terms of physical features from HSR images, by comparing the first four rows and 
the last five rows in Tables 8 and 9, it can be seen that incorporating HSR features signifi-
cantly increases the accuracies of UFZ classification. The results indicate that deep-learned 
features extracted from HSR images contribute to the identification of UFZs with hetero-
geneous urban scene information. 
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The proposed graph-based framework achieved an OA of 75.8% in Zhuhai and an 
OA of 84.5% in Singapore with all metrics, which demonstrated that human movements 
between different urban zones contributed to distinguishing spatial patterns of physical 
landscapes within UFZs. 

Table 8. UFZ classification results in Zhuhai based on different feature combinations. 

Study area Feature combination A C I P G R OA Kappa 
F1-

score 

Zhuhai 

POI 0.18 0.22 0.72 0.41 0.69 0.67 53.1% 0.413 0.513 
POI + Tree 0.92 0.64 0.81 0.57 0.70 0.76 71.7% 0.651 0.717 

POI + Building 0.94 0.64 0.80 0.56 0.71 0.74 71.3% 0.645 0.701 
POI + Building + Tree 0.82 0.64 0.91 0.54 0.76 0.80 73.7% 0.674 0.734 

Image 0.89 0.71 0.88 0.38 0.54 0.83 67.6% 0.601 0.666 
Image + POI 0.96 0.58 0.86 0.52 0.73 0.84 72.9% 0.665 0.724 

Image + POI + Tree 0.86 0.71 0.83 0.58 0.78 0.79 73.9% 0.677 0.741 
Image + POI + Building 0.96 0.76 0.77 0.62 0.71 0.78 73.9% 0.678 0.744 

Image + POI + Building + 
Tree 

0.89 0.64 0.83 0.63 0.76 0.84 75.8% 0.722 0.776 

Table 9. UFZ classification results in Singapore based on different feature combinations. 

Study area Feature combination C I P G R OA Kappa F1-score 

Singapore 

POI 0.72 0.42 0.61 0.25 0.94 74.4% 0.605 0.732 
POI + Tree 0.61 0.65 0.64 0.15 0.92 74.8% 0.568 0.728 

POI + Building 0.72 0.47 0.71 0.30 0.97 78.2% 0.656 0.765 
POI + Building + Tree 0.75 0.68 0.82 0.15 0.98 81.1% 0.715 0.797 

Image 0.33 0.85 0.61 0.40 0.85 71.8% 0.566 0.710 
Image + POI 0.61 0.72 0.71 0.65 0.96 82.4% 0.733 0.825 

Image + POI + Tree 0.58 0.78 0.82 0.55 0.93 82.1% 0.728 0.818 
Image + POI + Building 0.69 0.75 0.82 0.60 0.91 82.4% 0.734 0.825 

Image + POI + Building + 
Tree 

0.58 0.93 0.89 0.61 0.92 84.5% 0.763  0.843  

5.2. Comparisions with Existing Methods 
As shown in Table 10, we compared our graph-based models with traditional ma-

chine learning methods, which only utilized multisource semantic features but without 
mobility data for the classification. All experiments were conducted with Python lan-
guage. Among all the presented traditional methods, Random Forest achieves the highest 
OA (73.1%) in Zhuhai, which is 2.7% lower than the Graph SAGE. According to Figure 15, 
the comparisons between classification accuracies of different models show that the pro-
posed graph-based classification framework enhanced the performance of UFZ classifica-
tion, and the higher OA testify that the information from human mobility data in the 
graph-based model contributes to identifying urban functions. The Graph SAGE model 
outperforms traditional classification models of random forest (RF), support vector ma-
chine (SVM), gradient boosting decision tree (GBDT), and feedforward neural network 
(FNN). In addition, comparisons are made between Graph SAGE and simple GCN, and it 
is found that OA by the Graph SAGE is 12% higher than GCN, which implies that the 
mobility graphs provide useful information for distinguishing between UFZ parcels when 
the inductive learning was integrated into the convolutional networks. 

Table 10. Overall accuracy of UFZ classification results using different models. 

Model 
Study Area 

RF GBDT SVM FNN GCN 
Graph 
SAGE 

Zhuhai 0.731 0.722 0.683 0.644 0.657 0.758 
Singapore 0.811 0.812 0.78 0.748 0.726 0.845 
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Figure 15. Overall accuracy of different models. 

5.3. Limitations of the Proposed Framework 
Although overall satisfactory results were achieved, limitations still exist in our pro-

posed framework. First, we only constructed mobility graphs based on the spatial infor-
mation extracted from the taxi trajectory data. The temporal features of mobility data 
should be considered in quantifying the mobility characteristics of UFZs. Second, the net-
work structures of deep convolutional networks and graph convolutional models used in 
our study can be improved as more up-to-date deep learning network structures are in-
troduced in UFZ classification tasks. The model tuning and structure adjustment should 
be further explored. The approaches to transforming the geographical objects into graph 
entities need systematic analysis with a large volume of geospatial datasets. Third, feature 
selection was not considered in our experiment. The identification of critical features that 
influence the UFZ mapping can be performed to extend our understanding of the influ-
ential factors on urban functional dynamics from the aspects of urban landscapes, socio-
economic attributes, and human activities. Fourth, the computational complexity of the 
proposed graph-based method is larger than common deep learning models and tradi-
tional machine learning methods. 

6. Conclusions 
This paper proposes the UFZ mapping framework based on graph-based classifica-

tion. The physical features and social properties of functional zones are portrayed using 
multisource data, and a mobility graph is established to represent the mobility patterns of 
human movements. The graph-based models are used to classify UFZs based on a di-
rected graph with semantic features. The experimental results in Zhuhai and Singapore 
demonstrate the effectiveness of the proposed graph-based classification method. 

Specifically, this study contributes to three aspects. First, this paper demonstrates the 
efficiency of the proposed graph-based UFZ classification method, with an accuracy of 
75.8% in Zhuhai and 84.5% in Singapore using multisource metrics. The proposed graph-
based framework successfully exploits multisource features and achieves higher classifi-
cation accuracies than traditional classification methods. 

Second, trajectories reflecting human mobility patterns were introduced and applied to 
UFZ classifications. The functional zones are converted into a traffic network, and each 
UFZ is assigned with initial embeddings generated from multisource features. In contrast 
to existing studies applying undirected graphs to distinguish urban functions, our method 
integrated topological connections of urban blocks and human movements on the identi-
fication of UFZs. The evaluations prove that human mobility patterns can assist in identi-
fying the functions of different urban zones. 
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Finally, the research framework can be easily generalized and applied to other clas-
sification scenarios. The experiments can be performed in other study areas and on da-
tasets with only a portion of data sources. Furthermore, we can transfer the method to 
scenarios that utilize remote sensing images and social media data to achieve satisfactory 
UFZ classification results. 

Our future work will include three aspects. First, we will incorporate temporal fea-
tures of mobility data in the mobility graph to assist in identifying UFZs. Second, we will 
further explore the percentages of different functions within UFZ in order that the actual 
function of UFZ can be reflected more accurately. Third, we will establish an end-to-end 
framework that includes automatic feature selection. 
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