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Abstract: Leaf chlorophyll content (LCC) is a prominent plant physiological trait and a proxy for leaf
photosynthetic capacity. The acquisition of LCC data over large spatial and temporal scales facilitates
vegetation growth monitoring and terrestrial carbon cycle modeling. In this study, a global 500 m
LCC weekly dataset (GLCC) was produced from ENVISAT MERIS and Sentinel-3 OLCI satellite data
using a physical radiative transfer modeling approach that considers the influence of canopy structure
and soil background. Firstly, five look-up-tables (LUTs) were generated using PROSPECT-D+4-Scale
and PROSAIL-D models for woody and non-woody plants. For the four LUTs applicable to woody
plants, each LUT contains three sub-LUTs corresponding to three types of crown height. The one LUT
applicable to non-woody vegetation type includes 25 sub-LUTs corresponding to five kinds of canopy
structures and five kinds of soil backgrounds. The final retrieval was considered the aggregation of
the LCC inversion results of all sub-LUTs for each plant function type (PFT). Then, the GLCC dataset
was generated and validated using field measurements, yielding an overall accuracy of R2 = 0.41 and
RMSE = 8.94 µg cm−2. Finally, the GLCC dataset presented acceptable consistency with the existing
MERIS LCC dataset. OLCI, as the successor to MERIS data, was used for the first time to co-produce
LCC data from 2003–2012 to 2018–2020 in conjunction with MERIS data. This new GLCC dataset
spanning nearly 20 years will provide a valuable opportunity to analyze variations in vegetation
dynamics.

Keywords: global mapping; leaf chlorophyll content; MERIS; OLCI

1. Introduction

Carbon dioxide uptake by terrestrial plants through photosynthesis is the primary
driver of multiple global biogeochemical cycles [1,2]. Therefore, quantifying photosynthesis
on a global scale is fundamental to understanding the global carbon cycle [3]. Chlorophyll,
as the primary photosynthetic pigment, facilitates the harvesting of energy from light
and the conversion of the light energy into stored chemical energy, thus playing a vital
role in the exchange of matter and energy fluxes [4,5]. Currently, many studies have
indicated that leaf chlorophyll content (LCC) is closely related to plant photosynthetic
capacity parameter (Vcmax) [6–10]. Moreover, leaf chlorophyll content has necessary
implications on plant physiological status assessment and stress diagnosis [11–16]. As a
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result, deriving leaf chlorophyll content data over an extensive space and time is of great
significance in reducing the uncertainty of terrestrial ecosystem productivity and carbon
sink estimates [17].

Due to the heterogeneity of variations in LCC and the lack of observations that can
detect these variations both spatially and temporally, it is impossible to monitor LCC on a
global scale using ground-based observations [18]. Satellite-based remote sensing, through
regular global measurements, has enabled continuous estimation of LCC [19,20]. The first
global LCC dataset was generated using data from the ENVISAT MEdium Resolution
Imaging Spectrometer (MERIS) based on the physical inversion method [21]. Recently, a
neural network model has also been applied to generate a global LCC dataset from MERIS
based on the PROSAIL model [22]. The 4SAIL model, which is designed for homogeneous
canopies, may lead to higher uncertainties in LCC estimates in forest types. Moreover,
MERIS is no longer in operation—it was in operation from 2003 to 2012. Although Moderate
Resolution Imaging Spectroradiometer (MODIS) data have been used to produce a global
LCC dataset for long time series, the lack of red-edge bands in MODIS data aggravates
the uncertainty of retrievals [23]. As the successor of MERIS, Sentinel-3 Ocean and Land
Colour Instrument (OLCI), also launched by the European Space Agency (ESA), will be
used to continue the terrestrial vegetation monitoring mission.

Estimation of the leaf-scale parameter, LCC, from the canopy level remains challeng-
ing, as leaf scattering signals may be confounded with the signals of the canopy struc-
ture and soil background [24–29]. Varieties of vegetation indices (VIs) were developed
and widely used to retrieve LCC due to their simplicity and high computational effi-
ciency [30–33]. The development of VIs has gradually clarified the unique value of the
red-edge bands and its reduced sensitivity to canopy structure and soil background has been
considered [4,31,32,34–36]. While VI models may perform well at the field level, they usually
cannot be applied to other species and regions due to the lack of a clear physical foundation,
which depends heavily on the training samples [37,38]. In contrast, the physical models
establish the relationships between the leaf optical properties and the vegetation spectra
by simulating light interactions with the canopy based on radiative transfer theory. The
radiative transfer model approach realizes a large number of vegetation leaf and canopy
spectra simulations, which integrate a variety of confounding scene information, and is
therefore considered ideal for global LCC mapping [5]. To manage the ill-posed problems in
the inversion of crop LCC caused by the lack of prior information, a look-up-table (LUT)
method that combines multiple types of canopy structure and soil background was proposed
in our previous study [39]. However, the feasibility of this algorithm for the LCC estimation
of other plant function types (PFTs) (e.g., forests and shrubs) is not yet known, nor is the
applicability of this approach to OLCI satellite data.

This study aimed to generate a global LCC dataset using MERIS and OLCI data from
2003–2012 to 2018–2020 (GLCC) with an improved LUT approach by inverting radiative
transfer models. Ground measurements covering six different PFTs were subsequently
used to validate the LCC retrievals. In addition, this new LCC dataset was compared to the
existing global LCC dataset to analyze its spatial and temporal characteristics. The global
leaf chlorophyll content data spanning nearly two decades will contribute to vegetation
dynamics monitoring and ecosystem modeling.

2. Data and Methods
2.1. Satellite Data
2.1.1. MERIS and OLCI Surface Reflectance Data

The MERIS full resolution surface reflectance (SR) and Sentinel-3 SY_2_SYN (synergy)
products were selected for generating the global LCC product. The MERIS SR product
was produced as a 7-day temporal synthesis from original images. It has 15 spectral bands
ranging from the visible to the near-infrared with a resolution of 300 m. The SY_2_SYN
product was launched by ESA in October 2018, and integrates the information from the
OLCI and Land Surface Temperature Radiometer (SLSTR) on board ESA’s Sentinel-3A and
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Sentinel-3B satellites, including surface reflectance and aerosol parameters over land. OLCI
has a 300 m resolution with 21 distinct bands. MERIS and OLCI surface reflectance was
used to produce a global LCC dataset, mainly due to the possession of chlorophyll-sensitive
red-edge bands, medium spatial resolution, and a short revisit cycle [40]. The band settings
of MERIS and OLCI are shown in Table 1, and the ones in bold are used for LCC retrieval.

Table 1. The channel settings of MERIS and OLCI.

MERIS
Channel Center (nm) Width (nm) OLCI

Channel Center (nm) Width (nm)

Oa1 400 15
1 412.5 10 Oa2 412.5 10
2 442.5 10 Oa3 442.5 10
3 490 10 Oa4 490 10
4 510 10 Oa5 510 10
5 560 10 Oa6 560 10
6 620 10 Oa7 620 10
7 665 10 Oa8 665 10

Oa9 673.75 7.5
8 681.25 7.5 Oa10 681.25 7.5
9 708.75 10 Oa11 708.75 10
10 753.75 7.5 Oa12 753.75 7.5
11 760.625 3.75 Oa13 761.25 2.5

Oa14 764.375 3.75
Oa15 767.5 2.5

12 778.75 15 Oa16 778.75 15
13 865 20 Oa17 865 20
14 885 10 Oa18 885 10
15 900 10 Oa19 900 10

Oa20 940 20
Oa21 1020 40

2.1.2. MODIS Land Cover Map

MODIS Land Cover Type (MCD12Q1) Version 6 provides global data with a 500 m
spatial resolution at annual time steps from 2001 to 2020 (https://doi.org/10.5067/MODIS/
MCD12Q1.006, accessed on January 2022). The International Geosphere Biosphere Pro-
gramme (IGBP) scheme was used in this study, which has 17 land cover types, including
11 natural vegetation types. In this study, these 11 natural vegetation types were com-
bined into the following 5 types: needleleaf forests, evergreen broadleaf forests, deciduous
broadleaf forests, shrublands, and croplands/grasslands.

2.1.3. The Croft MERIS LCC Dataset

The 2003–2011 weekly global dataset of LCC was generated by Croft, et al. [21]
(referred to as Croft MERIS LCC, hereafter) from MERIS data applying a two-step physical
approach. For the first step, leaf reflectance was derived from the MERIS SR product
using SAIL or 4-Scale canopy radiative transfer models based on the canopy structural
characteristics. Secondly, the leaf chlorophyll content was inverted from the simulated
leaf reflectance generated in the first step based on the PROSPECT-5 leaf radiative transfer
model. The Croft MERIS LCC dataset with a 300 m spatial resolution was resampled at
500 m to facilitate the comparison with the GLCC dataset generated in this study.

2.2. LCC Field Measurements

The field LCC data covering six PFTs were collected to validate the GLCC dataset. The
LCC data included 45 observations in deciduous broadleaf forests (DBF), 15 observations
in evergreen broadleaf forests (EBF), 48 observations in needleleaf forests (ENF), 21 obser-
vations in grasslands (GRA), 29 observations in croplands (CRO), and 3 observations in
shrublands (SHR). A significant source of these data is the National Ecological Observatory

https://doi.org/10.5067/MODIS/MCD12Q1.006
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Network (NEON), supported by the National Science Foundation (NSF) funded Grand
Challenge project [41,42]. Based on Google Earth images, these sites are covered with
relatively homogeneous vegetation at a 500 m scale. The number of samplings and dates
for each ground measurement site are reported in Table 2. LCC measurement was carried
out by laboratory chemical analysis. The statistical analyses of the field measured LCC data
are shown in Table 3.

Table 2. Details of the field measurements of LCC for validation used in this study.

Site Name Latitude Longitude PFT Dominant
Species Sampling Date Samples Reference/Source

Sudbury_DBF 47.16 −81.71 DBF Trembling
aspen Summer 2007 2 Simic, et al. [43]

Haliburton 45.24 −78.54 DBF Sugar maple May–September
2004 8 Zhang, et al. [44]

JERC_DBF 31.19 −84.47 DBF Southern red
oak September 2019 7

National
Ecological
Observatory [45]

UNDE 46.23 −89.54 DBF
Red and sugar
maple, aspen,
paper birch

June 2019 8

DELA 32.54 −87.81 DBF Oak, hickory April–May 2019 4

CLBJ_DBF 33.40 −97.59 DBF Post oak,
blackjack oak April–May 2019 13

BONA 65.16 −147.54 DBF — July–August
2019 3

SJER_EBF 37.11 −119.73 EBF Evergreen oak March–April
2019 8

PUUM 19.56 −155.30 EBF ‘Ohi’a lehua January 2019 7
Sudbury_Simic 47.18 −81.74 ENF Black spruce Summer 2007 5 Simic, et al. [43]

Sudbury_Zhang 47.16 −81.74 ENF Black spruce Summer
2003–2004 16 Zhang, et al. [29]

JERC_ENF 31.20 −84.46 ENF Longleaf pine September 2019 9

National
Ecological
Observatory [45]

NIWO_ENF 40.04 −105.56 ENF lodgepole pine August 2019 6

WREF 45.83 −121.97 ENF

Douglas fir,
western
hemlock,
pacific silver fir

July 2019 12

CLBJ_GRA 33.37 −97.58 GRA Bluestem April–May 2019 6
NIWO_GRA 40.05 −105.58 GRA Curly sedge August 2019 3

SJER_GRA 37.10 −119.73 GRA Bromus March–April
2019 12

US-Ne2 41.17 −96.47 CRO Soybean June–September
2004 21 University of

Nebraska–Lincoln
KONA 39.13 −96.63 CRO Wheat, corn July 2019 8

National
Ecological
Observatory [45]

NIWO_SHR 40.05 −105.59 SHR — August 2019 1

SJER_SHR 37.11 −119.75 SHR
Manzanita,
whitethorn
shrub

March–April
2019 2

Table 3. Summary statistics of the field measured LCC (µg cm−2).

PFT Min Max Mean SD CV

DBF 18.44 63.46 38.94 9.39 0.24
EBF 16.14 53.38 34.08 11.60 0.34
ENF 20.57 56.28 33.04 7.35 0.22
GRA 15.94 57.49 32.73 11.59 0.35
CRO 12.06 64.88 39.30 13.64 0.35
SHR 19.43 35.40 29.51 7.16 0.24

Min, minimum value; Max, maximum value; SD, standard deviation; CV, coefficient of variation.
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2.3. The Cross-Validation Sites

The site location information from the FLUXNET2015 dataset was extracted for the
cross-validation between the Croft MERIS LCC dataset and the GLCC dataset. Considering
the spatial-temporal consistency of satellite products, we selected 178 sites to validate the
GLCC dataset in this study. The ground measurement sites in Table 2, the selected 178
cross-validation sites, and the IGBP land cover map are shown in Figure 1.
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Figure 1. Global MCD12Q1 land cover map and the locations of the ground measurement sites and
the cross-validation sites for validating the GLCC dataset.

2.4. Algorithm Development

An improved LUT approach was selected to derive LCC from satellite data on a
global scale. For the first step, the 4SAIL canopy bidirectional reflectance model [46]
and 4-Scale geometric-optical model [47] combined with the PROSPECT-D leaf optical
properties model [48] were used to simulate the homogenous and heterogeneous canopy
reflectance, respectively. Parameters used in the PROSPECT_D + 4SAIL(PROSAIL_D)
and PROSPECT_D + 4-Scale models are listed in Table 4. Considering that canopy and
soil are the main factors interfering with the inversion of leaf optical traits, an improved
LUT inversion approach combined with multiple canopy structures and soil backgrounds
was proposed to retrieve LCC. Crops and grasses are more susceptible to soil signals
than woody plants; therefore, the canopy reflectance modeled by the PROSAIL_D model
was divided into 25 groups based on five predefined kinds of canopy structure and five
kinds of soil backgrounds, i.e., 25 sub-LUTs were constructed. The 25 sub-LUTs cover the
majority of canopy structures and soil backgrounds for non-woody vegetation. Meanwhile,
we grouped the canopy reflectance simulated by the 4-Scale models into three groups
according to the pre-determined crown height, i.e., three sub-LUTs were constructed. Then,
the red-edge bands indicated in Table 1 were directly applied to build a cost function in
each sub-LUT. The final retrievals were obtained by fusing the inversion results of each
sub-LUT, where no auxiliary data other than land cover maps were entered to reduce
error transfer from additional satellite data products. It should be noted that the modeled
canopy spectra were convolved with spectral response functions to match the MERIS and
OLCI bands.
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Table 4. Input parameters in the PROSAIL_D and the PROSPECT_D+4-Scale models for LUT
generation.

PROSAIL_D PROSPECT_D+4-Scale

Parameter CRO/GRA DBF EBF ENF SHR
Leaf structural parameter
(N) 1.5 1.2 1.8 2.5 1.8

Leaf chlorophyll content
(LCC, µg cm−2) 10–80, step 10 10–80, step 10 10–80, step 10 10–80, step 10 10–80, step 10

Leaf carotenoid content (Cxc,
µg cm−2) LCC/4 LCC/7 LCC/7 LCC/7 LCC/7

Equivalent water thickness
(Cw, cm) 0.02 0.01 0.01 0.048 0.01

Dry matter content
(Cm, g cm−2) 0.004 0.005 0.005 0.035 0.005

Leaf anthocyanin content
(Canth, µg cm−2) 2 1 1 1 1

Leaf brown pigment content
(Cbp) 0 0 0 0 0

leaf inclination distribution
function*

[1,0], [0,−1], [0,1],
[−0.35,0.15], [0,0] — — — —

Leaf area index
(LAI, m2 m−2)

0.25, 0.5, 0.75, 1,
1.25, 1.5, 1.75, 2, 3,
4, 5, 6, 7, 8

0.5, 1, 2, 4, 6, 8 0.5, 1, 2, 4, 6, 8 0.5, 1, 2, 4, 6, 8 0.5, 1, 2, 4, 6, 8

Hot spot parameter (SL) 0.05 — — — —

Soil reflectance (ρs) As shown in
Figure 2 — — — —

Solar zenith angle (θs, ◦) 0–60, step 10 10–70, step 10 10–70, step 10 10–70, step 10 10–70, step 10
View zenith angle (θv, ◦) 0 0 0 0 0
Relative azimuth angle
(ϕ, ◦) 0 0 0 0 0

Stand density (trees/ha) — 1000, 2000, 3000,
4000

1000, 2000, 3000,
4000

1000, 2000, 3000,
4000, 6000, 8000,
12,000

1000, 2000,
3000, 4000

Stick height (m) — 1, 5, 10 1, 5, 10 1, 5, 10 1, 2, 3
Crown height (m) — 5, 10, 20 5, 10, 20 5, 10, 20 1, 2, 3
Crown radius (m) — 0.75, 1, 1.25, 1.5 0.75, 1, 1.25, 1.5 0.5, 0.75, 1, 1.25 0.75, 1, 1.25, 1.5
Crown shape — Spheroid Spheroid Cone & cylinder Spheroid
Clumping index (ΩE) — 0.6, 0.9 0.6, 0.9 0.5, 0.8 0.6, 0.9
Neyman grouping — 1, 2, 3 1, 2, 3 1, 2, 3 1, 2, 3
Needle to shoot ratio (γE) — 1 1 1.41 1

Background composition — Green vegetation
and soil

Green vegetation
and soil

Green vegetation
and soil

Dry grasses
and soil

* [1,0], planophile; [0,−1], plagiophile; [0,1], extremophile; [−0.35,−0.15], spherical; [0,0], uniform.

2.4.1. Canopy Reflectance Modeling—PROSAIL_D Model

It is known that turbid medium models such as 4SAIL are a poor representation of
heterogeneous and structurally complex canopies since they assume a random distribution
of leaves. Thus, the 4SAIL model was run in forward mode to simulate the canopy spectra
for homogenous canopies, such as CRO and GRA. At the leaf level, only LCC varied, with
a range of 10–80 µg cm−2. The leaf carotenoid content was set to a fixed value relative to
LCC because it mainly affects the reflectance of the blue band, which was not involved
in the retrieval of LCC. Leaf water and dry matter content have only marginal effects on
the leaf reflectance of those bands for LCC retrieval and were set at 0.02 cm and 0.004 g
cm−2, respectively. At the canopy level, the leaf inclination distribution function (LIDF)
was set to five commonly used types, except for the erectophile distribution because of
the underestimation of LCC with the consideration of erectophile distribution [39]. LAI
was set from 0.25 to 8 to model the scenarios with different levels of vegetation cover.
The soil reflectance was determined by multiplying the field-measured dry and bare soil
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spectra by five different brightness coefficients (Figure 2). The values of the solar zenith
angle were set from 0◦ to 60◦, with a step of 10◦. An LUT was then generated, which
contained 25 sub-LUTs corresponding to five kinds of canopy structure and five kinds of
soil background.
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2.4.2. Canopy Reflectance Modeling—PROSPECT-D and 4-Scale Models

The PROSPECT-D and 4-Scale models were selected to simulate forested and spatially
clumped canopy reflectance. The 4-Scale model simulates the bidirectional reflectance
distribution function (BRDF) based on canopy architecture at the following four scales: (1)
tree groups, (2) tree crown geometry, (3) branches, and (4) foliage elements [49]. Firstly,
leaf reflectance and transmittance were modeled using the PROSPECT-D model based
on the values reported in the literature [21,50]. Then, the 4-Scale model was used to
simulate canopy spectra using tree architecture, canopy structure, imaging geometry, and
leaf/background properties (Table 4). The Neyman type A distribution simulates the
non-random spatial distribution of trees, permitting clumping and patchiness within a
forest stand [47]. The element clumping index represents vegetation clumping at scales
larger than the shoot and is used to estimate radiation interception and distribution in
plant canopies [51]. The simulated canopy reflectance can be representative of most forest
characteristics, set according to the values in the literature [47,49,51]. Thus, modeled canopy
reflectance was calculated as a linear sum of four components, as follows:

ρ = ρPTλFPT + ρZTλFZT + ρPGλFPG + ρZGλFZG (1)

where ρ is the canopy reflectance, ρPTλ, ρZTλ, ρPGλ and ρZGλ are the reflectance factors
from each scene component, representing sunlit vegetation, shaded vegetation, sunlit
background, and shaded background, respectively, and FPT, FZT, FPG, and FZG represent
the probabilities of a sensor view of sunlit and shaded vegetation, and sunlit and shaded
background [49]. At a given viewing geometry, crown height variations impacted the
modeled canopy reflectance and LCC [21,29]. The 4-Scale model was run in the forward
mode to generate four LUTs used to retrieve LCC in DBF, EBF, ENF, and SHR ecosystems,
respectively. Each LUT, including three sub-LUTs, was contained to consider three types of
crown height.

2.4.3. Deriving Leaf Chlorophyll Content

As shown in Figure 3, an improved LUT algorithm that considers the influence of
canopy structure and soil background was used to generate the GLCC dataset. MERIS and
OLCI surface reflectance data were reprojected and resampled to be consistent with the
MCD12Q1 product. For woody plants, each LUT, containing three sub-LUTs, correspond-
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ing to three types of crown height presented in Table 4, was used. In the processing of
inversion using a physical model, the inversion results are not always unique, as different
combinations of canopy and leaf parameters may produce almost similar spectra [52]. It
has been indicated that using prior knowledge is an effective way to deal with this problem
and facilitate LCC retrieval [5,53]. Each sub-LUT for retrieving LCC from MERIS/OLCI
reflectance was optimized based on sun-view geometry that could be available from each
satellite image. The root mean square error (RMSE) between MERIS/OLCI reflectance and
simulated reflectance was calculated to derive the LCC value for each sub-LUT. Instead
of selecting the best spectrum (case) obtained for the smallest RMSE value and its corre-
sponding LCC as the solution, the situation of multiple best cases and the mean of their
corresponding LCC values were considered. A different number of cases (the first 1, 10, 50,
100, 500, and 1000 best fits) were reviewed in the solution in retrieving LCC. It was found
that the average of the best ten solutions yielded the lowest RMSE for the LCC retrieval
and served as the retrieval for each sub-LUT. The final inversion result was obtained by
averaging the retrievals of the three sub-LUTs while considering multiple types of crown
height. The retrieval of LCC for the other woody PFTs was conducted according to the
inversion process described above. It is worth noting that the four PFTs, namely WSA, SAV,
GRA, and CRO, used the LUT, containing 25 sub-LUTs, established by the PROSAIL_D
model. An analysis of multiple solutions (selecting the first 1, 3, 5, 8, 10, or 15 best fits) was
also conducted in each sub-LUT. According to the test conducted by Qian and Liu [39], the
mean of the eight best solutions yielded the best result, and the mean of the retrievals for
25 sub-LUTs was taken as the final retrieval. Multiple averages will reduce the ill-posed
inversion problem and improve the robustness of the inversion method. For invalid pixels
(reflectance less than 0) and non-vegetated pixels in the MERIS/OLCI data, the LCC value
was set to 0.
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Figure 3. The flowchart of the LUT algorithm to generate GLCC dataset. CH1, CH2 and CH3 represent
three types of crown height, respectively. C1 to C5 represent the canopy structures planophile,
plagiophile, extremophile, spherical and uniform, respectively. S1 to S5 represent the soil backgrounds
soil1, soil2, soil3, soil4 and soil5, respectively.
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2.5. Validation and Evaluation of the GLCC Dataset

The GLCC dataset was validated by comparing it with the collected LCC field measure-
ments over six PFTs in Section 2.2. In addition to field data validation, the GLCC dataset
was evaluated from two aspects: first, to analyze the spatial and temporal variations in the
global LCC maps; and second, to compare the new LCC dataset with the Croft MERIS LCC
dataset at the cross-validation sites.

3. Results
3.1. Validation of LUT Algorithms for LCC Inversion Using the Synthetic Dataset

Randomly, 10% of the synthetic dataset was used to validate the inversion perfor-
mances of the improved LUT algorithm on the five PFTs (Figure 4). All the LUT algorithms
had R2 values of higher than 0.79 and RMSE values of lower than 10.5 µg cm−2. The LUT al-
gorithm for SHR PFT achieved the highest R2 (about 0.98) and lowest RMSE (2.8 µg cm−2).
Except for the DBF and EBF PFTs, the difference in LCC inversion performance of the LUT
algorithm on the MERIS and OLCI synthetic datasets is negligible, indicating the applica-
bility and effectiveness of the improved LUT algorithm for MERIS and OLCI satellite data.
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represent the performances on the MERIS synthetic dataset; (f–j) represent the performances on the
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3.2. Validation of the GLCC Dataset Using Field Measurements

The LCC estimates against ground measurements are plotted in Figure 5 for all FPTs
and Figure 6 for individual PFTs. With all PFTs combined, the GLCC dataset yielded a
relatively good overall accuracy, with a coefficient of determination (R2) value of 0.41,
an RMSE value of 8.94 µg cm−2, and a normalized RMSE (NRMSE=RMSE/range) value
of 16.9%. In the case of considering single PFT alone, EBF performed best (R2 = 0.61;
RMSE = 8.03 µg cm−2) followed by DBF (R2 = 0.43; RMSE=8.21 µg cm−2) and ENF
(R2 = 0.32; RMSE = 8.09 µg cm−2). The other three PFTS showed similar levels of per-
formance, where the RMSE values were 10.58, 10.48, and 7.37 µg cm−2 for CRO, GRA, and
SHR, respectively. Overall, all the PFTs achieved an RMSE < 10.6 µg cm−2.



Remote Sens. 2023, 15, 700 10 of 18

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 19 
 

 

 

Figure 4. Performances of LCC inversion with the synthetic dataset using the LUT algorithms. (a) 

to (e) represent the performances on the MERIS synthetic dataset; (f) to (j) represent the perfor-

mances on the OLCI synthetic dataset. Darker colors indicate higher dot density. 

3.2. Validation of the GLCC Dataset Using Field Measurements 

The LCC estimates against ground measurements are plotted in Figure 5 for all FPTs 

and Figure 6 for individual PFTs. With all PFTs combined, the GLCC dataset yielded a 

relatively good overall accuracy, with a coefficient of determination (R2) value of 0.41, an 

RMSE value of 8.94 μg cm−2, and a normalized RMSE (NRMSE=RMSE/range) value of 

16.9%. In the case of considering single PFT alone, EBF performed best (R2 = 0.61; RMSE = 

8.03 μg cm−2) followed by DBF (R2 = 0.43; RMSE=8.21 μg cm−2) and ENF (R2 = 0.32; RMSE 

= 8.09 μg cm−2). The other three PFTS showed similar levels of performance, where the 

RMSE values were 10.58, 10.48, and 7.37 μg cm−2 for CRO, GRA, and SHR, respectively. 

Overall, all the PFTs achieved an RMSE < 10.6 μg cm−2. 

 

Figure 5. Validation of the GLCC dataset with field measurements for all PFTs. Figure 5. Validation of the GLCC dataset with field measurements for all PFTs.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 19 
 

 

 

Figure 6. Validation of the GLCC dataset with field measurements for six individual PFTs. 

3.3. Spatial and Temporal Trends in Global Leaf Chlorophyll Content 

The annual global distribution of LCC from OLCI data is presented in Figure 7a. The 

tropical forests in the Congo basin, Amazon region, and Southeast Asia achieved the high-

est mean LCC values of higher than 40 μg cm−2. DBF had relatively high values of annual 

mean LCC (about 40 μg cm−2), while GRA had the lowest mean LCC values of lower than 

30 μg cm−2. The annual mean LCC values of SHR decreased with increasing latitude and 

did not present a fixed range of values. Figure 7b demonstrates the variation in annual 

mean LCC with latitude on a global scale. In general, the annual mean LCC value de-

creases with increasing latitude, which is in line with the general pattern of plant growth. 

 

Figure 7. (a) The global annual mean map of GLCC in 2019 and (b) the mean values along latitudinal 

bands. 

The seasonal dynamics in MERIS LCC and OLCI LCC are shown in Figure 8. The 

years 2009 and 2019 were divided into two seasons according to the vegetation status and 

climate in the northern hemisphere, i.e., a growing season from May to October and a non-

growing season in the remaining six months. It can be observed that the OLCI LCC map 

showed a similar overall spatial distribution to the MERIS LCC map, both in the growing 

and the non-growing seasons, but with richer spatial details. The improved LUT 

Figure 6. Validation of the GLCC dataset with field measurements for six individual PFTs.

3.3. Spatial and Temporal Trends in Global Leaf Chlorophyll Content

The annual global distribution of LCC from OLCI data is presented in Figure 7a.
The tropical forests in the Congo basin, Amazon region, and Southeast Asia achieved the
highest mean LCC values of higher than 40 µg cm−2. DBF had relatively high values of
annual mean LCC (about 40 µg cm−2), while GRA had the lowest mean LCC values of
lower than 30 µg cm−2. The annual mean LCC values of SHR decreased with increasing
latitude and did not present a fixed range of values. Figure 7b demonstrates the variation
in annual mean LCC with latitude on a global scale. In general, the annual mean LCC value
decreases with increasing latitude, which is in line with the general pattern of plant growth.
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Figure 7. (a) The global annual mean map of GLCC in 2019 and (b) the mean values along latitudinal
bands.

The seasonal dynamics in MERIS LCC and OLCI LCC are shown in Figure 8. The
years 2009 and 2019 were divided into two seasons according to the vegetation status and
climate in the northern hemisphere, i.e., a growing season from May to October and a
non-growing season in the remaining six months. It can be observed that the OLCI LCC
map showed a similar overall spatial distribution to the MERIS LCC map, both in the
growing and the non-growing seasons, but with richer spatial details. The improved LUT
algorithm can be successfully applied to OLCI data, and the dataset has the capacity to
represent the LCC spatial distribution. In tropical rainforest areas, LCC remained high
all year round. Distinct seasonal variations in LCC were found at the middle and high
latitudes of the northern hemisphere. Boreal forests at high latitudes had a higher LCC
than other PFTs, especially in the growing season. Apparent seasonal variations were also
found in shrublands in South Africa and Australia.
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(a) and (b) are the mean LCC map using MERIS data in 2009 during the growing and non-growing
season for the northern hemisphere, respectively; (c) and (d) are the mean LCC map using OLCI in
2019 during the growing and non-growing season for the northern hemisphere, respectively.
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3.4. Comparisons of the GLCC Dataset and Croft MERIS LCC Dataset

The comparisons of GLCC with the Croft MERIS LCC dataset in different PFTs at the
cross-validation sites are presented in Figure 9. The former had narrower value ranges of
LCC (generally 10–80 µg cm−2) than the latter (1–90 µg cm−2). The GLCC had higher values
than Croft MERIS LCC for DBF and ENF, with RMSE values of 15.28 and 15.44 µg cm−2.
The two LCC dataset values were closer for EBF and SHR, with RMSE values of 12.11
and 11.78 µg cm−2. The correlation between GLCC and Croft MERIS LCC was very poor
for GRA and CRO, with an R2 < 0.05 and RMSE close to 17 µg cm−2. For GRA, the poor
correlation was because GLCC had lower values than Croft MERIS LCC, while for CRO, it
was attributed to the high-density range of GLCC values (20–50 µg cm−2) corresponding
to an extensive range of Croft MERIS LCC values (12–60 µg cm−2). In general, the GLCC
using the improved LUT method was found to have an acceptable correlation with the
Croft MERIS LCC, with an overall accuracy of R2 = 0.21, RMSE = 15.62 µg cm−2.
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Figure 9. Comparisons of GLCC and Croft MERIS LCC in six different PFTs at the cross-validation
sites.

Figure 10 shows the seasonal variations in the two LCC datasets for six different
PFTs across the northern hemisphere. The two LCC datasets had the most stable seasonal
variations in SHR, with the LCC value range of 20 to 40 µg cm−2 all year round. The
GLCC presented a slight seasonal variation in comparison with Croft MERIS LCC. The
GLCC seasonal trajectories in EBF were relatively consistent across the year, while the
Croft MERIS LCC values varied enormously and had chaotic seasonal variations. For
ENF, the two datasets had the most similar seasonal trends, while GLCC had higher LCC
values than Croft MERIS LCC datasets. In DBF, the two LCC datasets presented apparent
seasonal variations and the same peak, but GLCC showed higher values in winter, spring
and autumn. The reason may be that the DBF validation sites at middle latitudes had a
different phenology from those at high latitudes. For GRA, GLCC has a more elevated and
later peak than Croft MERIS LCC, with more obvious seasonal variations. The seasonal
variation of the two datasets in CRO showed opposite trends, except in summer. The GLCC
had an upward trend in winter and a small peak in summer, which may be due to the lack
of LCC data, as only 19 sites were involved in the statistical analysis. The results above
confirmed the seasonal variation patterns of the GLCC, especially for SHR and GRA.
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4. Discussion
4.1. Advance in the GLCC Dataset

This study produced a global leaf chlorophyll content dataset using MERIS and OLCI
satellite data spanning nearly 20 years from 2003–2012 to 2018–2020, which is of great
significance for the study of global change. The overall validation results of the global
GLCC dataset were considered within reasonable limits, with an overall accuracy of 8.94 µg
cm−2 for all PFTs. The satellite-based GLCC dataset could be essential for the forthcoming
ESA Sentinel Flex mission for the global mapping of vegetation fluorescence. Comparing
two biophysical parameters, namely chlorophyll content and fluorescence, would provide
value-added content on vegetation status.

The 4SAIL model, assuming that the canopy is composed of a homogeneous and
horizontal layer of Lambert scatterers, randomly distributed in space, has limitations
in simulating complex canopy structures [29,54,55]. It was used separately to simulate
canopy reflectance on a global scale, leading to high LCC estimate uncertainties in forest
types [22,23]. In this study, the 4-Scale model was selected to describe the heterogeneous
and structural vegetation types, such as forests and shrubs.

Physically-based modeling will suffer from the ill-posed problem during LUT in-
version [56]; different combinations of leaf and canopy parameters may yield similar
spectra [52]. Using prior information can help solve this problem and improve the accuracy
of the estimated parameters [53,57]. The assumption of a single value for some parameters
may limit its applicability to larger areas. For example, the canopy structure for specific
crops was usually assumed to be ellipsoidal [11,21,26], which resulted in a decrease in the
inversion accuracy of nearly 2 µg cm−2 [39]. In addition, to obtain a good retrieval accuracy
for the target parameters, the size of LUT should be considerable [20,58]. In this study,
the relatively broad range of values and types were therefore selected for LCC, LAI, leaf
inclination distribution function, crown density, and soil background, and multiple values
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were also set for parameters such as crown height, crown radius, and the clumping index
to ensure that the LUT would cover as many situations as possible. On the contrary, to
reduce the reduction in computational efficiency and possible decrease in the inversion
accuracy caused by the redundancy of LUT information, several parameters (Cm, Cw, etc.)
affecting the bands that are insensitive to LCC were set to fixed values [21,59,60].

In the inversion process, in addition to utilizing the LCC corresponding to the best-
fitting spectra (with minimum RMSE as the cost function), we examined the mean of
the first multiple best solutions. The strategy of multiple averaging would smooth any
exceptionally high or low values; thus, seasonal variations of LCC can be better captured
for vegetation types with less pronounced seasonal variations, such as EBF and SHR, by
comparison with Croft MERIS LCC (Figure 10). These findings confirmed that utilizing
multiple solutions results in a more robust retrieval accuracy [61–64].

4.2. Uncertainty in the GLCC Dataset

The limitations and uncertainties in the dataset are the results of factors related to
the data used, the model itself, and the validation process. As only MERIS and OLCI
surface reflectance and the MCD12Q1 land cover type were involved in generating LCC,
the accuracy of the GLCC dataset is entirely dependent on the satellite data without
considering the algorithm accuracy. These satellite products were developed by different
initiatives with different objectives. ESA land cover products, such as CCI land cover
and the newly released WorldCover product, could be better for LCC retrievals using
the MERIS and Sentinel-3 satellite in terms of ESA standards. Uncertainties in MERIS
and OLCI surface reflectance products may arise from radiometric, geometric, and BRDF
corrections, as well as atmospheric corrections [65]. In addition, a pixel at a 300 m or 500 m
resolution could be affected by pixel heterogeneity, leading to spatial heterogeneity in the
vegetation parameter products obtained from the inversion as well [19]. The effect of pixel
heterogeneity on the LUT inversion of LCC can be further evaluated by applying ESA 10 m
WorldCover map.

The vegetation canopy structure and soil background are two parameters attracting
the most attention in this study. LAI parameters, which can represent vegetation cover to
some extent, should also be considered. Since adding an uncertain input would bring extra
uncertainty in the retrieval of LCC, the LAI satellite dataset was not introduced in this study.
However, the availability of a high-precision LAI dataset in the future may contribute to
improving the LCC inversion accuracy [66]. Numerous studies have shown that due to
the interference of soil background, the retrieval accuracy of LCC is low under sparse
vegetation [5,21,26,67]. How to eliminate the influence of soil background and improve
the retrieval accuracy of LCC under sparse vegetation with remote sensing is an urgent
scientific question worthy of in-depth investigation [68]. The step-based sampling of LCC
was chosen when generating LUT, which may lead to substantial gaps in the sampling
and biased accuracy results. A normal distribution or a uniform distribution can be used
to avoid these gaps. In addition, some biochemical and structural parameters were fixed
as constants according to the PFT separately, which has a certain level of influence on the
simulation of canopy reflectance. Since remote sensing inversion based on a physical model
is an ill-posed problem, a trade-off between the universality and computational efficiency of
the model and the accuracy of model inversion should be considered [22]. Hybrid models,
which blend the physical foundation from radiative transfer models with the flexibility of
machine learning regression algorithms, can be a fast and efficient alternative [69].

There are also limitations to the validation of the GLCC dataset. First, the lack of LCC
field measurements with seasonal variations across different PFTs resulted in insufficient
validation on a global scale. For example, the data are not discrete enough to result in
low R2 values due to the small standard deviation of the field LCC data in ENF and
SHR PFTs (Table 3, Figure 6c,d). Despite the small amount of sampling data, satellite
observations within ±7-day intervals were extracted for ground validation to avoid the
retrieval accuracy being affected by the mismatch of the sampling date and the image
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capture date [52]. Second, the LCC validation across different PFTs was performed using
data from independent field campaigns. Nevertheless, the number of measurements, the
measuring position of the leaf, and the details of chlorophyll extraction are important.
Although they have all been adequately validated individually, they may still introduce
some uncertainty in the validation by putting them together in a natural way. Third, the
scale mismatch between MERIS/OLCI and the field measurement did impact our results.
Although we paid attention to the spatial homogeneity of the field sites and tried to select
areas with homogeneity within 500 m, the scale problem still exists. In future, ground
measurements should be upscaled using high-resolution data and then used to validate the
LCC dataset [22,70].

5. Conclusions

This study generated a new global LCC dataset based on MERIS and OLCI data
using an improved LUT method, considering the influence of canopy structure and soil
background. For grasslands and crops, an LUT, including 25 sub-LUTs, was generated
using the PROSAIL_D model. The final LCC retrievals are the mean values of the 25 sub-
LUTs. For forests and shrubs, four LUTs were constructed using PROSPECT-D and 4-Scale
models, applicable for evergreen needleleaf forest, evergreen broadleaf forest, deciduous
broadleaf forest, and shrubs, respectively. Each LUT contains three sub-LUTs, and the
final inversion result is their average value. The LUT algorithm was tested using the
simulated spectra, which yielded an R2 value higher than 0.79 and an RMSE value lower
than 10.5 µg cm−2. The global GLCC dataset was validated and evaluated by comparing it
with collected field measurements and the existing LCC dataset. The GLCC dataset showed
good relationships with ground measurements, with an overall accuracy of R2 = 0.41 and
RMSE = 8.94 µg cm−2, and presented acceptable consistency with the existing MERIS LCC
dataset. The global 7-day LCC data at a 500 m resolution from 2003–2012 to 2018–2020
provide essential information for the analysis of vegetation physiological dynamics and for
carbon cycle modeling with global change.
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