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Abstract: Superpixel-based classification using Active Learning (AL) has shown great potential in
high spatial resolution remote sensing image classification tasks. However, in existing superpixel-
based classification models using AL, the expert labeling information is only used on the selected
informative superpixel while its neighboring superpixels are ignored. Actually, as most superpixels
are over-segmented, a ground object always contains multiple superpixels. Thus, the center superpixel
tends to have the same label as its neighboring superpixels. In this paper, to make full use of the
expert labeling information, a Similar Neighboring Superpixels Search and Labeling (SNSSL) method
was proposed and used in the AL process. Firstly, we identify superpixels with certain categories
and uncertain superpixels by supervised learning. Secondly, we use the active learning method to
process those uncertain superpixels. In each round of AL, the expert labeling information is not only
used to enrich the training set but also used to label the similar neighboring superpixels. Similar
neighboring superpixels are determined by computing the similarity of two superpixels according
to CIELAB Dominant Colors distance, Correlation distance, Angular Second Moment distance and
Contrast distance. The final classification map is composed of the supervised learning classification
map and the active learning with SNSSL classification map. To demonstrate the performance of the
proposed SNSSL method, the experiments were conducted on images from two benchmark high
spatial resolution remote sensing datasets. The experiment shows that overall accuracy, average
accuracy and kappa coefficients of the classification using the SNSSL have been improved obviously
compared with the classification without the SNSSL.

Keywords: high spatial resolution image; superpixel-based image classification; active learning;
supervised learning; label spread

1. Introduction

The development of satellite and unmanned aerial vehicle (UAV) technology has made
it easy to capture high spatial resolution remote sensing images. However, how to make
full use of these images is a challenge for a lot of applications. As an important processing
step for the analysis of remote sensing images, image classification can provide valuable
information for various practical applications, i.e., urban planning, change detection, crop
yield estimation, and sustainable forest management. Although unsupervised classification
methods were also proposed by some researchers, supervised classification methods show
obvious priority in practical applications. However, obtaining enough training samples
is an obstacle to using supervised classification methods. Collecting a large amount of
training samples is time-consuming and cost-expensive. Without enough training samples,
a lot of state-of-art supervised classification methods are not able to generate the expected
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classification result. Therefore, achieving expected classification performance with a limited
number of training samples is a trend in recent years.

A lot of research has made efforts on reducing the requirement for training samples.
Among them, active learning (AL) is a potential direction [1–3]. The AL provides an
interactive solution for commonly used classifiers to achieve excellent classification perfor-
mance even with a limited number of training samples. The AL repeatedly selects valuable
unlabeled samples based on the previous round of classification using a small training
set, then selected samples will be labeled and added to the training set. After multiple
iterations, as the updated training set contains more representative samples and avoids
repeated samples, the workload of labeling training samples is reduced and the classifier
can perform well. The AL has been applied successfully in the pixel-based classification
of remote sensing images, especially hyperspectral images. In [4], different batch-mode
AL techniques for the classification of remote sensing images with support vector machine
(SVM) were investigated. Different query functions based on uncertainty criteria and
diversity criteria were investigated and the combination of these two criteria showed the
ability to select the potentially most informative set of samples at each iteration of the
AL process. In [5], to integrate spectral-spatial information with the AL, the supervised
classification and AL were based on the information extracted from a 3× 3 patch. In [6], to
address the problem of fewer training samples problem in hyperspectral image classifica-
tion, an algorithm that combined both semisupervised learning and AL was proposed. A
supervised clustering method was utilized to find highly confidential clusters to enrich the
training data, and the left clusters were the candidates for active learning.

Except for pixel-based AL, object-based AL was also exploited by researchers in
recent years. Compared to pixel-based methods, the object-based method can make full
use of the spatial information within the data. Specifically, in dealing with high spatial
resolution images, the object-based classification has a lot of advantages over the pixel-
based classification [7–10]. Superpixel is also a representation of an object. The superpixel
segmentation methods are commonly used in remote sensing image analysis because
superpixel can effectively combine spectral and spatial features and reduce computational
efforts. It may be directly applied to remote sensing image classification [11–13]. It can
also be combined with deep learning [14–18] or graph neural network [19–21] for remote
sensing image classification. Similarly, as a basic processing unit, superpixel can also be
combined with active learning and applied to remote sensing image classification. In [22],
over-segmented superpixels were used as the basic unit for classification and AL. The
results showed that superpixel-based AL was superior to pixel-based AL. In [23], AL and
the random forest (RF) [24] classifier were adopted to classify segmented objects. As the
object was used as the classification unit, the negative influence of the speckle noise was
relieved. In [25], information entropy is used to evaluate the classification uncertainty
of segmented objects. According to information entropy, the training set is enriched by
adding a certain proportion of zero-entropy objects acquired via random sampling, and
non-zero-entropy objects were used as a candidate set for active learning. In [26], AL was
integrated with an object-based classification method, and the informativeness of samples
can be estimated by using various object-based features.

Although some object-based AL methods have achieved promising
performance [22,23,25,26], the contextual information between adjacent and spatially close
objects was seldom considered. As current segmentation techniques are not able to generate
accurate segments for real ground objects, most object-based methods use over-segmented
objects or superpixels to avoid the negative influence of under-segmentation [27,28]. There-
fore, a real ground object usually contains multiple segmented objects. Ignoring the contex-
tual information of objects within a real ground object will negatively affect classification
accuracy. Thus, the contextual information between adjacent objects is important. More-
over, normally used contextual information extraction methods only extend one layer of
neighbors, which may not enough for some scenarios. When an expert is labeling training
objects, not only the information of the target object will be used, but also the information
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of its neighboring objects. However, the label is only assigned to the target object in the
traditional active learning method [22,23,25,26]. Actually, it is possible to spread expert
labeling information to neighboring objects.

In this paper, we first identify superpixels with certain categories and uncertain
superpixels by using supervised learning XGBoost or SVM. Then we use the active learning
method to process those uncertain superpixels. We propose the Similar Neighboring
Superpixels Search and Labeling (SNSSL) strategy in the AL process to efficiently spread the
expert labeling information. The proposed method is innovative in making full use of the
expert label information from active learning. The expert labeling information from active
learning is only used to enrich the training set for updating the classifier in most papers on
active learning. However, in this paper, the expert labeling information from active learning
is not only used to enrich the training set but also used to spread the expert label information
to similar neighboring superpixels, which is our main contribution. In each round of active
query, the most uncertain superpixel (named target superpixel) will be selected for labeling.
The neighboring superpixels which are highly similar to the target superpixel will be
selected by the search method based on superpixel similarity. Then the label of the target
superpixel will be assigned to the selected neighboring superpixels. The main idea behind
the method which exploits superpixel-based contextual information is Tobler’s First Law
of Geography (near things are more related than distant things) [29]. If two superpixels
are spatially close, there is a high probability that the two superpixels belong to the same
ground class; therefore, the method propagates the expert label information to spatially
adjacent superpixels by computing the similarity between the expert labeled superpixel
and its neighbor superpixels. The final classification map is composed of the supervised
learning classification map and the active learning with the SNSSL classification map.
To demonstrate that the proposed AL method can exploit contextual information and
expert labeling information more efficiently, the proposed method is compared with the
classifications based on state-of-art AL strategies [4,30] in classification accuracy.

The rest of this article is organized as follows. In Section 2, the details of the pro-
posed method are presented. The experimental results are provided in Section 3, and the
discussions are provided in Section 4. In Section 5, the conclusion of our work is presented.

2. Materials and Methods
2.1. Superpixel Based Feature Extraction

As the classification is executed based on superpixels, superpixel segmentation should
be conducted first. The Simple Linear Iterative Clustering (SLIC) [31] algorithm is adopted
to generate superpixels because of its advantages in simplicity, adherence to boundaries,
computational speed, and memory efficiency [32]. After segmentation, features of superpix-
els will be extracted for classification. In this research, Global Color Histogram (GCH) [33],
Local Binary Pattern (LBP) [34], and Gray-level Co-occurrence Matrix (GLCM) [35] are
selected to represent the features of superpixels.

GCH is one of the most common and traditional ways to describe the color feature
of the image. In this research, the GCH is extracted from the segmented superpixel rather
than an image. In a color space with N colors (C1, C2, . . . , CN), the GCH can be represented
by a C-dimensional vector (h1, h2, . . . , hN), in which hi represents the percentage occupied
by color Ci in the superpixel. For a superpixel with the size of M, the hi can be calculated as:

hi =
∑M

j=1 Dj

M
(1)

where Dj = 1 if the color of the j-th pixel in the superpixel is as same as the Ci, otherwise
Dj = 0. The number of colors N used in this research is set as 16 and the color space used
to represent color is CIELab color space [36]. That is, each color range in the LAB color
space is divided into 16 equal parts, and the percentage of frequencies in each equal part
interval is calculated.
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Local binary pattern (LBP) has been widely applied to texture classification due to its
simplicity, efficiency, and rotation invariant property [34]. Therefore, the LBP histogram
is adopted in this paper to represent the first part of the texture feature in the superpixel.
Except for LBP, texture features extracted from GLCM [35] are also widely used in classi-
fication tasks. The GLCM characterizes the texture of an image by calculating how often
pairs of pixels with specific values and in a specified spatial relationship occur in an image.
In this research, the GLCM is extracted from superpixels. The features extracted from
the GLCM are Homogeneity, Correlation, Contrast, and Angular second moment (ASM).
The first two of them are used as texture features of superpixels for classification, and the
last three are used as part of the similarity features of superpixels for extending expert
labeling information.

As contextual information is important for classification, the features of the neighbor-
ing superpixels are also considered. For a target superpixel Starget having n directly adjacent
superpixels, the final feature FFtarget is the integration of its own features Ftarget and features
of its directly adjacent superpixels (F1, F2, . . . , Fn). The F1, F2, . . . , Fn are averaged first, then
the averaged features will be concatenated with the Ftarget to form the FFtarget. The whole
feature extraction process is shown in Figure 1.

Figure 1. Superpixel-based feature extraction process.

2.2. Active Learning Based on Similar Neighboring Superpixel Search and Labeling
2.2.1. Active Learning Query Strategies

The AL query strategy is important for selecting more informative samples from
unlabeled data. In this research, Breaking Ties (BT) [30] and MultiClass-Level Uncertain
(MCLU) [4] which are commonly used in AL are considered.

BT is usually used when the output of classifiers is class probability. After classification,
if there are C classes, a probability vector [P1(x), P2(x), . . . , PC(x)] will be generated for
each sample. In the probability vector, if the greatest probability is Pa(x) and the second
greatest probability is Pb(x), the criterion BT for selecting informative samples is defined as:

BT = Pa(x)− Pb(x) (2)

The most informative sample that should be selected is the sample with the lowest BT.
MCLU is only used for the SVM classifier [37]. During classification, for each sample,

the distances to all n hyperplanes [ f1(x), f2(x), . . . , fn(x)] are calculated. Only the first
largest distance value r1max(x) and second largest distance value r2max(x) are considered
in the Classification Confidence (CC) :

CC = r1max(x)− r2max(x) (3)

The most informative sample that should be selected is the sample with the lowest CC.

2.2.2. Superpixel Community

In the process of AL, when a target sample is selected for labeling, the similarity
between this sample and its neighboring superpixels will be calculated. To spread expert
labeling information efficiently, the concept of the superpixel community is used to define
the scope of neighboring superpixels. The size of the superpixel community is controlled
by the number of layers (NLayer) of superpixels. The target sample belongs to the 0th
layer and its directly adjacent superpixels belong to the 1st layer. For example, superpixel
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communities with 1, 2, and 3 layers are shown in Figure 2. In Figure 2, the color of the target
superpixel is blue and the color of neighboring superpixels is red. Once the superpixel
community is confirmed, the similarity search process will only consider superpixels within
the superpixel community.

Figure 2. Superpixel community examples.

2.2.3. Superpixel Similarity Calculation

To calculate the similarity between superpixels, both the spectral and texture similarity
are considered. The spectral similarity is the color difference between CIELAB dominant
colors of superpixels. The CIELAB dominant color is the average of all pixels’ CIELAB
colors within the superpixel. The normal way to calculate color difference is to calculate
the Euclidean distance between different components of the color. However, the calculated
distance can’t well match the observation of human eyes. Therefore, the color difference be-
tween CIELAB dominant colors is measured by CIEDE2000 Color-Difference Formula [38],
which better matches human eyes’ observation. As for texture similarity, three discrimina-
tive texture features, Correlation, Angular Second Moment (ASM), and Contrast features
extracted from GLCM are used in the calculation. The distances between these three fea-
tures are calculated using Euclidean distance. Assuming the CIELAB dominant colors
distance between two superpixels is Dc, correlation distance is4Correlation, ASM distance
is4ASM, and Contrast distance is4Contrast, the similarity between superpixels (Sim) is
calculated by:

Sim =
√

D2
c +4Correlation2 +4ASM2 +4Contrast2 (4)

2.2.4. Similar Neighboring Superpixels Search and Labeling under Spatial Constraint

If two objects are spatially close, there is a high probability that these two objects
belong to the same ground class [29]. Therefore, spatially close superpixels tend to be more
similar than spatially far superpixels. To integrate this rule in searching similar superpixels,
the graph is introduced. For each superpixel community, a graph is constructed. The
center vertex of the graph is the target superpixel St selected for labeling. There is an edge
for any pair of directly adjacent superpixels and the weight of the edge is the calculated
similarity. Hence, the similarity between St and any other superpixel is their shortest
weighted distance in the graph. The shortest weighted distance is calculated using Floyd-
Warshall algorithm [39]. Once the similarity between St and all other superpixels in the
superpixel community is obtained, a similarity threshold T is used to judge whether the
superpixel is similar to St. If the superpixel is similar to St, the label of St will also be
assigned to this superpixel. The labels for all searched similar superpixels will be used to
generate the final classification result. The whole process of the proposed classification
scheme is shown in Figure 3.



Remote Sens. 2023, 15, 715 6 of 17

Figure 3. Flowchart of the proposed classification scheme.

3. Data Sets and Experimental Results
3.1. Data Sets

To verify the effectiveness of the proposed method on high spatial resolution remote
sensing image classification, two benchmark datasets are selected for experiments. The first
dataset is the FloodNet [40], which was collected with a small UAS platform, DJI Mavic
Pro quadcopters. All images of the dataset were collected during 30 August–4 September
2017, at Ford Bend County in Texas and other directly impacted areas, after Hurricane
Harvey. This dataset contains 2343 RGB images with a spatial resolution of 1.5 cm. As
the classification method proposed in this paper focuses on the classification of a single
scene, two representative images (FloodNet-6651 and FloodNet-7577) from 2343 images
are selected for the experiment. The size of FloodNet-6651 is 4000× 3000 and the size of
FloodNet-7577 is 4592× 3072. The original images and ground truth are shown in Figure 4.
The numbers of ground-truth pixels for all categories are tabulated in Table 1. Another
dataset is the Potsdam dataset [41] which was captured from urban areas. The whole data
set contains 38 images with the size of 6000× 6000. The spatial resolution is 5 cm. In our
experiments, two representative RGB images in the dataset were chosen. The original
images (Potsdam-2_10 and Potsdam-3_10) and ground truth are shown in Figure 5. The
numbers of ground-truth pixels for all categories are tabulated in Table 2.
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(a) (b)

(c) (d)

Figure 4. Images from FloodNet: (a) 6651 RGB; (b) 6651 ground truth; (c) 7577 RGB; (d) 7577
ground truth.

Table 1. Numbers of ground-truth pixels for all categories in two selected images from FloodNet.

FloodNet-6651 FloodNet-7577

Pixel Number Percentage Pixel Number Percentage

Building 1,731,044 14.4% 2,668,245 18.9%
Road-flooded - - 3,077,131 21.8%

Road 1,201,785 10.0% 203,765 1.4%
Tree 3,048,555 25.4% 3,421,016 24.3%

Vehicle 156,470 1.3% 80,009 0.6%
Grass 5,862,146 48.9% 4,606,927 32.7%
Pool - - 49,531 0.4%

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Images from Potsdam: (a) 2_10 RGB; (b) 2_10 ground truth; (c) 3_10 RGB; (d) 3_10
ground truth.

Table 2. Numbers of ground-truth pixels for all categories in two selected images from Potsdam.

Potsdam-2_10 Potsdam-3_10

Pixel Number Percentage Pixel Number Percentage

Impervious surfaces 4,944,599 13.7% 8,338,198 23.2%
Building 5,447,007 15.1% 5,128,149 14.2%

Low vegetation 15,182,061 42.2% 11,428,326 31.7%
Tree 2,679,388 7.4% 8,780,245 24.4%
Car 313,148 0.9% 434,615 1.2%

Clutter/background 7,433,797 20.6% 1,890,467 5.3%

3.2. Experimental Results

To validate the performance of the proposed AL model, experiments were conducted
on the selected datasets using different AL strategies methods for comparison. In the
segmentation process, considering the ground object sizes in the dataset, the superpixel
size for images from FloodNet was set as 35× 35 and the superpixel size for images from
Potsdam was set as 20× 20. After segmentation, the number of superpixels in FloofNet-6651
and FloodNet-7577 were 9773 and 11,509, and the number of superpixels in Potsdam-2_10
and Potsdam-3_10 were 89,650 and 89,618. A few superpixels called mixed superpixels may
contain pixels from different ground classes because SLIC can’t make sure all generated
superpixels are pure. For mixed superpixels, the label of the superpixel is determined from
the majority voting of the labels of all pixels within the superpixel. The initial number
of superpixels in the training set of FloodNet images is 30 and 500 rounds of AL were
conducted. The initial number of superpixels in the training set of Potsdam images is
30 and 1000 rounds of AL were conducted. In each round of AL, one superpixel will be
selected from unlabeled superpixels and added to the training set. For all images, the initial
training samples were randomly selected from all generated superpixels. In the proposed
AL model, the layer number of superpixel community N and similarity threshold T are
required to be assigned manually. The N and T for the FloodNet dataset were set as 4 and 8
respectively. The N and T for the Potsdam dataset were set as 7 and 12 respectively. As for
the classifiers, as both BT and MCLU AL strategies were considered, the XGBoost (XGB) [42]
was used for the BT strategy, and SVM was used for the MCLU strategy. For comparison,
the classifications with and without the proposed Similar Neighboring Superpixel Search
and Labeling (SNSSL) were conducted. Three quantities metrics Overall Accuracy (OA),
Average Accuracy (AA), and Kappa coefficient were adopted to evaluate the classification
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accuracy. To make the results more robust, the reported classification accuracy is averaged
with five runs using different sets of randomly selected initial training samples. The details
of the classification accuracy of FloodNet images are tabulated in Tables 3 and 4, and
classification maps are shown in Figures 6 and 7. The details of the classification accuracy
of Potsdam images are tabulated in Tables 5 and 6, and classification maps are shown in
Figures 8 and 9.

Table 3. Classification accuracy (averaged on 5 runs) of the FloodNet-6651.

Class XGB + BT XGB + BT + SNSSL SVM + MCLU SVM + MCLU + SNSSL

Building 90.38 91.45 87.03 88.95
Road 82.79 85.84 81.06 83.33
Tree 88.54 90.37 87.70 90.36

Vehicle 69.57 72.31 74.86 78.71
Grass 92.07 93.05 91.29 92.23

OA (%) 89.71 91.15 88.53 90.22
AA (%) 84.67 86.60 84.39 86.72

Kappa × 100 84.54 86.70 82.77 85.28

Table 4. Classification accuracy (averaged on 5 runs) of the FloodNet-7577.

Class XGB + BT XGB + BT + SNSSL SVM + MCLU SVM + MCLU + SNSSL

Building 90.82 92.48 91.80 92.08
Road-flooded 82.80 84.18 77.95 80.19

Road 11.58 33.10 0 6.51
Tree 85.94 85.93 76.62 77.31

Vehicle 19.78 25.83 5.14 24.27
Grass 80.63 82.26 80.20 81.35
Pool 23.40 52.20 0 25.86

OA (%) 82.74 84.37 79.49 80.55
AA (%) 56.42 65.14 47.39 55.37

Kappa × 100 76.88 79.08 72.35 73.85

(a) (b) (c)

Figure 6. Cont.
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(d) (e) (f)

Figure 6. Classification maps generated from FloodNet-6651: (a) ground truth; (b) XGB + BT;
(c) XGB + BT + SNSSL; (d) class label; (e) SVM + MCLU; (f) SVM + MCLU + SNSSL.

(a) (b) (c)

(d) (e) (f)

Figure 7. Classification maps generated from FloodNet-7577: (a) ground truth; (b) XGB + BT;
(c) XGB + BT + SNSSL; (d) class label; (e) SVM + MCLU; (f) SVM + MCLU + SNSSL.

Table 5. Classification accuracy (averaged on 5 runs) of the Potsdam-2_10.

Class XGB + BT XGB + BT + SNSSL SVM + MCLU SVM + MCLU + SNSSL

Impervious surfaces 63.80 70.95 66.74 76.24
Building 73.37 80.28 77.33 78.96

Low vegetation 90.62 91.13 86.73 88.11
Tree 5.54 15.28 0 4.56
Car 15.68 19.78 2.10 8.18

Clutter/background 74.52 78.74 53.52 58.74

OA (%) 74.02 77.89 68.51 72.11
AA (%) 53.92 59.36 47.74 52.46

Kappa × 100 62.92 68.70 55.47 60.77
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Table 6. Classification accuracy (averaged on 5 runs) of the Potsdam-3_10.

Class XGB + BT XGB + BT + SNSSL SVM + MCLU SVM + MCLU + SNSSL

Impervious surfaces 56.72 67.52 45.17 66.57
Building 75.69 79.10 58.99 61.43

Low vegetation 69.83 71.44 74.70 77.74
Tree 53.72 59.75 35.55 39.19
Car 28.66 28.98 1.99 5.47

Clutter/background 78.33 77.56 76.23 76.76

OA (%) 68.20 69.70 61.60 63.57
AA (%) 60.49 64.06 50.01 53.29

Kappa × 100 57.06 60.97 48.62 51.34

(a) (b) (c)

(d) (e) (f)

Figure 8. Classification maps generated from Potsdam-2_10: (a) ground truth; (b) XGB + BT;
(c) XGB + BT + SNSSL; (d) class label; (e) SVM + MCLU; (f) SVM + MCLU + SNSSL.

(a) (b) (c)

Figure 9. Cont.
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(d) (e) (f)

Figure 9. Classification maps generated from Potsdam-3_10: (a) ground truth; (b) XGB + BT;
(c) XGB + BT + SNSSL; (d) class label; (e) SVM + MCLU; (f) SVM + MCLU + SNSSL.

From the accuracy of FloodNet-6651, it can be observed that after adding the pro-
posed SNSSL, the accuracy of all classes increased for both two AL strategies. Specifically,
when SNSSL was added in XGB + BT, the accuracy of the Road increased from 82.79% to
85.84%. Moreover, compared with the classification map generated from XGB + BT, the
misclassifications of the Road in XGB + BT + SNSSL were obviously reduced. Among all
classifications, the XGB + BT + SNSSL achieved the best performance. From the accuracy of
FloodNet-7577, after adding SNSSL, the accuracy of almost all classes increased for both AL
strategies. Only the accuracy of Tree in XGB + BT decreased slightly after adding SNSSL.
For Potsdam-2_10, the accuracy of all classes also increased after using the proposed SNSSL.
The accuracy of the car and tree was low because these two classes occupy a low percentage
of the whole image. In the AL process, the selection probabilities of these two classes
were low. Thus, the classification performance was negatively affected. For Potsdam-3_10,
after using the SNSSL, except for clutter/background, the accuracy of XGB + BT for other
classes increased.

Overall, it can be concluded that XGB + BT was able to generate better classification
than SVM + MCLU. After using SNSSL, the classification performance of almost all classes
was improved. Moreover, in terms of quantities metrics (OA, AA, and Kappa coefficient)
and visual quality on the classification maps, the method with SNSSL outperformed the
method without SNSSL apparently. Therefore, it was proved that the proposed SNSSL is
effective to optimize the classification performance.

4. Discussion
4.1. Effect of the Number of Samples on Classification Accuracy

The number of training samples involved in the classification will affect the perfor-
mance of the classification. In this section, the accuracy of using different numbers of
training samples was investigated. Starting from 30 initialized training samples, the classi-
fication accuracy was recorded after every 20 rounds of AL. The other settings of the exper-
iments were as same as that used in Section 3.2. The training curves of OA, AA, and Kappa
Efficient in FloodNet and Potsdam datasets are shown in Figures 10 and 11, respectively.

It can be observed that the accuracy increased fast at the beginning of AL then the
accuracy increase became slower when the number of samples increased. From both
Figures 10 and 11, it can be concluded that after using the proposed SNSSL, both the
classification accuracy of XGB + BT and SVM + MCLU was improved. In addition, the
accuracy of XGB + BT + SNSSL performed best no matter how many training samples
were used.
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(a) (b) (c)

(d) (e) (f)

Figure 10. Training curves of FloodNet images: (a) OA of 6651; (b) AA of 6651; (c) Kappa of 6651;
(d) OA of 7577; (e) AA of 7577; (f) Kappa of 7577.

(a) (b) (c)

(d) (e) (f)

Figure 11. Training curves of Potsdam images: (a) OA of 2_10; (b) AA of 2_10; (c) Kappa of 2_10;
(d) OA of 3_10; (e) AA of 3_10; (f) Kappa of 3_10.

4.2. Effect of the Parameters Setting on Classification Accuracy

In the proposed classification method, both the layer number of Superpixel Commu-
nity N and the similarity threshold T require to be assigned manually. The layer number of
Superpixel Community N will affect the scope of the similar neighboring superpixel search.
Moreover, the similarity threshold T will affect the judgment on whether the neighboring
superpixel is similar to the target superpixel. Therefore, both the N and T will affect the
classification accuracy. In this section, the experiments were conducted using different
N and T in the proposed classification method and the classification results were compared.
The layer numbers N increased from 1 to 8 with the interval of 1. The similarity threshold
T increased from 2 to 16 with an interval of 2. The other settings of the experiments were
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as same as that used in Section 3.2. In Figures 12 and 13, the classification accuracy of all
sets of parameters was displayed in hot maps.

(a) (b)

(c) (d)

Figure 12. OA of the FloodNet images using different sets of parameters: (a) SVM + MCLU + SNSSL
on 6651; (b) XGB + BT + SNSSL on 6651; (c) SVM + MCLU + SNSSL on 7577; (d) XGB + BT + SNSSL
on 7577.

(a) (b)

(c) (d)

Figure 13. OA of the Potsdam images using different sets of parameters: (a) SVM + MCLU + SNSSL
on 2_10; (b) XGB + BT + SNSSL on 2_10; (c) SVM + MCLU + SNSSL on 3_10; (d) XGB + BT + SNSSL
on 3_10.

As can be observed in Figure 12, for both methods on FloodNet images, when T in-
creased from 2 to 6, the classification accuracy increased, and when T increased from 10 to
16, the classification accuracy decreased. Therefore, the optimal value of T for FloodNet
images was in the range of 6~10. Moreover, when T was in the range of 6~10, the classi-
fication accuracy was high if N was higher than 2. Overall, the final optimal parameters
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for FloodNet images were set as 8 for T and 4 for N. In Figure 13, for both methods on
the Potsdam 2_10 image, the classification accuracy increased along with the increase of T.
While for both methods on the Potsdam 3_10 image, the classification accuracy increased
before T reached 10 and then decreased after T was higher than 12. For both methods
on Potsdam 2_10 and Potsdam 3_10 images, when N was higher than 4, the classification
accuracy was high. Overall, for both Potsdam 2_10 and Potsdam 3_10 images, the optimal
parameters were 12 for T and 7 for N.

5. Conclusions

In this paper, we propose a superpixel-based active learning classification model
for high spatial resolution remote sensing imagery. The contextual information between
adjacent superpixels is efficiently exploited by the proposed feature extraction process. To
make full use of the expert labeling information, the label of the selected sample in AL
is not only added to the training set but also assigned to feature similar and spatial close
neighboring superpixels. In this way, the expert labeling information will be accurately
extended to neighboring superpixels, thus improving the classification accuracy. The
experimental results demonstrate that the proposed classification methods outperform the
methods using the traditional AL strategies.

Although the superpixel-based classification method can achieve better classifica-
tion performance than the pixel-based classification method, it still has two shortcomings:
(1) there are a few mixed superpixels (under-segmentation) that will result in misclassifica-
tion, (2) the shape information of superpixels is useless in the classification because most of
the superpixels are over-segmented. In the future, we will try to improve the segmentation
quality by reducing the under-segmentation in the segmentation result.
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