
 

 
 

 

 
Remote Sens. 2023, 15, 723. https://doi.org/10.3390/rs15030723 www.mdpi.com/journal/remotesensing 

Article 

Fused Thermal and RGB Imagery for Robust Detection and 

Classification of Dynamic Objects in Mixed Datasets via  

Pre-Trained High-Level CNN 

Ravit Ben-Shoushan and Anna Brook * 

Spectroscopy & Remote Sensing Laboratory, Spatial Analysis Research Center (UHCSISR),  

Department of Geography and Environmental Studies, University of Haifa, Mount Carmel,  

Haifa 3498838, Israel 

* Correspondence: abrook@geo.haifa.ac.il 

Abstract: Smart vehicles with embedded Autonomous Vehicle (AV) technologies are currently 

equipped with different types of mounted sensors, aiming to ensure safe movement for both pas-

sengers and other road users. The sensors’ ability to capture and gather data to be synchronically 

interpreted by neural networks for a clear understanding of the surroundings is influenced by light-

ing conditions, such as natural lighting levels, artificial lighting effects, time of day, and various 

weather conditions, such as rain, fog, haze, and extreme temperatures. Such changing environmen-

tal conditions are also known as complex environments. In addition, the appearance of other road 

users is varied and relative to the vehicle’s perspective; thus, the identification of features in a com-

plex background is still a challenge. This paper presents a pre-processing method using multi-sen-

sorial RGB and thermal camera data. The aim is to handle issues arising from the combined inputs 

of multiple sensors, such as data registration and value unification. Foreground refinement, fol-

lowed by a novel statistical anomaly-based feature extraction prior to image fusion, is presented. 

The results met the AV challenges in CNN’s classification. The reduction of the collected data and 

its variation level was achieved. The unified physical value contributed to the robustness of input 

data, providing a better perception of the surroundings under varied environmental conditions in 

mixed datasets for day and night images. The method presented uses fused images, robustly en-

riched with texture and feature depth and reduced dependency on lighting or environmental con-

ditions, as an input for a CNN. The CNN was capable of extracting and classifying dynamic objects 

as vehicles and pedestrians from the complex background in both daylight and nightlight images. 

Keywords: multi-sensors; anomaly fusion; pre-network fusion; physical value; complex environ-

ment; dynamic objects extraction 

 

1. Introduction 

Computer vision-based technologies are widely used in different applications, for 

example, in medical, agriculture, security, and conservation research. These achievements 

are also among the key pieces to many embedded Autonomous Vehicle (AV) applications 

[1,2] in the race toward developing a fully autonomous machine. However, it remains a 

challenging issue in the research community. Currently, smart vehicles with embedded 

AV technologies are equipped with multiple types of sensors aiming to gather data in 

different ranges that can be synchronically interpreted for a clear understanding of the 

surroundings (i.e., the locations of road users or other obstacles and the relative dynamic 

interactions between them). Recent machine learning developments have reached impres-

sive achievements in computer vision tasks. A vast amount of research and methods have 

been developed for multi-sensor data fusion [3–6] to synergize the gathered information 
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while omitting redundant data. This allows for storing more knowledge and employing 

lower amounts of data. 

Identifying features in a complex background often targets road users, i.e., people 

and vehicles, relative to the vehicle’s perspective, whether static or dynamic. Scanning 

vehicles is dynamic in and of itself, whether they be static or moving, making the spatial 

representation of a complex environment time-dependent with no absolute static state. 

Each object’s dynamic level is measured relative to the moving vehicle. Hence, challenges 

arise from several basic cumulative demands, including an ongoing and continuous sense 

of the vehicle’s surroundings, dynamic driving abilities that fit different road types (high-

way, city roads, etc.), the ability to operate in different lighting and environmental condi-

tions, and the real-time ability to detect static and dynamic targets (road users) in chang-

ing scenarios. 

Lighting conditions affect the acquired data. Natural lighting level (daylight) is a dy-

namic factor, subject to the effects of the season and the time of day, and the sun’s position 

and levels of radiation change throughout the day and seasons. The probability of blur-

ring arises around dawn and sunset hours due to the sun’s lower position. Less informa-

tive data samplings containing obscured features might occur due to the blurring effect 

resulting from the diversity of artificial night-time light sources, such as streetlights, ve-

hicles’ headlights, lighted signs, digital advertising screens, and building lights. Light fre-

quencies generated by different types of light origins affect sensors differently. These 

days, LED lamps commonly used in the public domain in different lighting fixtures emit 

radiation in the range of visible light to near-infrared wavelengths (depending on the 

color of the installed LED lamp).  

The sensors’ ability to capture informative data is also influenced by weather condi-

tions [7–10]. Rain, fog, and haze are masking effects caused by high amounts of water 

droplets, sand, and dust grains in the air. Cloudy or partially cloudy skies, extreme tem-

peratures, and wet roads differently affect sensing capabilities along with the lighting con-

ditions (natural or artificial lights). Shading, dazzling from objects with high reflectivity, 

or a shimmering effect might occur when puddles or hot roads are in the scanned scene. 

These many influences contribute to the high variability found in the acquired data. The 

additional influence could be exerted by the effect of trees and buildings’ shadows, or for 

instance, the sudden darkness while driving through tunnels. 

Evaluating the contribution of fused data to better perception by Convolutional Neu-

ral Networks (CNNs) is performed in relation to well-known CNN object detectors 

trained with RGB images and considering the suitability of the model’s architecture to 

operate in real-time with low computational resources. Among the CNN algorithms for 

image recognition tasks are two-stage-based architectures, e.g., AlexNet, VGG16, Goog-

LeNet, and ResNet. Region-based CNN (R-CNN) [11] proposed a bounding-box regres-

sion-based approach, later developed into Fast R-CNN [12], Faster R-CNN [13], and R-

FCN (Region-based Fully Convolutional Network) [14]. Faster R-CNN uses the region 

proposal network (RPN) method to classify bounding boxes, followed by finetuning to 

process the bounding boxes [15,16]. One significant drawback of the two-stage architec-

ture is its slow speed detection, resulting in the inability to produce real-time results as 

required for AV applications. An alternative approach is a one-pass regression of class 

probabilities and bounding box locations, e.g., Single Shot Multibox Detector (SSD) [17], 

Deeply Supervised Object Detector (DSOD) [18], RetinaNet [19], EfficientNet [20], You 

Only Look Once (YOLO) architecture developed by Redmon et al. [21], etc. These methods 

unite target classification and localization into a regression problem, do not require RPN, 

and directly perform regression to detect targets in the image.  

YOLO became a widely used algorithm due to the model’s small size and fast calcu-

lation speed. It constructs a backbone for pre-training and a one-stage head to predict 

classes and bounding box (dense prediction) layers. Subsequent versions described as 

YOLO V2 [22], YOLO V3 [23], YOLO V4 [24], and YOLO V5 [25], published in the follow-

ing years, attempted to improve the low-detection accuracy of the original model and its 
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inefficiency in small target detection. The main developments in YOLO versions were re-

viewed by Jiang et al. [26]. YOLO V2 offered better and faster results by improving the 

inaccuracy positioning, lowering the recall rate, and switching the primary network used 

for training from GoogLeNet to Darknet-19, simplifying the network’s architecture. In 

YOLO V3, feature graphs of three scales were adopted using three prior boxes for each 

position, later divided into three scale feature maps added to a multi-scale detection. 

However, the feature extraction network used the residual model, which contained 53 

convolution layers (Darknet-53) instead of the Darknet-19 used in YOLO V2, enabling it 

to focus on comparing data. YOLO V4 optimized the speed and accuracy of object detec-

tion. Some of its substantial improvements include adding spatial pyramid pooling (SPP) 

block with an increased receptive field, which separates significant features, MISH activa-

tion function, Cross-Stage-Partial-connections (CSP), enhancement by mosaic data aug-

mentation, and Generalized Intersection over Union (GIOU) loss function. YOLO V5 is 

similar to YOLO V4, but it is based on the PyTorch platform, different from Darknet, 

which is mainly written in C. 

The neural networks fed with RGB and thermal data gained tremendous progress in 

the last decade with dozens of algorithms, offering a variety of methods for the fusion of 

image sources in different phases of the learning process [27–31]. The fused data might 

overcome the challenges of accurate detection of dynamic objects in a complex scene cap-

tured by dual sensors on moving vehicles. Complex scenes relate to changing environ-

mental conditions in daylight or nightlight. Changing lighting effects causes different re-

actions to dynamic scenes. 

In a review of real-time detection and localization algorithms for AV conducted by 

Lu et al. [32], the authors concluded that since no single sensor can meet all localization 

requirements for autonomous driving, fusion-based techniques would be the research fo-

cus for achieving a cost-efficient self-localization for AV. In addition, they pointed out that 

future research is required to focus on sensors’ faulty detection and identification tech-

niques and imperfect data modeling approaches to ensure robust and consistent AV lo-

calization. Chen et al. [33] summarized the importance and advantages of visual multi-

sensor fusion. In a review of sensing systems for AV environmental perception technolo-

gies, a set of open challenges were listed: the lack of a theoretical framework for targeting 

generic fusion rather than specific fields; ambiguity in associating different sensors’ data; 

poor robustness; insufficient integration of fusion methods; and the lack of a unified 

standard specification and evaluation criteria. 

Many reviews have been published in recent years on infrared and visible image fu-

sion methods in the context of AV [6,28,30,34]. The fusion process in the context of neural 

network architectures may occur in different stages of the learning process: pre-network 

fusion generates a new single input for the network using by fusing the row data; net-

work-based fusion (or fusion as part of multimodal architecture) is categorized by the 

phase in which the data is fused [35]. The early fusion approach uses multiple origins of 

raw data as input. Data from each origin is separately processed to unite and refine data 

from the different sensors, followed by a pixel-level fusion layer. The middle (halfway) 

fusion processes each input layer using parallel convolution-based encoder blocks to ex-

tract the valuable data from each source. The extracted features are then fused and for-

warded as a single input or additive data (e.g., feature maps, optical flow, density maps, 

etc.) for the next network block to be interpreted. Li and Wu [36] proposed fusing feature 

maps of VIS and IR images that were decomposed using an encoder consisting of a con-

volutional layer and a dense block prior to reconstructing the fused data with a decoder 

block. The late fusion (model level) selectively takes place after the network has separately 

segmented and classified features from each data source based on pre-defined thresholds 

and the situation in a test.  

The main aim of this paper is to evaluate the best method to pre-process the fusion 

of multi-sensorial data (RGB and thermal cameras) captured using sensors in motion 
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(mounted on AV) that enables CNNs to robustly detect and classify vehicles and pedes-

trians in complex backgrounds and mixed datasets (daylight and nightlight images). 

The developed method includes a pre-processing stage of data fusion combining 

anomaly detection, enabling the classification of dynamic objects from the complex back-

ground. A novel anomaly-based feature extraction process is proposed to overcome the 

above-mentioned AV challenges in CNN classification tasks. The RGB images are trans-

formed to the intensity, hue, and saturation coordinates, and the improved contrast image 

is registered to the thermal (IR) image via the affine module to enhance and generalize the 

RGB images. A global Reed–Xiaoli anomaly detector map (GRXD) from the enhanced 

RGB data is calculated and normalized to an anomaly image representation. Then both 

enhanced and anomaly images are integrated with the IR image into a new physical value 

image representation. The fused images are robustly enriched with texture and feature 

depth, reducing dependency on lighting or environmental conditions. Such images are 

used as input for a CNN to extract and classify vehicles and pedestrians in daylight and 

nightlight images.  

The rest of this paper is organized as follows. Section 2 describes levels of fusion, 

different methods to decompose the raw images prior to the fusion process, and fusion 

rules to combine the decomposed images. In addition, the challenges of fusing images 

from different sensors are described. Section 3 describes the FLIR dataset and the tested 

scenarios, as well as the proposed pre-processing of the dual data followed by feature 

extraction methods (range filter and RXD anomaly detection) and different data fusion 

techniques. Thereafter, the setting and training of CNN YOLO V5 and the final dataset 

versions used to train the networks are presented. In Section 4, the classification results of 

the trained networks are detailed. Further, in Section 5, the results and the contribution of 

the proposed method to reduce network failure in detection and classification tasks are 

discussed. Finally, the conclusions are presented in Section 6. 

2. Related Works 

In image processing, it is common to relate to three levels in which the data can be 

fused: Pixel-level fusion, also known as low level, where the raw pixel data of both images 

are fused [37]; Feature-level (region-based) fusion, which implies that the source images 

are first separately processed to extract the features of interest based on mutual and dis-

tinct characteristics with the extracted features then used in the fusion process; Decision-

level (high-level fusion), where each source is initially processed and understood. At this 

level, the fusion only takes place if the extracted and labeled data meets the predetermined 

criteria. Most pixel-level fusion methods are based on the multi-scale transform in which 

original images can be decomposed into components of different scales by means of low-

pass and high-pass filters. Multi-scale-transform fusion schemes consist of two key steps: 

the multi-scale decomposition method and fusion rules. Then, a corresponding inverse 

multi-scale transform is applied to reconstruct images using coefficients. Pyramid trans-

form [34] decomposes sub-images via a pyramid structure generated from different scales 

of spatial frequency (e.g., Laplacian pyramid transform and Steerable decomposition tech-

nique). The Wavelet Transform proposed by Mallat [38] is a fast and efficient method for 

representing multi-scale uncorrelated coefficients and is widely used in fusing visual and 

thermal images. Discrete Wavelet Transform (DWT) decomposes the source image signals 

into a series of sub-images of high and low frequencies at zero scale space representing 

the detailed coefficients and approximation coefficients. The approximation coefficients 

can be further decomposed to the next level (to detail and approximation) repeatedly until 

the desired scale is reached. Regardless of its robustness, the DWT is known to suffer os-

cillation problems, shift variance, aliasing, and lack of directionality. Stationary Wavelet 

Transform (SWT) solves the problem of shift-invariance, thus contributing to preserving 

more detailed information in the decomposition coefficients [39]. A dual-tree complex 

Wavelet Transform shows improved performance in computational efficiency, near shift-

invariance, and directional selectivity due to a separable filter bank [40]. Lifting Wavelet 
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Transform has the advantages of adaptive design, irregular sampling, and integral trans-

form over DWT [41]. Additional techniques include lifting Stationary Wavelet Transform 

[42], redundant-lifting non-separable Wavelet multi-directional analysis [43], spectral 

graph Wavelet Transforms [44], quaternion Wavelet Transform, motion-compensated 

Wavelet Transform, multi-Wavelet, and other fusion methods being applied at the feature 

level due to their spatial characteristics. Gao et al. [45] used the non-subsampled contour-

let transform (NSCT) for its flexibility and for being fully shift-invariant. The edge-pre-

serving filter technique was combined with the fusion method [46]. This technique aims 

to decompose the source image into a smooth-base layer and one or more detail layers. 

As a result, the spatial consistency of structures is preserved while reducing halo artifacts 

around the edges.  

The fusion rules set the method to combine the decomposed coefficients, such as co-

efficient combination (max and weighted averages) in pixel-level fusion. When fusion 

takes place at the feature level, fusion rules are according to the region level. The most 

representative method for feature level is based on the salient region, which aims to iden-

tify regions more salient than their neighbors. Other fusion rules are sparse representa-

tion-based methods that aim to learn an over-complete dictionary from a large amount of 

high-quality natural images. Each source image is decomposed into overlapping patches 

using a sliding window strategy. Furthermore, an over-complete dictionary is learned 

from many high-quality natural images, and sparse coding is performed on each patch to 

obtain the sparse representation coefficient using the learned over-complete dictionary. 

The fusion is applied according to the given fusion rule, reconstructing the image accord-

ing to the fusion coefficients and the learned over-complete dictionary. This method can 

enhance the fused images to a meaningful and stable representation, reduce visual arti-

facts, and improve robustness. 

The feature-level fusion process aims to identify objects by their regional character-

istics. Accurately segmenting the target object’s foreground from its background is a key 

phase for better object detection. Many algorithms were proposed to segment the infor-

mation from the visualized data for AV purposes, as well as for medical procedures and 

early disease detection, smart agriculture, defense and security purposes, and many other 

fields of research. The color transformation is used in various disciplines in the pre-pro-

cessing phase of data fusion, before segmentation and classification tasks, to mainly en-

hance the feature’s border without blurring the featured foreground. Saba et al. [47] used 

Laplacian filtering followed by HSV color transformation to enhance the border contrast 

of images of skin lesions as part of pre-processing before color CNN-based segmentation 

and detection of melanoma. Afza et al. [48] used HSI transformation to enrich the contrast 

of video frames before fusion-based feature selection to target human action recognition. 

Adeel et al. [49] applied lab color transformation before multiple feature fusion tasks 

guided by the canonical correlation analysis (CCA) approach to recognize grape leaf dis-

eases.  

In the AV context, the data can sometimes be treated as features, a saliency map, or 

optical flow extraction. Images captured by sensors in motion contain measured charac-

teristics by time. Therefore, the segmentation of the complex foreground (i.e., object move-

ment in space) from the complex background (also due to unexpected environmental ef-

fects) is still considered a challenging task. 

Morphological-based approaches, such as texture, color, intensity level, or shape-

based methods, for example, can be separately and selectively used on each of the source 

images to extract the object of interest. An additional approach is to enhance the object’s 

border and, thus, segment it from its background. Researchers offer various techniques, 

morphological and statistical, to straighten the object’s boundaries and suppress its back-

ground, or a combination of both, for better feature extraction before the fusion process. 

Following the segmentation task, extracted layers (of pre-processed foreground and back-

ground) can be fused using a pixel fusion method based on their regional properties.  
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The fusion of contradictory signals might cause destructive interference. Therefore, 

finding the ultimate color coordinate representation yielding the most informative fused 

data is of great importance, more so when targeting a robust pre-processing for images 

from different scenarios, lighting, and weather conditions. Mustafa et al. [31] designed a 

self-attention mechanism combining multi-contextual and complementary features of IR 

and RGB images into a compact fused image representation. 

However, a prerequisite for successful image fusion arises when using images from 

different sources: images should be strictly aligned in advance. Data acquisition using 

multiple sensors for AV is considered a common and acceptable method. Each sensor lens’ 

parameters and relative position result in different information being captured. Image 

registration is the process of adjustment between two images captured by a single sensor 

at different times or by two (or more) sensors from different angles. The registered image 

is aligned with the same coordinate system as the original image through a transformation 

of the registered image matrix. Precise and accurate image registration is necessary for 

accurate object detection [50–54].  

3. Methodology 

3.1. Datasets 

The existence of large and varied datasets is a cornerstone for the generic learning 

process. In many previous works on different aspects of AV, the availability of suitable 

datasets for training and testing was discussed [50,55,56]. Recently, Ellmauthaler et al. [53] 

presented an RGB and IR video database (VLIRVDIF), encouraged by the shortage of pub-

licly available RGB-IR-synchronized dual databases. The authors also proposed a regis-

tration method to align the dual sensor data taken in distinct recording locations with 

varying scene content and lighting conditions. However, the offered dataset was captured 

by fixed sensors that were pre-calibrated at each location. The targeted dataset of visual 

and thermal multi-sensors synchronized and annotated real-world video captured from 

moving vehicles was found to be almost unavailable. In addition, the various scenarios 

and the changing environmental conditions’ representation makes the datasets even 

harder to obtain.  

In July 2018, FLIR Systems, Inc. released an IR dataset for Advanced Driver Assist 

Systems (ADAS) [57]. The dataset contains over 14K images of daylight and nightlight 

scenarios, acquired via synced RGB and IR cameras mounted on a vehicle while driving 

in Santa Barbara, California. The captured scenes correspond to urban streets and high-

ways between November and May with clear-to-overcast weather. The IR images were 

recorded using FLIR Tau2 640 × 512, 13 mm f/1.0 (HFOV 45°, VFOV 37°) and FLIR Black-

Fly (BFS-U3-51S5C-C) 1280 × 1024, Computer 4–8 mm f/1.4–16-megapixel lens for RGB 

images. The centerline of the images was approximately located 2 inches apart and colli-

mated to minimize parallax. The dataset was recorded at 30 Hz. Dataset sequences were 

sampled at 2 frames/sec or 1 frame/sec. Video annotations were performed at 30 

frames/sec recording (on IR images). Cars, as well as other vehicles, people, bicycles, and 

dog classes, were annotated. Since its publication, the FLIR dataset has been used in many 

research works to detect objects in adverse weather conditions using thermal images ei-

ther as the main goal or as complementary data for other sensors’ data extraction [58–60]. 

The FLIR-ADAS dual dataset was chosen to train, test, and validate the proposed 

model. About 2500 diverse images from the FLIR-ADAS dataset were used to train, vali-

date, and test networks for data pre-processing phase evaluation. The RGB image dimen-

sions are 1600 × 1800 × 3 (Figure 1a) and 1536 × 2048 × 3 (Figure 1c). All dual IR image sizes 

are 512 × 640 (Figure 1b, Figure 1d).  
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Figure 1. Example of FLIR dataset dual image: (a) FLIR_02767 RGB image size 1600 × 1800 × 3; (b) 

FLIR_02767 IR image size 512 × 640; (c) FLIR_05563 RGB image size 1536 × 2048 × 3; (d) FLIR_05563 

IR image size 512 × 640. 

The dataset included: near and far objects; diverse scene representation, such as main 

and side urban roads, city junctions, and intercity highways; different conditions under 

clear daylight, such as sunny sky, cloudy sky, dazzling low sun of twilight hours in front 

and from behind the camera, object under shadowed area, etc.; and nightlight with low 

and strong street lighting, and dazzling objects. Examples of diverse scenes are shown in 

Figure 2. 

 

Figure 2. Diverse scenes, lighting conditions, and different road users. (a–c): Day images are (a) a 

cloudy sky, a city junction, a and mixed scene (pedestrians, cars); (b) a clear sky, a city junction, and 

a mixed scene (pedestrians, cars); and (c) a dazzling low-sun, intercity highway. d–f: Night images 

are (d) dazzling lights, a city junction, and a mixed scene (partially lighted pedestrians, cars); (e) 

backscatter flashing; and (f) an urban street with low luminance. 

The final dataset contains 1275 unique images of natural luminance conditions (day-

light images) and 1170 unique images of artificial lighting conditions (nightlight images) 

of diverse scenes, comprising various sources of lights and objects of different scales and 

appearances, as described above. The annotation ratio is 19% pedestrians and 75% cars. 

The remaining 6%, consisting of bicycles and pets, were ignored due to their low repre-

sentation. Daylight and nightlight images were grouped into a dataset named Mixed Da-

taset, containing a total of 2445 images. 

3.2. Analysis 

Analysis workflow consisted of three steps: pre-processing, processing, and post-

processing. 

3.2.1. Pre-Processing 

The pre-processing workflow is presented in Figure 3 and contains the following 

steps: color transformation for the RGB image data; image registration (applied on RGB 

data according to IR); anomaly-based feature extraction; new RGB representation/recon-

struction; and pixel-level and feature-level based fusion. 

The proposed pre-processing workflow is as follows. 
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Figure 3. Schema of the proposed pre-processing workflow. Final products of the pre-processing 

phase are a registered grey representation of an RGB image (a), a registered saturation layer of an 

IHS image (b), a feature mask based on the (b) layer (c), and a new visual image representation (d) 

constructed from the integration of (b), RXD-based global anomaly of (b) and IR image (e). 

Color Transformation 

The preferred color transformation was tested according to linear methods, e.g., grey 

images, HSV, LIN, YUV, YIQ, YCbCr, and non-linear methods, such as various IHS color 

spaces. In linear color transformations, the color is created by splitting the reflected radi-

ation from each object into three parameters: intensity (the amount of reflected light), usu-

ally scaled (0–1), and the range from absolute white to absolute black. The other two pa-

rameters represent chromatic content. In non-linear color transformations, three different 

components (intensity, hue, and saturation) are used for the color spatial representation. 

Intensity is also known as value or luminance. Al-Wassai et al. [61] compared different 

models of intensity, hue, and saturation (IHS) color spaces.  

In this study, each transformed band was split into its component layers to measure 

the most informative data of the RGB image in a single-layer representation. The color 

transform algorithm was defined as follows: RGB image was reshaped from a 3D to a 2D 

matrix. The dot product was calculated from the reshaped RGB image with the IHS trans-

form of the cylinder structure, which was described by Carper et al. [62] and has been 

widely implemented since then [63]. The axes were rotated to Lα*β*, a non-linear color 

space. The transformed IHS layers were rearranged into a matrix according to the original 

input RGB dimensions. Next, the three transformed layers were concatenated at the third 

dimension to reconstruct the new image. Following Al-Wassai et al.’s [61] method, the 

intensity (L) band is replaced with the panchromatic image. A panchromatic image rep-

resentation of an RGB image is created by converting it to grayscale with the portions 

given in Equation (1).  



Remote Sens. 2023, 15, 723 9 of 29 
 

 

𝑰𝑮𝒓𝒂𝒚 = 𝟎. 𝟐𝟗𝟗 × 𝑰𝑹 + 𝟎. 𝟓𝟖𝟕 × 𝑰𝑮 + 𝟎. 𝟏𝟏𝟒 × 𝑰𝑩 
(1) 

where IGrey is the grey representation of RGB image, IR, IG, and IB corresponding to the 

red, green, and blue channels, respectively. Final layers used to concatenate the new im-

age correspond to IGray, H, S. where H and S are the hue and saturation layers of the IHS 

transformed bands. The new image values were then normalized by rescaling to the in-

terval [0–1], multiplying by 255, and setting to UINT8 data type. 

Registration 

The different methods relate to the type of geometric adjustment to apply to the ma-

trix’s values include: non-reflective similarity, similarity, affine, and projective. In their 

work, Jana et al. [64] used affine transformations to learn the distortions caused by camera 

angle variations. Li et al. [65] applied an affine transformation to feature-wise edge incor-

poration as an initial process to EC-CNN for thermal image semantic segmentation. In 

this work, the transformation matrix was calculated according to fixed points (IR image) 

and moving points (RGB image), that were manually registered. The dual captured data 

in the FLIR dataset offers images that were extracted from several recording sessions. 

Nevertheless, being mounted on a vehicle, the captured images reflect minor shifts in the 

sensor’s position, resulting in a non registrated images. Since the misregistration is minor 

(shift of 2-3 pixels) a manual registration approach was proposed. For each recording ses-

sion, a single t-form for the entire session’s corresponding dual images, was calculated. 

The residual misregistration (subpixel level) was was further included in that general in-

accuracy caused by the vehicles’ inherent shift and treated via data fusion. The coefficients 

matrix was based on affine translation. The saturation layer of the IHS transformed image 

was registered to the size and coordinates of IR image. This was performed using a pre-

defined t-concord matrix suited to each pair of dual images,. The output layer was named 

regIHS*s. In addition, the grayscale image of RGB was registered to the IR image. The 

output was named regGray. These layers will be used in the next steps. 

Features Extraction  

Pedestrians and cars are objects with great diversity in texture, shape, and color. 

Therefore, threshold-based feature extraction may enhance object detection by robustly 

synergizing RGB and IR images. Naturally, setting a single value as an intensity-level 

threshold on a mixed dataset will serve for extracting different patches in daylight and 

nightlight images with respect to the following aspects: the surrounding temperature, the 

scene’s brightness, the object’s relative heat emission, its surface’s texture, and its relative 

dynamics. In addition, the fusion of salient features (extracted from the IR image) with 

areas of high-level intensity (as in dazzled areas in nightlight RGB images) may result in 

low contrast between the fused object and its background. Thus, masking the RGB blur-

ring patches or reducing their intensity might enhance contrast. Challenges in robustly 

extracting features from daylight and nightlight images using data from RGB and IR are 

shown in (Figure 4). Four captured scenes are presented: dual-RGB and -IR images (Figure 

4a,g,m,s) and (Figure 4b,h,n,t) corresponding to daylight (Figure 4a,g) and (Figure 4m,s) 

to nightlight. Blue bounding boxes were added to mark car objects as a region of interest, 

and magenta bounding boxes were used to mark pedestrians. A general threshold of 0.7 

was set to create a foreground binary mask of the IR image (Figure 4c,i,o,u). The negative 

mask exhibits the segmented background (Figure 4d,j,p,v). A binary mask of IR daylight 

images segments the two walking figures and road surface as the foreground (Figure 4c) 

and the marked cars as the background. In Figure 4i, the same threshold level of the IR 

image was used to extract the two figures on the sidewalk (vegetation background, 

shaded sidewalk), which were difficult to distinguish on the RGB image. However, it 

failed to extract the figure on the road (Figure 4i, left box), segmenting it as background. 

Figure 4e,k,q,w shows a segmented background using the IR mask applied to the RGB 
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image. Fusion of the IR salience features with masked RGB as background (Figure 4f,l,r,x) 

resulted in enhancing car contrast while reducing pedestrian contrast (Figure 4f). These 

challenges occurred for nightlight images as well as for fused features of the low contrast 

to the background (crossing pedestrians in Figure 4r). The mixed effect of fused features 

due to the complex background is shown in (Figure 4x).  

 

Figure 4. Rows: image samples from the test dataset. Daylight images: FLIR _02163 (a–f) and FLIR 

_05011 (g–l); Nightlight images: FLIR_05697 (m–r) and FLIR_08926 (s–x). Columns: registered RGB 

images (a,g,m,s); original IR image (b,h,n,t); a 0.7 threshold binary mask of the IR image (c,i,o,u); 

negative of the IR binary mask as background binary mask (d,j,p,v); masked registered RGB image 

as scene’s background (e,k,q,w); the fusion of masked RGB background and masked IR foreground 

(f,l,r,x). The blue bounding boxes were added to point out car objects, and magenta BBs were added 

to mark pedestrians. 

Aiming to straighten the object’s boundaries, a 3 by 3 Range Filter (RF) was applied 

to the regGray image: The RF output matrix represents the intensity range (min–max) of 

each pixel’s neighbor. Then, morphological operations (dilation and erosion of 3 × 3 struc-

ture element) were applied to only capture the feature’s boundaries and suppress the 

background’s texture. A binary mask was calculated, and a small-feature elimination was 

applied to reduce noise. The created feature mask (Figure 5a–d) was then used in the fu-

sion process.  
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Figure 5. RF_VisMask. daylight image FLIR_02163 (a); daylight image FLIR _05011 (b); nightlight 

image FLIR _05697 (c); and nightlight image FLIR_08926 (d). 

Proposed Anomaly-Based Pre-Process  

Anomaly Detection (AD) methods, e.g., BACON [66] and RXD [67], are statistical 

approaches to measuring each pixel’s probability of belonging to the background, assum-

ing a multivariate normal distribution of the background. Guo, Pu, and Cheng [68] exam-

ined several methods to detect anomalies. In the pre-processing phase, using AD for fea-

ture extraction can contribute to the generalization of the data. While analyzing RGB im-

ages, a global anomaly of daylight images contributes to better foreground segmentation, 

but anomaly-based foreground extraction of nightlight images tends to extract blurred 

patches.  

The RXD is a commonly used method for anomaly detection. In this method, no spe-

cific data is marked as an anomaly. It relies on the assumption that the image background 

is multidimensionally distributed. Therefore, the background pixels’ sampling will have 

a lower probability value, and the anomalies are expected to have a higher value of prob-

ability. Based on this assumption, the local anomaly of an image is calculated by Equation 

(2), 

𝑅𝑋𝐷(x) =  (x − μ)𝑇∑−1(x − μ) (2) 

where RXD(x) stands for the image’s local anomaly, (x − μ) T is the transposed vector of 

values calculated by subtracting the (x) pixel in the test from μ (the mean of x’s 8-pixel 

neighborhood) and ∑ is the covariance matrix usually deployed as the image covariance 

instead of the neighborhood covariance. A global anomaly will be calculated according to 

Equation (3), 

𝐺𝑅𝑋𝐷 =  (X − μ𝐺)𝑇∑𝐺
−1(X − μ𝐺) (3) 

where X is the pixel under testing (or a vector of the sliding window values) and μ(G) and 

∑G are the mean and covariance of all pixels in the image, respectively. The expression (X 

− μ(G))T represents the transposed substruction vector. This expression is later multiplied, 

firstly by the image covariance powered by −1 and secondly by X − μ(G). An example of 

the local and global anomaly of an image is shown in Figure 6. 
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Figure 6. Extracting night image FLIR_06001 (a) to the local anomaly (b) and global anomaly (c). 

Both local and global anomaly images can be segmented into the background, (d) and (f), and fore-

ground, (e) and (g). 

Following the pre-process, as detailed earlier (color transform and image registra-

tion), the saturation layer of the regIHS*s is used to calculate the image’s global anomaly 

according to Equation (3). Next, GRXD is normalized between 0 and 1 and further multi-

plied by 255. 

A pseudo-RGB (NewVis*) image is reconstructed according to Equation (4). Given 

that regIHS*s is a registered, color-converted 2D layer of the RGB image, normAN is the 

normalized detected global anomaly of regIHS*s, and IR is the original IR image. 

𝑁𝑒𝑤𝑉𝑖𝑠∗ =  
𝑟𝑒𝑔𝐼𝐻𝑆∗𝑠

2
− 𝑛𝑜𝑟𝑚𝐴𝑁 + 𝐼𝑅 (4) 

The NewVis* is calculated by subtracting the normalized anomaly values from half of 

the transformed RGB layer and adding IR values. This image reconstruction aims to nar-

row the diversification of digital representation caused by natural differences between 

daylight and nightlight images, hence creating a generalized RGB representation.  

3.2.2. Processing 

Image Fusion Methods 

The Stationary Wavelet Transform (SWT) algorithm is used for the fusion process as 

demonstrated in [69,70]. SWT decomposes the input signals into scaling and Wavelet co-

efficients, enabling the preservation of the image texture and edge information while re-

constructing the fused signals from the sub-bands back to the image. By being shift-invar-

iant, SWT can effectively reduce distortion caused by the heterogenous data representa-

tion of RGB and IR images. 

In the SIDWT decomposition phase, each row in the image is separately filtered using 

high-pass (HP) and low-pass (LP) filters. Next, this image is filtered again along the col-

umns. The output is four sub-bands in the first decomposition level. Three sub-bands (LH, 

HL, and HH), also known as filter coefficients, contain the horizontal, vertical, and diag-

onal frequencies’ details along with sub-band LL. The approximation data are transferred 

onto the next decomposition level. The decompose frequency is increased by a factor of 

2(i-1) on the ith level of the algorithm, so each n decomposition level will have 3n+1 sub-

bands. In this paper, a SymLet Wavelet (sym2) is applied. Following the pre-processing 

steps in Section 3.2, the fusion process is presented in Figure 7. 
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The fusion process is shown below. 

 

Figure 7. Fusion process schema and the resulting datasets for training, validating, and testing the 

networks. 

Each unique image from the final dataset (2445 images) was processed according to 

the proposed algorithms described in Section 3.2, resulting in three types of processes for 

comparison: dual-RGB (regIHS*s) and -IR images fused at the pixel level, range-filter-

based feature extraction of the pre-processed RGB image (Feature Mask) fused with IR 

images (as RF Feature Fusion), RXD-based anomaly feature extraction of pseudo-RGB 

(NewVis*), and IR image fusion (as RXD Anomaly Feature Fusion). The original IR images 

dataset (as IR) was also tested for comparison vs. dual data. Examples of feature fusion 

images are shown in Figure 8. The created NewVis* fused with the corresponding IR im-

age. 

 

Figure 8. Fused images from feature fusion DS: daylight image FLIR_02163 (a); daylight image FLIR 

_05011 (b); nightlight image FLIR _05697 (c); and nightlight image FLIR_08926 (d). 

An additional set of 42 new, diverse images was defined as the Test DS, containing 

23 images of nightlight scenes and 19 images captured in daylight. A list of the total da-

tasets used for training the networks is detailed in Table 1. Table 2 lists all Test DS varia-

tions that were prepared. Ground truth properties of Test DS are detailed in Appendix A. 

The datasets used for network training are shown below.  
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Table 1. Mixed set of images (a total of 2445 daylight and nightlight images) was created with each 

of the listed processes (IR, pixel-level fusion, RXD anomaly-based fusion, and feature fusion). Da-

tasets containing only day images were separately prepared for RGB, IR, and pixel-level images. 

DSs containing only nightlight images were prepared for IR images and pixel-level fusion images. 

Dataset 
No. of 

Images 
RGB  

IR Im-

ages 

Pixel Level 

Fusion 

RXD  Anomaly 

Fusion 

Feature 

Fusion 

Total (Mixed DS)  2445      

Daylight Images DS 1275      

Nightlight Images DS 1170      

A list of test datasets is shown below. 

Table 2. Mixed set of images containing a total of 42 images (19 daylight images and 23 nightlight 

images) was created with each of the listed processes as the Test DS. RGB images were tested only 

on daylight images. 

Dataset 
No. of 

Images 

RGB 

Images 

 IR 

Images 

Pixel Level 

Fusion 

RXD Anomaly 

Fusion 
Feature Fusion 

Total (Mixed) Test DS 42      

Daylight Images 19      

Nightlight Images 23      

3.2.3. Post-Processing 

The resulting fused sets of images referenced to the original IR images were validated 

for the most effective process to yield the best physical value as input. Effectiveness in this 

manner means a robust pre-processing that will reduce the variation between diverse 

scene image representations while preserving the synergy advantage of the gathered 

multi-sensor information.  

CNN Installation and Network Training 

A convolutional neural network (CNN) based on the YOLO V5 architecture (initially 

trained on the cityscape dataset) was trained to detect and classify four classes: cars, pe-

destrians, dogs, and bicycles (the last two classes were later ignored due to a low number 

of annotations). The model was deployed using the Roboflow framework, installed on 

PyTorch environment version 1.5, Python 3.7, and CUDA 10.2., and was executed with 

Google Colab, which facilitates a 12 GB NVIDIA Tesla K80 GPU. The YOLO V5 structure 

is presented in Figure 9. The input size was set to 640, and the batch size to 16. The training 

was set to 750 epochs. Data allocation was set to 70% for training, 20% for validation, and 

the remaining 10% for tests. The initial learning rate was set to 0.01. YOLO V5 was chosen 

for training for the advantages mentioned in Section 1, as well as for it being smaller and 

generally easier to use in production, and the model’s eligible image input types, together 

with the connectivity offered by the model between its platform and a free storage frame-

work. Another advantage is the free access the model offers for training multiple net-

works. 
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Figure 9. Post-process phase where each prepared training DS is being fed as a YOLO V5 model 

input, with the IR annotated images as GT to train the network. 

At first, the network was separately trained with each of the daylight/nightlight sets: 

RGB images (daylight dataset only) and IR images, and low-level processed images that 

were fused at the pixel level for comparison. 

Next, the network was trained with the mixed datasets (daylight and nightlight im-

ages) of IR images, RXD Anomaly Fusion, feature fusion, and pixel-level fusion. Weights 

of each trained network were used to detect and classify the suitable Test DS. 

Detected objects were marked with bounding boxes (BB) and labeled with suitable 

label class names. Results were evaluated using a confusion matrix (pixel level) according 

to the following indicators (Equations (5)–(7)): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑑 𝐺𝑇⁄  (5) 

where Td is the number of truly detected pixels divided by GT, which stands for the total 

number of ground truth pixels (overlap between YOLO and ground truth), and 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑂𝐴𝑑 𝐺𝑇⁄ , (6) 

in which OAd is the number of all detected pixels by YOLO divided by GT. 

𝐼𝑂𝑈 = 𝑇𝑑 (𝐺𝑇 + 𝑂𝐴𝑑 − 𝑇𝑑)⁄  (7) 

The IoU (Intersect over Union) indicator is calculated by dividing Td (that is, the num-

ber of true detected pixels by YOLO) with the sum of GT and OAd minus Td, reflecting the 

number of pixels in all marked areas (both in GT and in YOLO, overlapping pixels counts 

once).  

An image is considered successfully classified when gained IoU > 0.5.  

The networks’ prediction performances were compared using the F1 score (Equation 

(8)): 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙) (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)⁄  (8) 
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4. Results 

The training results with different datasets were examined for classes (cars and pe-

destrians) in daylight and nightlight images according to the classification scores (average 

IoU).  

Given the above-mentioned challenges of image complexity, the proposed pre-pro-

cessing was applied before feature fusion in an attempt to create a feature-based dataset 

using different threshold ranges for each of the source images. An additional effect that 

seems to decrease the efficiency of feature fusion according to a level of intensity threshold 

is the patchiness of the gathered artificial input caused by integrating layers of data, which 

create artificial edges that might overcome the object’s edges. These limitations ended up 

in partially segmented, noisy, fused images. Therefore, intensity-based feature fusion was 

not tested further in this framework. 

Tables 3 and 4 detail the networks’ scores in classifying the unseen test dataset im-

ages, which were processed with the same method each network was trained. 

Training the network to detect cars with only daylight images (Table 3) yields the 

best result in the pixel-level fusion method (83%), slightly better than the IR dataset (81%) 

and much better than classifying cars in daylight scenes using RGB unprocessed dataset 

(68%). Networks trained with only nightlight images (Table 4) result in a correct classifi-

cation of 82% using the IR dataset and only 74% when trained on the pixel-level fusion 

dataset. 

Table 3. IoU classification scores of networks trained with only daylight images. Different types of 

images (RGB, IR, and fused) were used in each training process. Results specify the average IoU 

scores in detecting and correctly classifying cars and pedestrians by the trained network compared 

to GT annotations.

Daylight Dataset: Average IoU  

Class RGB IR Pixel Fusion 

Cars 68% 81% 83% 

Pedestrians 35% 53% 47% 

Table 4. IoU classification scores of networks trained with only nightlight images. Different types 

of images (IR and fused) was used for each training process. Results specify the average IoU scores 

in detecting and correctly classifying cars and pedestrians by the trained network compared to GT 

annotations. 

Nightlight Dataset: Average IoU 

Class RGB IR Pixel Fusion    

Cars - 82% 74% 

Pedestrians - 71% 54% 

Training networks with a mixed dataset (Table 5) show an improvement in car de-

tection (84% success) compared with training networks using IR daylight images sepa-

rately. Training with a mixed dataset contributes to the same scores (84%) in all fusion 

methods that were tested for classifying cars in daylight images. All networks trained with 

fused mixed datasets show good performance in classifying cars (above 80%) in nightlight 

images. Pixel-level fusion reached the best score of 84% for correct classification.  

None of the methods overperformed the 84%, hinting at the IoU benchmark draw-

backs to be discussed further.  
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Table 5. IoU scores for cars’ classification of networks trained with Mixed DS of the different pro-

cesses. Average IoU score is for all images in the dataset; average day and average night separately 

sum the relative score for daylight images and for nightlight images out of the mixed DS, respec-

tively. Scores are calculated in relation to GT annotations. 

 Mixed Dataset: Cars   

 Class: Cars RXD An. Fusion Feature Fusion Pixel Fusion  IR 

Average IoU 82% 82% 84% 84% 

Average Day 84% 84% 84% 84% 

Average Night 81% 80% 84% 84% 

Detection and classification of pedestrians, however, is distributed in a wider range 

of scores and can imply the challenges of this task. Early training attempts using separated 

datasets for daylight and nightlight images led to low performance in all datasets: the 

unprocessed IR dataset reached 53%, followed by 47%, and 35% with the pixel-level fusion 

dataset and unprocessed RGB image, respectively (Table 3). Training networks with 

mixed datasets (Table 6) showed improved results in classifying pedestrians in daylight 

images. The best scores were reached with the IR dataset (68%), followed by feature fu-

sion-level and anomaly-level fusion methods that also reached relatively high scores (64% 

and 62%, respectively). The lowest score for classifying pedestrians in daylight images is 

shown when the network was trained with a mixed dataset at pixel-level fusion (55%). 

Training the networks with a mixed DS: pedestrians 

Table 6. IoU scores for pedestrians’ classification by networks trained with Mixed DS of the different 

processes compared to IR scores. Average IoU score is of all images in the datasets; average day and 

average night separately sum the relative score for daylight images and for nightlight images out of 

the mixed DS, respectively. IoU scores are calculated in relation to GT annotations. 

Mixed Dataset: Pedestrians 

Class: Pedestrians RXD An. Fusion Feature Fusion Pixel Fusion  IR 

Average IoU 75% 72% 65% 73% 

Average Day 62% 64% 55% 68% 

Average Night 81% 79% 75% 78% 

Networks trained with mixed DS show the advantage of the proposed anomaly-level 

fusion method in classifying pedestrians in nightlight scenes (Table 6). Using the pro-

posed method achieves 81% correct pedestrian classification in nightlight, an improve-

ment compared with the other tested datasets (79%, 78%, and 75% with feature-level fu-

sion, IR, and pixel-level fusion, respectively) and a significant improvement over training 

with a dataset of nightlight images only, which yielded 71% on IR dataset and 54% using 

the pixel-level fusion dataset (Table 4).  

An IoU score higher than 0.5 was set as an indication of the network’s success in 

classifying an image. The number of images each network failed to classify was counted. 

Results of networks’ failure in classifying objects to the selected categories are summa-

rized in Tables 7 and 8 (detailed tables appear in Appendix B) according to the dataset 

type and classification category.   
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Table 7. Number of images out of Test DS images in which the trained networks failed to classify 

car objects, with IoU detection rate lower than 0.5. Columns: DSs used to train the network (i.e., 

RGB images (daylight dataset only), IR images, and pixel-level fused images). Rows: the actual part 

of the dataset the network was trained with (i.e., Daylight dataset, Nightlight dataset and Mixed 

dataset). 

Cars  RGB IR  Pixel Fusion  

Daylight Dataset  1 1 3 

Nightlight Dataset   2 3 

 Total IoU < 0.5  3 6 

38 FN rate  8% 16% 

Mixed Dataset Total IoU < 0.5  1 0 

38 FN rate  3% 0% 

Table 8. Number of images out of Test DS images in which the trained networks failed to classify 

pedestrians with IoU detection rate higher than 0.5. Columns: DSs used to train the networks (i.e., 

RGB images, IR images, and pixel-level fused images). Rows: actual part of the dataset the network 

was trained with (i.e., Daylight dataset, Nightlight dataset and Mixed dataset). 

Pedestrians  RGB  IR  Pixel Fusion  

Daylight Dataset  13 7 8 

Nightlight Dataset   4 11 

 Total IoU < 0.5  11 19 

34 FN rate  32% 56% 

Mixed Dataset Total IoU < 0.5  4 8 

34 FN rate  12% 24% 

A network trained with a mixed dataset of IR images failed to classify cars in one 

image. A network trained with pixel-level fusion succeeded in classifying all images as 

car objects. The feature-level fusion and the anomaly-level fusion images did not use day-

light and nightlight images as separate datasets for training; therefore, it is not included 

in this comparison. 

5. Discussion 

The results show an advantage for training mixed datasets over separated datasets 

for daylight and nightlight images. A key factor for this analysis is that none of the meth-

ods overperformed (84% IoU) for pedestrian classification. This limit might be caused by 

the disadvantage of the evaluation method.  

The fusion of multiple sensors can yield synergy in fused data by preserving valuable 

information from each data source. The distinct advantage of the IR sensor is the ability 

to expose warmer objects (e.g., pedestrians) in a dark scene and its insensitivity to re-

flected dazzling lights. The IR image is usually flattened relative to RGB images and lacks 

object depth information.  

IoU is a known and acceptable benchmark for measuring neural network perfor-

mance in segmentation and classification tasks. However, this benchmark has several lim-

itations in performance evaluation. First, IoU is calculated based on the ground truth, and 

the benchmark score is influenced by the annotation quality. An unmarked object (by an 

annotator) that is classified by the network is considered an error, while often, these de-

tected objects are correct, so the network classifies better than the annotator. In addition, 

the proximity of dynamic objects to the scanning sensors and their position (object’s size 

as a proportion of the image size) may affect the detection scores differently. Naturally, 

closer objects are marked with a large area (number of pixels for bounding box), and far 

objects are marked with a smaller bounding box size. A minor shift in a bounding box 

created by the network, relative to the marked ground truth, may differently affect the 
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measured error ratio on bounding boxes with a small number of pixels (the number of 

counted pixels in a shifted bounding box area to bounding box size is comparatively high), 

for which any shift in the bounding box location might slightly reduce the score. Hence, 

the IoU benchmark was used to evaluate the network’s success in segmentation and clas-

sification tasks.  

Examination of the contribution of a mixed dataset to the success of the network in 

classifying cars from daylight images revealed that only three images were detected with 

IoU scores lower than 50%. The total average for detecting cars in daylight and nightlight 

is 82.7%, and the distributed averages are 83.7% for daylight and 81.8% for nightlight im-

ages. Some of the lowest scores were caused by a greater accuracy of the network in object 

detection relative to the annotated ground truth, as will be detailed later.  

A network trained on a mixed dataset, processed with anomaly-based fusion, suc-

ceeded in the classification of all daylight images. The overlap rate between network de-

tection to the annotated ground truth reached 89%, and the area marked by the network 

to the annotated ground truth area was 96.5%, meaning a high accuracy level for classify-

ing cars in daylight images. The image in Figure 10 shows the effect caused by different 

resolutions in the dual image: part of the ground truth annotation marked on the IR image 

is out of the frame captured by the RGB image. Fusion enables us to overcome these chal-

lenges. Furthermore, unmarked cars in the manual ground truth annotation were detected 

and correctly classified by the network, leading to an IoU score of 73% for this image, 

which might be considered a false negative from the IoU score. 

 

Figure 10. Image FLIR_06423: example of dual images multi-resolution effects on classifying cars in 

day images. A subsection marked in network classification of the RXD Anomaly Fusion image (a), 

GT image (b), and original RGB image (c), with light green boxes that are zoomed in to the region 

of interest, shown in images (d,e,f), respectively. The three marked BBs on the left of the GT (b) are 

out of the frame of the RGB image (c). The proposed pre-processing enables the network to detect 

these objects correctly. 

A network trained on a mixed dataset of anomaly-level fused images classified cars 

in all nightlight images of the test dataset. The overlap ratio between the marked area by 

the network to the annotated ground truth was 91.8%. The networks’ classified area to the 

annotated ground truth area ratio was 110%. These scores show the network’s high accu-

racy level, though the error rate is slightly increased. Some of this erroneous rate is due to 

correct networks’ over-classification of unmarked objects in the annotated ground truth 

(Figure 11).  
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Figure 11. Image FLIR_05731: low score example of correct car classification in a night image. A 

subsection marked in: network classification of the RXD Anomaly Fusion image (a), GT image (b), 

and original RGB image (c), with light green boxes that are zoomed in to the region of interest, 

shown in images (d,e,f), respectively. Car objects that were detected by the network (a,d) are un-

marked objects in GT (b,e). 

A network trained on a mixed dataset of anomaly-level fused images reached an av-

erage IoU of 62.6% in classifying pedestrians in daylight images. The average overlap ratio 

between the network’s classification area to the annotated ground truth area was 70.1%. 

The average network’s classified area to the annotated ground truth area was 88.3%.  

In some images, few objects were misclassified by the network, yet several images 

gained low scores due to pedestrian classification based on the correct detection of un-

marked ground truth annotation (Figure 12). 

 

Figure 12. Image FLIR_08807: an example of pedestrian classification based on the correct detection 

of unmarked ground truth annotation in a day image by the network (a,d) vs. unmarked pedestrians 

in GT annotation (b,e). A subsection marked in network classification of the RXD Anomaly Fusion 

image (a), GT image (b), and original RGB image (c), with light green boxes that are zoomed in to 

the region of interest, shown in images (d,e,f), respectively. 

The annotated ground truth area ratio was 111%. Out of two images that scored less 

than 50% IoU, the first was partially classified by the network, while the second was cor-

rectly classified by the network as a missing annotation on ground truth. 
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An additional drawback of the IoU marker (Figure 13) arises when classifying small 

(usually far) objects. A minor shift in the detected bounding box from the annotated 

ground truth bounding box leads to a substantial reduction in the IoU score, despite cor-

rect classification by the network. Image FLIR_07989, for example, was successfully clas-

sified by the network but scored only 71%. 

 

Figure 13. Image FLIR_07989: example of the bounding box size effect on IoU score. Despite the 

correct detection and classification, this image’s IoU score is 71%. A subsection marked in network 

classification of the RXD Anomaly Fusion image (a), GT image (b), and original RGB image (c), with 

light green boxes that are zoomed in to the region of interest, shown in images (d), (e), and (f), 

respectively. 

Each trained network’s result was separately summed up for daylight and nightlight 

datasets classification in comparison to the mixed dataset classification to evaluate the 

contribution of mixed datasets in lowering the network classifications’ failure. This eval-

uation was conducted based on a trained network with IR images comparing pixel-level 

fusion images only. 

Images containing zero objects from one of the classes (overall GT area = 0) were 

eliminated due to computation limitations (divided by zero). In the car category, out of 42 

images in the test set, four images with no cars were eliminated. The network performance 

was tested on 38 mixed images, out of which 17 were in daylight, with the remaining 21 

in nightlight. In the pedestrian category, eight out of 42 images were discarded (images 

with zero objects in the pedestrians’ category). In practice, the network’s performances in 

classifying pedestrians were tested on 34 images, out of which 16 images were in daylight 

and 18 images were in nightlight. 

The network trained with IR images on separate datasets for daylight and nightlight 

(Table 5) failed to classify cars in three images in total (8%). A network trained on a mixed 

dataset decreased the rate of failure in car classification to one image only (3%), an im-

provement of 5% in the network’s success.  

Training the network with separate datasets of IR images for daylight and nightlight 

(Table 6) resulted in 32% in pedestrian classification (a total of 11 misclassified images). 

Training on a mixed dataset decreased the rate of failure of the network to 12%, a total of 

four out of 34 images. 

The network trained with pixel-level fused images on separate datasets for daylight 

and nightlight failed to classify six images with car objects (16% out of 34 images with car 

annotations). A network trained on a mixed dataset successfully classified cars in all im-

ages with an IoU score higher than 50%, i.e., 0% network failure (Table 5). 
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Training the network with separate datasets of pixel-level fused images failed in 56% 

of pedestrian classifications (a total of 19 misclassified images). Training on a mixed da-

taset decreased the rate to 24%, a total of eight images out of 34 daylight and nightlight 

mixed scenes and improved the network’s success by 32% in classifying objects as pedes-

trians (Table 6).  

6. Conclusions 

The pre-processing method intends to handle issues emerging from combining input 

from multiple types of sensors, such as data registration, values unification, and statisti-

cal-based anomaly detection for foreground refinement. By doing so, a reduction in the 

amount of the gathered data and its variation level caused by differences in sensor types 

and properties, different lighting and environmental conditions, complex scenes, dynamic 

objects, etc., was achieved. The unified physical value contributed to the robustness of 

input data extraction, hence obtaining a better perception of the surroundings under var-

ied environmental states. 

We applied the anomaly-level fusion method to suppress the effects of complex dy-

namic background captured by moving cameras, enabling the model to concentrate on 

the spatial variation of the moving foreground. With the differences in fusion processes 

and their contribution to car and pedestrian classification, it can be seen that, due to cars’ 

flat and smooth textures, all proposed fusion processes yielded a high detection score (80-

84%) in classifying a mixed dataset (of daylight and nightlight images) after eliminating 

the masked effects. Thus, the fusion process, in the context of car detection, makes a major 

contribution to suppressing masking and background effects. 

As for pedestrian detection, a network trained with a mixed dataset of RXD anomaly-

level fused images gains the highest average IoU score (75%). The bright appearance of 

the objects in the IR images contributes to the object’s flattening and, as a result, separately 

accentuates it from its background. A CNN network trained with RXD anomaly-level 

fused images classifies pedestrians in nightlight images best (81%) by suppressing the 

background and masking effects, thus lowering the dependency on accurate registration 

while maintaining the brightness of pedestrians’ appearances.  

Classifying pedestrians from a complex background in daylight images, however, 

appears to be the most challenging task for the networks, a category that results in the 

lowest scores in all proposed processes. Enriching the object with texture and depth limits 

the network’s ability to classify pedestrians as a united, single object; hence, the thermal 

images achieve the best scores (68%) in pedestrian classification in daylight images. RF 

feature-level fusion slightly increases the pedestrian’s gradient and adds no texture, while 

fusing with the IR image yields 64%, slightly lower than IR images and the best out of the 

examined fusion processes. The authors concluded that as the fusion process expresses a 

greater range of details from the visual image, the network’s IoU scores in classifying pe-

destrians in daylight images decrease. 

This understanding reinforces the benefits of expressing the color image as a physical 

value that can contribute to the robustness of the network in training mixed datasets (day-

light and nightlight images) by moderating the range of detail enrichment and preserving 

and neutralizing the masking and background effects in nightlight images. 

Author Contributions: Conceptualization, A.B.; Methodology, R.B.-S. and A.B.; Software, R.B.-S.; 

Validation, R.B.-S.; Formal analysis, R.B.-S.; Investigation, R.B.-S. and A.B.; Data curation, R.B.-S.; 

Writing – original draft, R.B.-S.; Writing – review & editing, A.B.; Supervision, A.B.; Project admin-

istration, A.B.; Funding acquisition, A.B. 

Funding: This research was supported by grants (no. 67437 and 74538) from the Israel Innovation 

Authority’s AVATAR consortium (Autonomous Vehicle Advanced Technologies for situational 

AwaReness). 

Data Availability Statement: Not applicable. 



Remote Sens. 2023, 15, 723 23 of 29 
 

 

Acknowledgments: The authors of this paper gratefully acknowledge Third-Eye Systems LTD. For 

their fruitful collaboration. A sincere appreciation is expressed to Erez Nur, the technical manager 

of the consortium. Special thanks to Shay Silberklang and Alexander Logovinsky for their assistance 

in code writing and designing, technical consultancy, and their friendly attitude. Special thanks to 

Gabriel Cotlier for his kind advice in English editing. 

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the 

design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-

script; or in the decision to publish the results.  

Appendix A. List of Test Dataset Images  

List of the test dataset images split into daylight images (Table A1) and nightlight images 

(Table A2). The number of annotated cars and pedestrians per image is specified, in addi-

tion to the total BB area per class, in pixels (overlapping BB pixels were counted once). 

Table A1. Day images, Test DS. 

Image Name 

Number of Cars 

BB 

(Cars GT) 

Overall GT BB 

Area (in Pixels) 

Number of People 

BB  

(People GT) 

Overall GT BB 

Area (in Pixels) 

FLIR_06345 9 26,350 9 6388 

FLIR_06423 5 8461 6 8833 

FLIR_08653 8 11,454 0 0 

FLIR_08692 2 1266 1 1085 

FLIR_08727 6 5607 4 3598 

FLIR_08807 7 7351 9 7810 

FLIR_08821 6 45,497 5 2938 

FLIR_08834 3 6666 6 7151 

FLIR_09086 3 14,492 9 11,526 

FLIR_09118 2 23,521 7 16,468 

FLIR_09231 4 16,341 0 0 

FLIR_09276 4 11,037 4 1261 

FLIR_09282 4 58,705 2 8226 

FLIR_09296 0 0 6 51,952 

FLIR_09929 4 5106 3 4930 

FLIR_10013 0 0 0 0 

FLIR_10094 8 12,538 4 33,398 

FLIR_10119 4 21,615 4 3662 

FLIR_10121 3 9912 4 5224 
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Table A2. Nightlight images, Test DS. 

Image Name 
Number of Cars 

BB (Cars GT) 

Overall GT BB 

Area (in Pixels) 

Number of People 

BB  

(People GT) 

Overall GT BB 

Area (in Pixels) 

FLIR_05731 1 1945 0 0 

FLIR_05737 1 2347 6 1920 

FLIR_05849 4 11,032 2 779 

FLIR_05938 3 1735 2 3046 

FLIR_06001 0 0 5 1685 

FLIR_06040 1 236 2 598 

FLIR_07495 7 11,690 2 5986 

FLIR_07498 6 4785 2 8299 

FLIR_07500 5 4029 2 772 

FLIR_07986 17 38,681 0 0 

FLIR_07989 2 8583 1 296 

FLIR_08079 5 4824 3 3293 

FLIR_08086 3 3518 4 2208 

FLIR_08087 4 20,213 5 1197 

FLIR_08237 4 10,719 10 5604 

FLIR_08318 5 13,006 12 13,278 

FLIR_08522 6 14,717 0 0 

FLIR_08523 4 5357 1 476 

FLIR_08527 0 0 0 0 

FLIR_08926 5 12,754 4 12,704 

FLIR_08932 5 11,306 8 37,928 

FLIR_08954 5 30,679 1 6294 

FLIR_09669 8 26,896 0 0 

Appendix B 

Training networks with separated DS vs. mixed DS: list of images with low IoU 

classification scores (<0.5) 

 

Training networks with separated datasets for day and night: images with IoU < 0.5 in the 

cars’ classification 

 

Table A3: Networks trained with daylight image datasets failed to classify 1-3 images for car ob-

jects, out of 17 day images  

Daylight Dataset: Cars 

Time 
Image 

Number 
Image Name 

BB Count 

in GT 

RGB 

Day 
IR Day 

Pixel Fu-

sion Day 

Fails Per 

Image  

Day 22 FLIR_08653 8 -   1 

Day 40 FLIR_10094 8  - - 2 

Day 41 FLIR_10119 4   - 1 

Day 42 FLIR_10121 3   - 1 

17    1 1 3  
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Table A4. Networks trained with nightlight image datasets failed to classify 2–3 images for car ob-

jects out of 21 night images. 

Nightlight Dataset: Cars 

Time 
Image 

Number 
Image Name BB in GT 

IR  

Night 

Pixel Fusion 

Night 

Fails Per 

Image 

Night 3 FLIR_05849 4  - 1 

Night 4 FLIR_05938 3 - - 2 

Night 20 FLIR_08523 4 - - 2 

21    2 3  

Training networks with separated datasets for day and night: images with IoU < 0.5 in the 

pedestrians’ classification 

Table A5. Networks trained with day image datasets failed to classify 7–13 images of pedestrian 

objects out of 16 day images. 

Daylight Dataset: Pedestrians 

Time Image Number Image Name 
BB Count 

in GT 

RGB 

Day 
IR Day 

Pixel Fu-

sion Day 

Fails Per 

Image  

Day 7 FLIR_06345 9 -   1 

Day 25 FLIR_08807 9 -   1 

Day 26 FLIR_08821 5 -   1 

Day 27 FLIR_08834 6 -   1 

Day 31 FLIR_09086 9 - - - 3 

Day 32 FLIR_09118 7 - - - 3 

Day 34 FLIR_09276 4 - - - 3 

Day 35 FLIR_09282 2 - - - 3 

Day 36 FLIR_09296 6 -   1 

Day 38 FLIR_09929 3 -  - 2 

Day 40 FLIR_10094 4 - - - 3 

Day 41 FLIR_10119 4 - - - 3 

Day 42 FLIR_10121 4 - - - 3 

16    13 7 8  

Table A6. Networks trained with night image datasets failed to classify 4–11 images for pedestrian 

objects out of 18 night images. 

Nightlight Dataset-Pedestrians 

Time 
Image 

Number 
Image Name BB in Gt IR Night 

Pixel Fusion 

Night 
Fails Per Image 

Night 3 FLIR_05849 2 - - 2 

Night 6 FLIR_06040 2  - 1 

Night 11 FLIR_07500 2 - - 2 

Night 13 FLIR_07989 1  - 1 

Night 15 FLIR_08086 4  - 1 

Night 16 FLIR_08087 5  - 1 

Night 17 FLIR_08237 10  - 1 

Night 20 FLIR_08523 1 - - 2 

Night 28 FLIR_08926 4 - - 2 

Night 29 FLIR_08932 8  - 1 

18    4 11  

Training networks with Mixed datasets: images with IoU < 0.5 in cars’ classification and 

pedestrian’s classification 
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Table A7. Networks trained with mixed datasets failed to classify a single image for car objects, 

out of 38 day and night images. 

Mixed Dataset: Cars 

Time Number Image Name BB in GT Tir Mix 
Pixel Fusion 

Mix 

Fails Per 

Image 

Night 4 FLIR_05938 3 -  1 

38   1 0  

Table A8. Networks trained with mixed datasets failed to classify 4–8 images for pedestrian objects 

out of 34 day and night test images. 

Mixed Dataset-Pedestrians 

Time Number Image Name BB in GT Tir Mix 
Pixel Fusion 

Mix 

Fails Per 

Image 

Night 3 FLIR_05849 2  - 1 

Night 11 FLIR_07500 2 - - 2 

Night 28 FLIR_08926 4 - - 2 

Day 31 FLIR_09086 9  - 1 

Day 34 FLIR_09276 4 - - 2 

Day 35 FLIR_09282 2  - 1 

Day 40 FLIR_10094 4  - 1 

Day 41 FLIR_10119 4 - - 2 

34    4 8  
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