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Abstract: Soil loss (SL) and its related sedimentation in mountainous areas affect the lifetime and
functionality of dams. Darbandikhan Lake is one example of a dam lake in the Zagros region that
was filled in late 1961. Since then, the lake has received a considerable amount of sediments from the
upstream area of the basin. Interestingly, a series of dams have been constructed (13 dams), leading
to a change in the sedimentation rate arriving at the main reservoir. This motivated us to evaluate a
different combination of equations to estimate the Revised Universal Soil Loss Equation (RUSLE),
Sediment Delivery Ratio (SDR), and Reservoir Sedimentation (RSed). Sets of Digital Elevation Model
(DEM) gathered by the Shuttle Radar Topography Mission (SRTM), Tropical Rainfall Measuring
Mission (TRMM), Harmonized World Soil Database (HWSD), AQUA eMODIS NDVI V6 data, in situ
surveys by echo-sounding bathymetry, and other ancillary data were employed for this purpose. In
this research, to estimate the RSed, five models of the SDR and the two most sensitive factors affecting
soil-loss estimation were tested (i.e., rainfall erosivity (R) and cover management factor (C)) to propose
a proper RUSLE-SDR model suitable for RSed modeling in mountainous areas. Thereafter, the proper
RSed using field measurement of the bathymetric survey in Darbandikhan Lake Basin (DLB) was
validated. The results show that six of the ninety scenarios tested have errors <20%. The best scenario
out of the ninety is Scenario #18, which has an error of <1%, and its RSed is 0.46458 kms-yrfl.
Moreover, this study advises using the Modified Fournier index (MIF) equations to estimate the R
factor. Avoiding the combination of the Index of Connectivity (IC) model for calculating SDR and
land cover for calculating the C factor to obtain better estimates is highly recommended.

Keywords: RUSLE; reservoir sedimentation; Darbandikhan Lake; Iraq; Iran; Zagros

1. Introduction

Erosion, in its two types, i.e., water and wind [1], is one of the major threats to soil
worldwide [2]. Water erosion is affected by climate, land-surface topography, lithology,
vegetation, and human-induced activities [3]. Pal [4] stated that more than 19.03 million
km? (12.78%) of the world’s land suffers from water erosion as a result of human-induced
degradation. Soil loss (SL) directly correlates with reservoir sedimentation (RSed). Increas-
ing SL leads to an increase in the RSed and, consequently, essential problems for water
resource development, particularly by increasing the siltation and sedimentation of the
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reservoirs [5,6]. Furthermore, it can contaminate and degrade the river systems, which costs
a lot of money and effort to overcome [5]. Globally, ~84% of land degradation is caused by
erosion [7]. SL detaches the uppermost fertile topsoil, which has high concentrations of
rich organic matter and nutrients. This will negatively affect soil productivity [8].

The phenomenon by which the sediments are of eroding, transporting, and depositing
sediments into the reservoirs by streams is called RSed [9]. It is a fundamental concern for
dam operation and affects the dam’s lifetime period by decreasing the reservoir storage
capacity [10]. Several factors control the RSed, which leads to difficulties in estimating the
amount of the RSed deposited in the reservoir [11]. The rapid development in computer
applications contributes to performing several models of the SL and the RSed [12]. SL
models help to determine the areas that suffer from erosion susceptibility, assess the rate of
erosion, and identify the agent reasons, thereby helping to perform land management [13].
These models can be classified into four widely utilized groups, which are empirical,
conceptual, physically based, and hybrid models [1,2]. Empirical models are simple, and
their data requirements are less than those that are required for the other three groups [1,13].
In general, empirical models are based on statistical observations. While physically based
models are based on the conservation of mass concept. The conceptual models are a
combination of empirical and physically based models. Moreover, the hybrid models are a
mixture of dynamic and empirical soil-erosion evaluation techniques [1].

The Revised Universal Soil Loss Equation (RUSLE) model [14] is the revised version of
the Universal Soil Loss Equation (USLE) model [15]. It is one of the widely used empirical
models and is recognized by the scientific community [14]. The RUSLE calculates the
average annual soil loss worldwide [16] by calculating the result of six factors, which are
rainfall erosivity (R), soil erodibility factor (K), slope length factor (L), slope steepness factor
(S), cover management factor (C), and support practice parameter (P) [17].

The major deficiency in the RUSLE model is that, if one of the factors is not accurately
estimated, the result will show a significant error [18]. Each factor can be calculated in
various ways. The R and C factors are the main factors that highly impact exceeding the SL
tolerance limits on erosion control measures [16]. Therefore, properly implementing the R
and C factors is fundamental not only for the RUSLE but also for its use to estimate the
RSed [16], such as the RUSLE-SDR model [12].

The term “RUSLE-SDR” comes from the integration between the RUSLE model and
the sediment delivery ratio (SDR) [12]. The SDR is the fraction of gross erosion that is
delivered from a specific catchment to a specific outlet in a specific time interval [19]. A
huge number of articles used the empirical SDR-area power function to estimate SDR [20],
and other studies used a constant number (between 0 and 1) to treat the SDR [20,21].
Borselli et al. [22] suggested a model that depends on the drainage basin’s hydrological
and sediment connectivity to calculate the SDR.

Several works have been accomplished in the Zagros region and surrounding areas
to estimate SL and RSed in Iraq [23-26], Turkey [27-33], and Iran [25,34-50]. However,
these investigations used different combinations of equations to estimate RUSLE factors,
SDR, and RSed. Three of these articles predicted individual factors of RUSLE rather than
the estimation of the RUSLE itself [37,47,50]. Almost all of the articles within the Zagros
region estimated RUSLE [25-34,36,40-44,46,48,49]. In comparison, few of them estimated
the RSed by using the RUSLE-SDR model [23,24,35,38,39,42,45]. Among all the above
articles, only Zare et al. [42] validated their results. They produced one scenario to estimate
the RUSLE-SDR model without testing different combinations of equations to estimate
the RUSLE-SDR. To this date, choosing “the best” combination of equations to estimate
RUSLE factors and RSed constitutes as a major issue, despite the large number of studies
conducted worldwide and specifically in the Zagros region.

This study fills this gap by testing different R, C, and SDR models to estimate the RSed,
usually neglected by previous studies accounting only for the most suitable areas where
natural erosion may occur. Interestingly, few studies accounted for the sediments that are
carried out into reservoirs and validated with bathymetry. Therefore, the main aims of
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this study are (a) to offer a RUSLE-based model proper for modeling SL in rugged lands
and mountainous regions, such as Zagros; (b) to propose a suitable SDR model coupled
with the SL models to estimate the RSed; and (c) to validate the models result with the
estimated RSed from the bathymetric field measured data of Darbandikhan Lake (DL) in
the northwest segment of the Zagros range.

This study’s motivation comes in the context of natural hazard mitigation and water
management for one of the major dams in Northern Iraq (Kurdistan Region). Estimation
and future prediction of sedimentation in DL, which has neither been studied to estimate
SL nor to estimate sediment yield, will benefit the performance of the Darbandikhan Dam
and reduce the risk of destructive flooding in this high-population region downstream.
Outcomes and motivations also have implications for similar environments worldwide
Table 1 is provided to explain all acronyms and variables to improve the readability of the
manuscript in forthcoming sections.

Table 1. List of acronyms and variables mentioned in the main text.

Term Abbreviations Term Abbreviations
C Cover management P Support practice parameter
CRSed Sedimentation catchment of its reservoir R Rainfall erosivity
DL Darbandikhan Lake RI Topographic surface roughness
DLB Darbandikhan Lake Basin RSed Reservoir Sedimentation
DEM Digital Elevation Model RUSLE Revised Universal Soil Loss Equation
HWSD Harmonized World Soil Database S Slope steepness
IC Index of Connectivity SD Standard deviations
IDW Inverse Distance Weighting SDR Sediment Delivery Ratio
K Soil erodibility SL Soil loss
L Slope length SRTM Shuttle Radar Topography Mission
MCM Million cubic meters TRMM Tropical Rainfall Measuring Mission
MIF Modified Fournier index USLE Universal Soil Loss Equation
NDVI Normalized Difference Vegetation Index UTM Universal Transverse Mercator

2. Darbandikhan Basin

The Darbandikhan Lake Basin (DLB) is located in the northeastern part of Iraq/
northwestern part of Iran between 45°11'20”E-47°58'43"E longitudes and 34°13/53"N-
35°47'20""N latitudes (Figure 1). It covers a total area of 16,463.1 km?, and the major part is
located in the northwestern part of Iran (13,155.28 km?, i.e., 79.91% of the total catchment
area), while the minor part (3307.82 km?, i.e., 20.09% of the total catchment area) is located
in Kurdistan Region, the northeastern part of Iraq (Figure 1).
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Figure 1. Location map of the Darbandikhan basin.
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The basin is located in a mountainous area, the elevation ranges from 450 m to 3351 m,
and the major slope is directed towards the southwest of the area. The average annual
precipitation for the last 20 years is 680 mm-y~!, with a major occurrence between October
and April. The maximum temperature goes up to 45 °C in August, while the minimum
temperature drops down to 3 °C in February [51].

The DL was formed after the construction of the Darbandikhan dam was completed,
in November 1961 [52]. The DL feeds by the Sirwan (Diyala) River, which is a seventh-order
river (according to the classification of [53]) and is located 55 km southeast of Sulaymaniyah
city. The Sirwan River flows 270.4 km inside Iran before becoming part of the Irag-Iran
border for 43.1 km; then it flows 30.9 km inside Iraq until reaching the Darbandikhan dam,
with a total length of 344.4 km. The maximum, minimum, and average annual discharge
of the Sirwan river are 459.27 m3 s~! (in 1969), 41.86 m3 s~ (in 2000), and 153.26 m3 s~
(1931-2004) [54].

From November 1961 to 1978, the dam’s catchment covers 16463.1 km?, which is also
the sedimentation catchment of its reservoir (CRSed). In 1978, Iran built the first dam
(Vahdat dam) within the catchment of the Darbandikhan dam [55]. Vahdat dam leads to
a decrease in the CRSed to 15,403.5 km?2. With the continuation of the dam construction
(13 dams) within Iran, the water supply and the CRSed to DL decreased (Figure 2). The
present situation shows that the CRSed for DLB is 5965.8 km?, representing 36.2% of the
original catchment (Table 2).
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Figure 2. Changing the area of the catchment area of the stream sediments for the Darbandikhan
dam over time.

Table 2. Variation of the area of the Darbandikhan Dam catchment from 1961 to 2018.

Area of the Sedimentation

Period Catchment for Darbandikhan Area of the Event and the Year Reference of
2 Catchment % the Event
Dam (km*)
1961 16,463.1 100 Building Darbandikhan dam [52]
1978 15,403.5 93.6 Building Vahdat dam [55]
2004 13,329.8 81.0 Building Gavoshan dam [56]
2012 12,253.9 74.4 Building Azadi dam [57]
2013 11,865 721 Building Garan and Ziviyeh dam [57]
2018 5965.8 36.2 Building Hirwa and Daryan dams [58]
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3. Materials and Methods
3.1. Materials

Six scenes of the Digital Elevation Model (DEM) gathered by the Shuttle Radar To-
pography Mission (SRTM) were mosaicked [59]. The DEMs have a 30 m spatial resolution
and are used to extract the drainage network, slope gradient, and flow accumulations.
Due to the lack of in situ meteorological data, 3B43-V7 of the Tropical Rainfall Measuring
Mission (TRMM) data [60] to construct a precipitation map were utilized. The monthly
TRMM is with 0.25° x 0.25° spatial resolution [61]. The soil erodibility was determined by
using the Harmonized World Soil Database (HWSD), which has a pixel size of ~852 m [62].
The AQUA eMODIS NDVI V6, with a spatial resolution of 250 m from 2003 to 2021, a
scaling factor (of 10~%), and a radiometric resolution of 16-bit, was used to extract the C
factor. The average of the C-factor value for the period from 2003 to 2021 has been used
to cover the period from 2021 to 2002. The NDVI product can be accessed from the USGS
webpage (https:/ /earthexplorer.usgs.gov/ (accessed on 3 October 2022)) and is obtained
by applying Equation (1), which is as follows:
pNIR — pR

NDVI ="~ — P>
pNIR + pR

)
where pNIR and pR correspond to the surface reflectance of both the near-infrared (NIR)
and red (R) wavebands of the MODIS, respectively.

Each NDVI scene covers 10-day composited datasets [63]; therefore, the approach
suggested by Almagro et al. [64] was applied where four scenes per year were selected to
cover the four seasons (i.e., 1-10 January, 1-10 April, 1-10 July, and 1-10 October). Such a
strategy enabled us to capture of the variability of the natural vegetation.

Yearly global maps of MODIS land cover (MCD12Q1) were used, which was com-
posed of a supervised classification (decision tree) algorithm of eight observation days
by MODIS [65]. These data come with ~463 m spatial resolution, Nadir BRDF-Adjusted
surface Reflectance [66], and land-surface temperature [67]. The data were downloaded
from the main repository (https://lpdaac.usgs.gov/data, accessed on 3 October 2022) and
covered the period from 2001 to 2020 with HDF file format, Sinusoidal grid, and multi-
classification maps [65]. In this study, the International Geosphere-Biosphere Programme
(IGBP) classification map was selected, encompassing 17 major land-cover classes in the
scene. However, our study area includes only nine classes of land cover. All the data men-
tioned above are free of charge, and they were resized to 30 m cell size and reprojected to the
Universal Transverse Mercator (UTM) projection/WGS 1984 datum within zone 38N, using
the nearest neighbor resampling method to fit with the DEM scenes spatial resolution.

ArcGIS 10.8 software was used [68] to prepare the data, subset, and mosaic and
perform the data operations, such as rater calculator, raster conversion, slope gradient, and
stream flow accumulation. The connectivity index toolbox [69] was used to estimate the
Index of Connectivity (IC). This toolbox works as a plugin within the ArcGIS environment.
The drainage network and watershed boundaries were extracted by using TecDEM 2.2,
a MATLAB-based toolbox [70]. Finally, r-based scripts were utilized to implement the
statistical analysis [71].

3.2. Methods

Among all approaches, RUSLE has been widely used to estimate soil erosion under
different conditions because it meets the need better than any other models available [2]. It
has a huge number of works in the scientific literature and a large comparability of results,
allowing researchers to adapt the model to nearly every type of condition and region of the
world [2]. It is being used to predict long-period rates of rill and inter-rill erosion under
different management practices around the globe [12,25]. It is a robust tool to estimate
water erosion rates [72] and gives estimates on large spatial scales. Therefore, the RUSLE
was chosen to estimate the SL in DL. Eighteen scenarios of RUSLE resulted from six R
equations, and three models of the C factor, in addition to the LS, K, and P factors, were
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used to estimate the SL (Table Al in Appendix A). The RUSLE was integrated with SDR
(RUSLE-SDR) to estimate a 30 m spatial resolution of the RSed map for the DLB. RUSLE
is widely employed [73] to assess the RSed, while the SDR is used to estimate the rate of
erosion delivered to the lake. The model of Renard et al. [74] was used to calculate the
RUSLE (Equation (2)).

A=RK-LS-C-P @)

where A is the average annual rate of the soil loss (t-ha—!-y~!), R is the annual rain-
fall and runoff erosivity factor (MJ-mm-ha~!-h~1.y~1), K is the soil erodibility factor
(t-ha-h-ha=!-MJ~!1-mm™1), LS is the slope length and slope steepness factor, C is the cover
management factor, and P is the support practice factor. The LS, C, and P factors are
dimensionless. The following subsection describes the RUSLE’s factors.

3.2.1. Rainfall and Runoff Erosivity (R Factor)

Erosion is caused by the driving force of rainfall [75]. The R factor represents the effect
of precipitation impact on soil erosion [76]. The relationship between the R factor and
precipitation have been determined in many regression analyses [31]. It requires precise
and ongoing rainfall data [73]. The study area lacks climatic data records because it was a
battlefield during the Iran-Iraq war; therefore, monthly TRMM (3B43-V7) data were used.
The TRMM data are one of the main types of input data used to assess and compute the R
factor [72,77]. For data validation, the TRMM data were compared with the observed metro-
logical data and showed a good correlation with the observed metrological data (Figure 3).
Moreover, TRMM data were proved by several researchers, such as [23,24,78-80], to be an
applicable source of rainfall data for the Zagros region. However, the appropriateness of
using TRMM data in the study area was evaluated by comparing 264 months of data with
their corresponding data from the observed precipitation dataset from the Sulaymaniyah
meteorological station (Figure 3A). This figure shows a strong direct relationship with a
significant p-value < 0.05 and a coefficient of determination (R?) of 0.77. The comparison
between monthly means of the 22 years (1998-2019) for the TRMM and Sulaymaniyah
meteorological station shows a strong direct correlation with R? of 0.94 (Figure 3B). The
average annual precipitation of the DLB ranges between 352.78 mm-yr~! (in the northeast)
and 692.85 mm-yr~! (in the northwest).
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Figure 3. Correlation between rainfall data collected at the Sulaymaniyah meteorological station and
the corresponding cell of the TRMM data; (A) all months and (B) mean of the months of the year for
the period between September 1998 and August 2019 [79].
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The TRMM pixels were vectorized in a points format, which was interpolated with
a spatial resolution of 30 m, using the Inverse Distance Weighting (IDW) method. The
pixel size was resampled to obtain the exact pixel size of the DEM. The resulting maps
were used to estimate the R factor in six different models, which are Equation (3) [12,13,25],
Equation (4) [13,23], Equation (5) [34,35,46,48,81], Equation (6) [29,82], Equation (7) [50,83],
and Equation (8) [47,84,85].

The relationship between the R factor and precipitation alters widely based on the
different climatic zones [31]. Therefore, the six equations (Table 3) were successfully tested
in the Zagros countries (i.e., Iraq, Iran, and Turkey), which have similar climatic conditions
to precisely select the R factor equation.

Table 3. Rainfall and runoff erosivity (R) factor models were tested in this study.

Method The Article Used within Iran-Iraq-Turkey Note Equation
R=79+0.363P4 [25] ®)
R =81.54+0.38 P4 [23] 340 < Pp <3500 mm 4)
R = 95.7776.0811;/£I.g+0.447MIF2 [34,35,46,48] F>55mm (5)
R = (4.17MIF) — 152 [29] (6)
R = 0.264MIF'® [50,83] %)
R = 3.7628MIF — 3.532 [47,84,85] (8)

Where R is the runoff erosivity factor in MJ-mm-ha~!-h~1.y =1, P, is the average
annual precipitation in mm, and MIF is the Modified Fournier index (Equation (9)), which
was defined by Arnoldus [82]. The mean MIF was 80.79 mm, which is >55 mm.

it P’
MIF = =0 ©)
where PA is the average annual precipitation (mm), Pm is the average monthly precipitation
(mm), and R is the rainfall and runoff erosivity factor (MJ-mm-ha=1-h=1.y~1),

3.2.2. Soil Erodibility (K Factor)

The K factor expresses the potential soil vulnerability to erosion by the R factor [86]. In
addition to soil texture, coarse fragments, structure, permeability, and organic matter play
an effective role in the K factor value, where the increase in organic matter will decrease its
susceptibility to separation [87].

The K factor was estimated by using Equations (10) and (11) [15,73]. The widely
applied RUSLE was used to extract the K factor, and the HWSD dataset [88,89] was used
to obtain soil texture and soil organic carbon information. Soil organic matter could be
estimated from soil organic carbon using a conversion factor [90]. Based on the more
reliable hypothesis that carbon represents 58% of the soil OM, the conversion factor will be
1.724 [90].

21 %104 M4 (12 — 2 -2 2. -
«_ x 107" M (12— OM) +3.25(s = 2) +25(p —3) | (1317 (10)

100
M= (msﬂt + mvfs) * (100 - mC) (11)
OM = 1.724-0OC (12)

where mc is clay fraction content%,; mg;; silt fraction content%; my very fine sand fraction
content%; OM is the organic matter content%; OC is the soil organic carbon; and s is the soil
structure class, and p is the permeability class, and they can be obtained in Tables 4 and 5,
respectively [15,73].
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Table 4. Soil structure classes derived from the European Soil Database.

Structure Class (s) Value Size Soil Database
Very fine granular 1 1-2 mm G (good)
Fine granular 2 2-5mm N (normal)
Medium or coarse granular 3 5-10 mm P (poor)
Blocky, platy, or massive 4 N10 mm H (peaty topsoil)

Table 5. Soil permeability classes are estimated from major soil textural classes.

Permeability Class Value Texture
Fast and very fast 1 Sand
Moderate fast 2 Loamy sand, sandy loam
Moderate 3 Loam, silty loam
Moderate low 4 Sandy clay loam, clay loam
Slow 5 Silty clay loam, sand clay
Very slow 6 Silty clay, clay

3.2.3. Slope Length (L Factor) and Slope Steepness (S Factor)

The slope-length factor reflects the impact of the terrain on the SL. Several equations
have been suggested to estimate the L factor, such as [14,15,87]. Equations (13)-(15),
suggested by Moore and Burch [91], were applied. Accordingly, the slope map (in percent)
was extracted and classified into four groups, i.e., <1%, 1-3%, 3-5%, and >5%. Each group
of the slope has its constant (m) (Equation (15)). Meanwhile, the S factor is calculated by
using three slope (in percent) classes, which are <9%, 9-18%, and >18% (Equation (16); [92]).

)\ m
L= (22.12848) (13)
A = FA % Ps (14)
0.2 0 < 1%
0.3 1% < 0 < 3%
M=1904 3% < 0 < 5% (15)
0.5 0 > 5%
10.8-sin0 + 0.03 0 < 9%
S ={ 16.8-sind — 0.05 9% < 0 < 18% (16)
21.9-sin6 — 0.96 0 > 18%

where L is the slope length, S is the slope steepness factor, A is the horizontal projection
of slope length (m), m is a constant based on the value of slope gradient (Equation (15)),
FA is stream flow accumulation, Ps is the pixel size of DEM, and 0 is the slope gradient
in percent.

3.2.4. Cover and Management (C Factor)

The C factor is the fraction of SL from an area with specific vegetation to the cor-
responding SL from a continuous fallow area [15]. It is one of the changeable erosion
factors affected by human action [86]. In this study, three models, which have been used
in the Zagros countries, were used to estimate the C factor. Equation (17) is the most
common model [93], which has been tested in most of the articles surrounding the DLB,
such as Iran [48,49], Turkey [27,33,94], and Iraq [23,26]. The second model to estimate the C
factor used the land-cover maps. The land-cover model is applied in Turkey [28,29,31,32],
Iran [25,46], and Iraq [25]. Nine land-cover classes of MCD12Q1 MODIS data exist in the
DLB, which have different C-factor values (Table 6). The MCD12Q1 MODIS was used to
estimate the C factor [77]. The third model was applied by using Equation (18) [95]. This
model has been tested in Zagros countries, as well [35,44]. Equations (17) and (18) depend
on MODIS NDVI to estimate the C factor, which has been widely applied [96-100].
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NDVI
—NDVI+1
C = % (18)

where o and 3 are constants, which are 2 and 1, respectively [101].

Table 6. C factors weights for different land-cover classes in the DLB (Model 2).

Name C Factor References
Open Shrublands 0.10 [102]
Savannas 0.05 [102]
Grasslands 0.01 [102]
Permanent Wetlands 0 [13]
Croplands 0.3 [12,13,102]
Urban and Built-Up Lands 0 [13,102]
Cropland /Natural Vegetation Mosaics 0.3 [12,13,102]
Barren 0 [13,102]
Water Bodies 0 [12,13]

3.2.5. Support Practice (P Factor)

The P factor represents the fraction of the SL by an area with specific conservation soil
to the corresponding loss upslope and downslope [14]. In DLB, Equation (19) was used.
This equation was modified by Othman et al. [23] from the Wener Equation [103,104] to
estimate the P factor.

P=02+0.030 (19)

where P is the support practice factor, and 0 is the slope angle in percent.

3.3. Sediment Delivery Ratio (SDR)

The SDR is the amount of the SL that actually reaches the specific outline at a specific
time [6,20,105]. The range of the SDR is between 0 and 1 [106]. The SDR has been considered
for a long time to be a constant number [21]; however, several models have been suggested
to estimate the SDR. Most famous models are based on the nonlinear regression between the
SDR and the basin area (Equation (20)) [105,107]. The area of the basin is the most affecting
factor in determining the SDR for these models. This study considered the suggested
models that were only used for estimating the SDR in basins that have an area close to that
of DLB.

SDR = oA, P (20)

where the SDR is the sediment delivery ratio, the « and 3 are coefficients (Table 7), and the
Ay is the basin area in km?.

Borselli et al. [22] suggested a new approach to estimating the SDR (SDR1; Equation (21)),
which depends on calculating the IC (Equation (22)). The IC depends on the topographical
information and can be calculated in an ArcGIS environment [22]. Topographic surface
roughness (RI) was used to estimate the average weighting factor (W) (Equation (23)),
which was suggested by [69]. The RI can be estimated by using Equation (24) [108].

Table 7. The o and B coefficients used to estimate the SDR in the DLB.

le4 B References Unit of the Area Model No.
0.4724 0.125 [32,94,105] km? SDR,
1.817 0.132 [23,107] km? SRDj3
2.945 0.205 [107] km? SDRy

0.51 0.11 [77,109,110] mi? SDR;5
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S]:)Rmax
G IG;)
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where SDR is the sediment delivery ratio; SDRmax is the maximum theoretical sediment
delivery ratio, which is suggested to be 0.8 [6,21]; and ICy and K}, are calibration parameters
and equal to 0.5 and 2, respectively [12]. Both parameters can be determined by the S-shape
of the sigmoid function relationship between the sediment delivery ratio and the IC [6].
The IC; is the index of connectivity for a specific cell.

D WSVA
IC = logy <sz> = logyg (N) (22)
n

i WiS;

SDR = (21)

where IC is the Index of Connectivity; Dup is the upslope components; Dy, is the downslope
components; W is the average weighting factor of the contributing area; S is the average
slope of the upslope contributing area (m/m); A is the area of the contribution (m?); and d;,
Wj, and S;, are the flow path to the main downstream channel, the weighting factor, and
the slope gradient of the ith cell, respectively.

RI

Wi=1—( ) (23)

RImax

(24)

where W; is the weighting factor, Rl is the topographic surface roughness, mws is the
moving window size (normally 5-cells; [108]), xi is the one specific cell value of the residual
topography within the moving window, and X is the mean of the cells values within the
moving window.

3.4. Reservoir Sedimentation (RSed)

Equation (25) [15] was used to estimate the RSed reached to DL in tha™! oyr_l. The
absolute RSed for the six stages of the DLB areas were calculated in tons (Figure 2), where
the DLB was changed with time as a result of the dams constructed within the basin
(Table 2). Moreover, the amount of the RSed in tons was estimated until 2 May 2008, to
validate the result of each scenario (see Section 4.2)

RSed = RUSLE-SDR (25)

where RSed is reservoir sedimentation, RUSLE is the soil loss, and SDR is the sediment
delivery ratio.

3.5. Validation

For any model, validation is the most significant procedure to check the accuracy
of the results [111]. The information about the RSed volume within the DL (Table A2 in
Appendix B) offered by the ELC, Electroconsult; MED, Ingegneria; and SGI, Studio Galli
Ingegneria companies [112] was used to validate the results of the 90 estimated scenarios
of the RSed. Reference [112] used the historical topographic maps [113] produced before
building the dam and a recent sub-water topographic map created by the topo-bathymetric
survey by echo-sounding bathymetry data for the DL to estimate the amount of the RSed
for the period between November 1961 and 2 May 2008.

The survey for the DL was implemented by [112] in clear, calm weather and water
conditions. It was carried out between 25 April to 2 May 2008, at the dam sites, utilizing
two small boats; an Echo sounder (Single beam Sonar Bathy500 Dual Frequency-200 kHz
(10 degrees) Transducer) rod, and GPS (Positioning Trimble R6) antenna were mounted to
the vessel via a wooden board manufactured directly at the site [112].
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To convert the weight of the 90 scenarios (in tons) to size (in km?3), three samples from
the siltation within the DL were collected to find the average density of the siltation. Since
the lake’s water level dropped as a result of the reduction in rainfall, the sediments exposed
in the lake became a typical location to sample the actual sedimentation of the lake. The
scenarios estimated the RSed in tons, while the siltation measured by the [112] is estimated
in a million cubic meters (MCM).

All the results of the RUSLE factors, RUSLE, SDR, and RSed were presented for the
periods between November 1961 to 2 May 2008. Finally, the RSed within the DL will be
predicted by the end of 2019 using the best scenario out of the ninety scenarios tested.
Moreover, the error rates were calculated using Equation (26):

Error% = | <ms‘tu_Rsed> 100| (26)
in situ

where in situ means the results obtained by the surveys by echo-sounding bathymetry, and

RSed is the outcome of the erosion model.

In addition, the only available survey for the DL, carried out between 25 April and 2
May 2008, is used indirectly to validate the estimation of the C and R factors, and the best
scenario resulted from the best RUSLE and SDR combination for estimating the RSed.

The error density plots display the relationship between the position and dispersion
of the estimations for the factors (R and C). For this target, 984,988 pixels (~5% of the
total pixels) were randomly selected and utilized. This test was repeated more than one
time. The uncertainty plots display two standard deviations (SDs) of these estimates in the
y-axis against their mean value in the x-axis, using the chosen pixels. The uncertainty plots
allow the interpreter to determine the locations of the dispersion values for the estimated
scenarios [80].

4. Results

The ninety scenarios of the RSed models for the DLB were estimated until 2 May
2008 and compared with the in situ surveys by echo-sounding bathymetry. The best RSed
scenario resulting from this comparison was Scenario #18 (Table A2 in Appendix B). This
scenario used Equation (5) to estimate the R factor, Equation (18) to estimate the C factor,
and the IC model to estimate the SDR. Therefore, Equations (5) and (18) were reported to
exhibit the result of the R factor and C factor, respectively, instead of other equations. In
this section, a brief of all scenarios that were tested is given, and the focus will be on the
optimum scenario result. The following subsections show the results of calculating RSed,
SDR, RUSLE, and its factors.

4.1. Estimation RUSLE and Its Factors

Table 8 shows six models of the R factor. The R factor resulting from Equation (5) varies
from 83.69 MJ-mm-ha~!-h~1.y~! t0 335.47 MJ-mm-ha—!-h~!.y~1, with an average value of
2104 MJ-mm-ha—!-h~! 'y_l. The R-factor map was sliced into five classes, which decrease
toward the east. The areas with very high class (>275 MJ-mm-ha~!-h~!.y~!) are located in
the northwest, which is almost all located within Iraqi areas. Meanwhile, the regions with
very low class are located in the eastern part of the DLB, within Iranian areas (Figure 4A).
Figure 5 shows the distributions of the ~5% random selected pixels from R-factor values
for the six equations. The R-factor distribution in Equation (8) has a higher performance
than the others, while the performance of the R factors for Equations (5), (7), and (6) looks
the same (Figure 5). Equations (3) and (4) have intermediate behavior between the two
groups (i.e., Equations (5), (7), and (6); and Equations (3) and (4)).

Similarly, four types of soil were exposed in the study area. The majority of the DLB
is loam texture, followed by clay and clay loam (Table 9). Figure 4B is the K-factor map,
where the K factor value is low (0.023007 t-ha-h-ha='-MJ~!-mm™1) in the northwestern
part of the DLB, and the K factor value is high (0.063365 t-ha-h-ha=!-MJ~-mm™!) in small
patches in the north and northeastern parts of the DLB (Figure 4B).
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Table 8. R-factor parameters of the used models.

R Factor Minimum Maximum Mean SD
Equation (3) 215.80 332.54 290.14 25.44
Equation (4) 224.71 346.92 302.53 26.64
Equation (5) 83.69 335.47 210.40 64.18
Equation (6) 106.75 347.05 242.71 60.30
Equation (7) 129.04 345.63 245.28 54.81
Equation (8) 229.95 446.79 352.64 54.39
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Figure 4. The distribution of the (A) R-factor (Equation (5)) and (B) K-factor maps within the DLB for
2 May 2008.
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Figure 5. Boxplot shows the distributions of the ~5% random selected pixels from R-factor values for
the six equations used in this study, which is very rough.

Table 9. Soil types, textures, and the K-factor values.

Soil Type Texture Class Sand% Silt% Clay% K Factor
Lithosols Loam 43 34 23 0.048767
Chromic Vertisols Clay 16 29 55 0.023007
Haplic Xerosols Clay loam 23 33 44 0.056780

Calcic Xerosols Clay loam 40 37 23 0.063365
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The slope gradient in the DLB reaches 77.6°, and the average is 16.2°. The majority
of the high-slope areas are located in the central part of the DLB. This variation between
the slopes, coupled with the variation in the flow accumulation, is the cause of the high
fluctuation of the LS factor values. Likewise, the LS factor was sliced into five classes.
Approximately 41.2% of the study area has LS < 1; almost all of these areas are located in
the western part. The highest LS values (>100) cover 2.35% of the study area, while the
average of the LS factor is 6.84 t-ha~—!-y~! (Figure 6A).
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Figure 6. The distribution of the (A) LS factors and (B) C factors maps within the DLB for the period
until 2 May 2008.

Similar to the R factor, the three calculated models of the C factor are stated in Table 10.
The C factor ranged between 0.21 and 0.58 for Equation (18), which is classified into five
classes (Figure 6B). The very high values (0.45-0.58) are located in the landslide and highly
eroded areas (Figure 7A), which are distributed in small patches within the DLB. In general,
the eastern part of the DLB has a C factor more than the western part (Figure 6B), while
the lower values (<0.3) were presented in the forest and the agricultural areas (Figure 7B).
Figure 8 shows the distributions of the ~5% random selected pixels from C-factor values
for the three models (i.e., two equations and land-cover based), which have significant
differences. The C-factor distribution in Equation (18) is higher than and the land-cover
based one, while Equation (17) is higher than both (i.e., Equation (18) and land-cover based;
Figure 8).

45°5TE 45°58E

Figure 7. The very high C-factor values were distributed in the (A) landslide (B) and agricultural
areas overlayed by the QuickBird image (R3:G2:B1).
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Table 10. C-factor parameters of the used models.

C Factor Minimum Maximum Mean SD
Equation (17) 0.029 1 0. 618 0.13
Land cover 0 0.3 0.091 0.127
Equation (18) 0.213 0.579 0. 396 0. 034
g
£
S 37
§ .}
o

0.0 0.2 0.4 0.6 0.8 1.0
C factor range

Figure 8. Boxplot shows the distributions of the ~5% random selected pixels from C-factor values for
the three equations used in this study.

Similarly, Figure 9A shows the P factor, which is subdivided into five classes and
ranges from 0.2 to 0.86. The very high P-factor values are located in the rough topography,
which is mostly in the central part of the DLB. At the same time, the northwestern part of
the study area shows low P-factor values.
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Figure 9. The distribution of the (A) P factors and (B) RUSLE maps within the DLB for the period
until 2 May 2008.

Figure 10 shows the distributions of one set of random selected pixels (~5% of the total
data of the study area) from RUSLE model values for the eighteen scenarios, where more
than one set was tested. More detailed information about the eighteen scenarios of RUSLE
models of the R- and C-factor combinations can be found in Table Al in Appendix A. It
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shows that there are two main groups (i.e., Group 1, RUSLE 1 to 12; and Group 2, RUSLE
13 to 18). The SL or RUSLE map was classified into five groups, ranging from 0 tha™! ~y*1
to 83,628.8 t-ha~!-y~!, with an average value of 8.3 t-ha~!-y~! (Figure 9B). The areas with
very low and low SL (0-3 t-ha~!-y~!) represent >59% of the study area. They can be
observed in the northwestern (near Sulaymaniyah city) parts of the DLB, in addition to the
eastern parts (south of Muchesh and Sanandaj cities). Severe (12%) and very severe (15%)
SL areas are located in the central part of the DLB. The extremely severe SL areas (>1000
t-ha~1-y~1) cover 0.15 of the DLB.

200

150

100

RUSLE range

50

RUSLE1 RUSLEZ RUSLE.:! RUSLEA RUSLE.S RUSLEG RUSLE] RUSLE.E RUSLE.9 RUSllE 10 RUSLE,‘H RUS\‘_E.WZ RUSLE.13 RUSIlE 14 RUSLE,15 RUS\‘_E.WE RUSLE.17 RUSIlE 18
RUSLE model
Figure 10. Boxplot shows the distributions of the ~5% random selected pixels from the 18 RUSLE
scenarios used in this study (outlier pixels were removed).

4.2. Sediment Delivery Ratio (DRr), Reservoir Sedimentation (RSed), and the Model Validation

The five SDR models (i.e., the IC model and Table 7) show fluctuation in their results.
Table 11 shows the statistical parameters of the SDR models. For the best scenario (IC
model), the SDR ranges from 0.013 to 0.147, with an average value of 0.0327. The IC model
map was classified into five classes (Figure 11A). The very high and high classes areas are
located within and near the main valleys. In contrast, the very low and low classes areas
can be observed in the northwestern (near Sulaymaniyah city) parts of the DLB, in addition
to the eastern parts (south of Muchesh and Sanandaj cities).

Table 11. SDR ranges for the five models used in the DLB for the period between 1961 and 2008.

Model No. Minimum Maximum Mean SD
1 0.125 0.128 0.126 0.0014
2 0.509 0.519 0.511 0.0059
3 0.402 0.420 0.410 0.0074
4 0.172 0.176 0.174 0.0017
IC (Equation (22)) 0.013 0. 147 0.0327 0.0076

The average density of the three samples collected from the field trip (1.631 kg/L) was
used to convert the RSed scenarios from tons to km?. Figure 12 shows the distribution of
part of the scenarios tested in this study (more than 20 km?-yr—! and less than 50 km?-yr~1).
The amount of Scenario #18, the best scenario (22.294 km?), makes it the closest model to
the siltation measured by [112] within the DLB for the period from November 1961 to 2
May 2008, which is 22.223 km®. The average siltation per year is 0.46458 km3.yr—1. This
scenario is followed by Scenarios #66, #61, and #62.
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Figure 11. The distribution of the (A) sediment delivery ratio and (B) reservoir sedimentation maps
within the DLB for the period until 2 May 2008.
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Figure 12. Evaluation of the reservoir sedimentation scenarios tested with the actual sedimentation
in the Darbandikhan Lake Basin.

Almost all of the study areas are provided by the DLB with the sedimentation of
<5 tons/year. Some of the areas, specifically in the central part of the DLB, provided the
DLB with sedimentation between 5 and 50 tons/year. Very few areas (could be considered
outliers) supplied the DLB with sedimentation >50 tons/year, which is normally located in
the main streams (Figure 11B).

4.3. RUSLE, Its Factors, and Reservoir Sedimentation in the Present Day

The RUSLE for the DLB and the RSed within the DL were estimated by the end of
2019, using Scenario #18 (the best scenario out of the ninety scenarios tested). The RUSLE
map was classified into five groups, ranging from 0 t-ha=!-y~! t0 82,7252 t-ha~!-y !, with
an average value of 8.2 t-ha~!.y~! (Figure 13A). The classes within the RUSLE maps show
the same distribution for the old (2008) and new (2019) maps.
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Figure 13. The average distribution of the (A) RUSLE maps and (B) reservoir sedimentation maps
within the DLB for the period until 2019.

The average RSed within the DLB for the period from 2 May 2008 to 2 December 2019
is 0.3836 km®.yr ! (Figure 13B). The total amount of the RSed within the DL for the period
from November 1961 to the end of 2019 is 27.05 km3. The prediction of the RSed to the end
of 2022 will be 28.201 km?.

5. Discussion

5.1. RUSLE-SDR and Its Factors

Two main insights must be considered when comparing predictions with in situ
data. First, the model is valid to be applied to a specific area, which has its own circum-
stances. Therefore, almost all of the available Zagros literature was reviewed in the Scopus
dataset [23,25-29,31-35,44,46-50,83-85,94]. Second, the successful prediction scenario must
have an acceptable correlation with the in situ measurement. In this study, the final output
of the 90 RSed scenarios was verified by using the bathymetry survey of the DL, which
mirrors the verification of RUSLE factors and the SDR. When the bathymetry survey is
compared