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Abstract: Soil loss (SL) and its related sedimentation in mountainous areas affect the lifetime and
functionality of dams. Darbandikhan Lake is one example of a dam lake in the Zagros region that
was filled in late 1961. Since then, the lake has received a considerable amount of sediments from the
upstream area of the basin. Interestingly, a series of dams have been constructed (13 dams), leading
to a change in the sedimentation rate arriving at the main reservoir. This motivated us to evaluate a
different combination of equations to estimate the Revised Universal Soil Loss Equation (RUSLE),
Sediment Delivery Ratio (SDR), and Reservoir Sedimentation (RSed). Sets of Digital Elevation Model
(DEM) gathered by the Shuttle Radar Topography Mission (SRTM), Tropical Rainfall Measuring
Mission (TRMM), Harmonized World Soil Database (HWSD), AQUA eMODIS NDVI V6 data, in situ
surveys by echo-sounding bathymetry, and other ancillary data were employed for this purpose. In
this research, to estimate the RSed, five models of the SDR and the two most sensitive factors affecting
soil-loss estimation were tested (i.e., rainfall erosivity (R) and cover management factor (C)) to propose
a proper RUSLE-SDR model suitable for RSed modeling in mountainous areas. Thereafter, the proper
RSed using field measurement of the bathymetric survey in Darbandikhan Lake Basin (DLB) was
validated. The results show that six of the ninety scenarios tested have errors <20%. The best scenario
out of the ninety is Scenario #18, which has an error of <1%, and its RSed is 0.46458 km3·yr−1.
Moreover, this study advises using the Modified Fournier index (MIF) equations to estimate the R
factor. Avoiding the combination of the Index of Connectivity (IC) model for calculating SDR and
land cover for calculating the C factor to obtain better estimates is highly recommended.

Keywords: RUSLE; reservoir sedimentation; Darbandikhan Lake; Iraq; Iran; Zagros

1. Introduction

Erosion, in its two types, i.e., water and wind [1], is one of the major threats to soil
worldwide [2]. Water erosion is affected by climate, land-surface topography, lithology,
vegetation, and human-induced activities [3]. Pal [4] stated that more than 19.03 million
km2 (12.78%) of the world’s land suffers from water erosion as a result of human-induced
degradation. Soil loss (SL) directly correlates with reservoir sedimentation (RSed). Increas-
ing SL leads to an increase in the RSed and, consequently, essential problems for water
resource development, particularly by increasing the siltation and sedimentation of the
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reservoirs [5,6]. Furthermore, it can contaminate and degrade the river systems, which costs
a lot of money and effort to overcome [5]. Globally, ~84% of land degradation is caused by
erosion [7]. SL detaches the uppermost fertile topsoil, which has high concentrations of
rich organic matter and nutrients. This will negatively affect soil productivity [8].

The phenomenon by which the sediments are of eroding, transporting, and depositing
sediments into the reservoirs by streams is called RSed [9]. It is a fundamental concern for
dam operation and affects the dam’s lifetime period by decreasing the reservoir storage
capacity [10]. Several factors control the RSed, which leads to difficulties in estimating the
amount of the RSed deposited in the reservoir [11]. The rapid development in computer
applications contributes to performing several models of the SL and the RSed [12]. SL
models help to determine the areas that suffer from erosion susceptibility, assess the rate of
erosion, and identify the agent reasons, thereby helping to perform land management [13].
These models can be classified into four widely utilized groups, which are empirical,
conceptual, physically based, and hybrid models [1,2]. Empirical models are simple, and
their data requirements are less than those that are required for the other three groups [1,13].
In general, empirical models are based on statistical observations. While physically based
models are based on the conservation of mass concept. The conceptual models are a
combination of empirical and physically based models. Moreover, the hybrid models are a
mixture of dynamic and empirical soil-erosion evaluation techniques [1].

The Revised Universal Soil Loss Equation (RUSLE) model [14] is the revised version of
the Universal Soil Loss Equation (USLE) model [15]. It is one of the widely used empirical
models and is recognized by the scientific community [14]. The RUSLE calculates the
average annual soil loss worldwide [16] by calculating the result of six factors, which are
rainfall erosivity (R), soil erodibility factor (K), slope length factor (L), slope steepness factor
(S), cover management factor (C), and support practice parameter (P) [17].

The major deficiency in the RUSLE model is that, if one of the factors is not accurately
estimated, the result will show a significant error [18]. Each factor can be calculated in
various ways. The R and C factors are the main factors that highly impact exceeding the SL
tolerance limits on erosion control measures [16]. Therefore, properly implementing the R
and C factors is fundamental not only for the RUSLE but also for its use to estimate the
RSed [16], such as the RUSLE-SDR model [12].

The term “RUSLE-SDR” comes from the integration between the RUSLE model and
the sediment delivery ratio (SDR) [12]. The SDR is the fraction of gross erosion that is
delivered from a specific catchment to a specific outlet in a specific time interval [19]. A
huge number of articles used the empirical SDR-area power function to estimate SDR [20],
and other studies used a constant number (between 0 and 1) to treat the SDR [20,21].
Borselli et al. [22] suggested a model that depends on the drainage basin’s hydrological
and sediment connectivity to calculate the SDR.

Several works have been accomplished in the Zagros region and surrounding areas
to estimate SL and RSed in Iraq [23–26], Turkey [27–33], and Iran [25,34–50]. However,
these investigations used different combinations of equations to estimate RUSLE factors,
SDR, and RSed. Three of these articles predicted individual factors of RUSLE rather than
the estimation of the RUSLE itself [37,47,50]. Almost all of the articles within the Zagros
region estimated RUSLE [25–34,36,40–44,46,48,49]. In comparison, few of them estimated
the RSed by using the RUSLE-SDR model [23,24,35,38,39,42,45]. Among all the above
articles, only Zare et al. [42] validated their results. They produced one scenario to estimate
the RUSLE-SDR model without testing different combinations of equations to estimate
the RUSLE-SDR. To this date, choosing “the best” combination of equations to estimate
RUSLE factors and RSed constitutes as a major issue, despite the large number of studies
conducted worldwide and specifically in the Zagros region.

This study fills this gap by testing different R, C, and SDR models to estimate the RSed,
usually neglected by previous studies accounting only for the most suitable areas where
natural erosion may occur. Interestingly, few studies accounted for the sediments that are
carried out into reservoirs and validated with bathymetry. Therefore, the main aims of
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this study are (a) to offer a RUSLE-based model proper for modeling SL in rugged lands
and mountainous regions, such as Zagros; (b) to propose a suitable SDR model coupled
with the SL models to estimate the RSed; and (c) to validate the models result with the
estimated RSed from the bathymetric field measured data of Darbandikhan Lake (DL) in
the northwest segment of the Zagros range.

This study’s motivation comes in the context of natural hazard mitigation and water
management for one of the major dams in Northern Iraq (Kurdistan Region). Estimation
and future prediction of sedimentation in DL, which has neither been studied to estimate
SL nor to estimate sediment yield, will benefit the performance of the Darbandikhan Dam
and reduce the risk of destructive flooding in this high-population region downstream.
Outcomes and motivations also have implications for similar environments worldwide
Table 1 is provided to explain all acronyms and variables to improve the readability of the
manuscript in forthcoming sections.

Table 1. List of acronyms and variables mentioned in the main text.

Term Abbreviations Term Abbreviations

C Cover management P Support practice parameter
CRSed Sedimentation catchment of its reservoir R Rainfall erosivity

DL Darbandikhan Lake RI Topographic surface roughness
DLB Darbandikhan Lake Basin RSed Reservoir Sedimentation
DEM Digital Elevation Model RUSLE Revised Universal Soil Loss Equation

HWSD Harmonized World Soil Database S Slope steepness
IC Index of Connectivity SD Standard deviations

IDW Inverse Distance Weighting SDR Sediment Delivery Ratio
K Soil erodibility SL Soil loss
L Slope length SRTM Shuttle Radar Topography Mission

MCM Million cubic meters TRMM Tropical Rainfall Measuring Mission
MIF Modified Fournier index USLE Universal Soil Loss Equation

NDVI Normalized Difference Vegetation Index UTM Universal Transverse Mercator

2. Darbandikhan Basin

The Darbandikhan Lake Basin (DLB) is located in the northeastern part of Iraq/
northwestern part of Iran between 45◦11′20′′E–47◦58′43′′E longitudes and 34◦13′53′′N–
35◦47′20′′N latitudes (Figure 1). It covers a total area of 16,463.1 km2, and the major part is
located in the northwestern part of Iran (13,155.28 km2, i.e., 79.91% of the total catchment
area), while the minor part (3307.82 km2, i.e., 20.09% of the total catchment area) is located
in Kurdistan Region, the northeastern part of Iraq (Figure 1).
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The basin is located in a mountainous area, the elevation ranges from 450 m to 3351 m,
and the major slope is directed towards the southwest of the area. The average annual
precipitation for the last 20 years is 680 mm·y−1, with a major occurrence between October
and April. The maximum temperature goes up to 45 ◦C in August, while the minimum
temperature drops down to 3 ◦C in February [51].

The DL was formed after the construction of the Darbandikhan dam was completed,
in November 1961 [52]. The DL feeds by the Sirwan (Diyala) River, which is a seventh-order
river (according to the classification of [53]) and is located 55 km southeast of Sulaymaniyah
city. The Sirwan River flows 270.4 km inside Iran before becoming part of the Iraq–Iran
border for 43.1 km; then it flows 30.9 km inside Iraq until reaching the Darbandikhan dam,
with a total length of 344.4 km. The maximum, minimum, and average annual discharge
of the Sirwan river are 459.27 m3 s−1 (in 1969), 41.86 m3 s−1 (in 2000), and 153.26 m3 s−1

(1931–2004) [54].
From November 1961 to 1978, the dam’s catchment covers 16463.1 km2, which is also

the sedimentation catchment of its reservoir (CRSed). In 1978, Iran built the first dam
(Vahdat dam) within the catchment of the Darbandikhan dam [55]. Vahdat dam leads to
a decrease in the CRSed to 15,403.5 km2. With the continuation of the dam construction
(13 dams) within Iran, the water supply and the CRSed to DL decreased (Figure 2). The
present situation shows that the CRSed for DLB is 5965.8 km2, representing 36.2% of the
original catchment (Table 2).
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Figure 2. Changing the area of the catchment area of the stream sediments for the Darbandikhan
dam over time.

Table 2. Variation of the area of the Darbandikhan Dam catchment from 1961 to 2018.

Period
Area of the Sedimentation

Catchment for Darbandikhan
Dam (km2)

Area of the
Catchment % Event and the Year Reference of

the Event

1961 16,463.1 100 Building Darbandikhan dam [52]
1978 15,403.5 93.6 Building Vahdat dam [55]
2004 13,329.8 81.0 Building Gavoshan dam [56]
2012 12,253.9 74.4 Building Azadi dam [57]
2013 11,865 72.1 Building Garan and Ziviyeh dam [57]
2018 5965.8 36.2 Building Hirwa and Daryan dams [58]
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3. Materials and Methods
3.1. Materials

Six scenes of the Digital Elevation Model (DEM) gathered by the Shuttle Radar To-
pography Mission (SRTM) were mosaicked [59]. The DEMs have a 30 m spatial resolution
and are used to extract the drainage network, slope gradient, and flow accumulations.
Due to the lack of in situ meteorological data, 3B43-V7 of the Tropical Rainfall Measuring
Mission (TRMM) data [60] to construct a precipitation map were utilized. The monthly
TRMM is with 0.25◦ × 0.25◦ spatial resolution [61]. The soil erodibility was determined by
using the Harmonized World Soil Database (HWSD), which has a pixel size of ~852 m [62].
The AQUA eMODIS NDVI V6, with a spatial resolution of 250 m from 2003 to 2021, a
scaling factor (of 10−4), and a radiometric resolution of 16-bit, was used to extract the C
factor. The average of the C-factor value for the period from 2003 to 2021 has been used
to cover the period from 2021 to 2002. The NDVI product can be accessed from the USGS
webpage (https://earthexplorer.usgs.gov/ (accessed on 3 October 2022)) and is obtained
by applying Equation (1), which is as follows:

NDVI =
ρNIR− ρR
ρNIR + ρR

(1)

where ρNIR and ρR correspond to the surface reflectance of both the near-infrared (NIR)
and red (R) wavebands of the MODIS, respectively.

Each NDVI scene covers 10-day composited datasets [63]; therefore, the approach
suggested by Almagro et al. [64] was applied where four scenes per year were selected to
cover the four seasons (i.e., 1–10 January, 1–10 April, 1–10 July, and 1–10 October). Such a
strategy enabled us to capture of the variability of the natural vegetation.

Yearly global maps of MODIS land cover (MCD12Q1) were used, which was com-
posed of a supervised classification (decision tree) algorithm of eight observation days
by MODIS [65]. These data come with ~463 m spatial resolution, Nadir BRDF-Adjusted
surface Reflectance [66], and land-surface temperature [67]. The data were downloaded
from the main repository (https://lpdaac.usgs.gov/data, accessed on 3 October 2022) and
covered the period from 2001 to 2020 with HDF file format, Sinusoidal grid, and multi-
classification maps [65]. In this study, the International Geosphere-Biosphere Programme
(IGBP) classification map was selected, encompassing 17 major land-cover classes in the
scene. However, our study area includes only nine classes of land cover. All the data men-
tioned above are free of charge, and they were resized to 30 m cell size and reprojected to the
Universal Transverse Mercator (UTM) projection/WGS 1984 datum within zone 38N, using
the nearest neighbor resampling method to fit with the DEM scenes spatial resolution.

ArcGIS 10.8 software was used [68] to prepare the data, subset, and mosaic and
perform the data operations, such as rater calculator, raster conversion, slope gradient, and
stream flow accumulation. The connectivity index toolbox [69] was used to estimate the
Index of Connectivity (IC). This toolbox works as a plugin within the ArcGIS environment.
The drainage network and watershed boundaries were extracted by using TecDEM 2.2,
a MATLAB-based toolbox [70]. Finally, r-based scripts were utilized to implement the
statistical analysis [71].

3.2. Methods

Among all approaches, RUSLE has been widely used to estimate soil erosion under
different conditions because it meets the need better than any other models available [2]. It
has a huge number of works in the scientific literature and a large comparability of results,
allowing researchers to adapt the model to nearly every type of condition and region of the
world [2]. It is being used to predict long-period rates of rill and inter-rill erosion under
different management practices around the globe [12,25]. It is a robust tool to estimate
water erosion rates [72] and gives estimates on large spatial scales. Therefore, the RUSLE
was chosen to estimate the SL in DL. Eighteen scenarios of RUSLE resulted from six R
equations, and three models of the C factor, in addition to the LS, K, and P factors, were

https://earthexplorer.usgs.gov/
https://lpdaac.usgs.gov/data
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used to estimate the SL (Table A1 in Appendix A). The RUSLE was integrated with SDR
(RUSLE-SDR) to estimate a 30 m spatial resolution of the RSed map for the DLB. RUSLE
is widely employed [73] to assess the RSed, while the SDR is used to estimate the rate of
erosion delivered to the lake. The model of Renard et al. [74] was used to calculate the
RUSLE (Equation (2)).

A = R· K · LS · C · P (2)

where A is the average annual rate of the soil loss (t·ha−1·y−1), R is the annual rain-
fall and runoff erosivity factor (MJ·mm·ha−1·h−1·y−1), K is the soil erodibility factor
(t·ha·h·ha−1·MJ−1·mm−1), LS is the slope length and slope steepness factor, C is the cover
management factor, and P is the support practice factor. The LS, C, and P factors are
dimensionless. The following subsection describes the RUSLE’s factors.

3.2.1. Rainfall and Runoff Erosivity (R Factor)

Erosion is caused by the driving force of rainfall [75]. The R factor represents the effect
of precipitation impact on soil erosion [76]. The relationship between the R factor and
precipitation have been determined in many regression analyses [31]. It requires precise
and ongoing rainfall data [73]. The study area lacks climatic data records because it was a
battlefield during the Iran–Iraq war; therefore, monthly TRMM (3B43–V7) data were used.
The TRMM data are one of the main types of input data used to assess and compute the R
factor [72,77]. For data validation, the TRMM data were compared with the observed metro-
logical data and showed a good correlation with the observed metrological data (Figure 3).
Moreover, TRMM data were proved by several researchers, such as [23,24,78–80], to be an
applicable source of rainfall data for the Zagros region. However, the appropriateness of
using TRMM data in the study area was evaluated by comparing 264 months of data with
their corresponding data from the observed precipitation dataset from the Sulaymaniyah
meteorological station (Figure 3A). This figure shows a strong direct relationship with a
significant p-value < 0.05 and a coefficient of determination (R2) of 0.77. The comparison
between monthly means of the 22 years (1998–2019) for the TRMM and Sulaymaniyah
meteorological station shows a strong direct correlation with R2 of 0.94 (Figure 3B). The
average annual precipitation of the DLB ranges between 352.78 mm·yr−1 (in the northeast)
and 692.85 mm·yr−1 (in the northwest).
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The TRMM pixels were vectorized in a points format, which was interpolated with
a spatial resolution of 30 m, using the Inverse Distance Weighting (IDW) method. The
pixel size was resampled to obtain the exact pixel size of the DEM. The resulting maps
were used to estimate the R factor in six different models, which are Equation (3) [12,13,25],
Equation (4) [13,23], Equation (5) [34,35,46,48,81], Equation (6) [29,82], Equation (7) [50,83],
and Equation (8) [47,84,85].

The relationship between the R factor and precipitation alters widely based on the
different climatic zones [31]. Therefore, the six equations (Table 3) were successfully tested
in the Zagros countries (i.e., Iraq, Iran, and Turkey), which have similar climatic conditions
to precisely select the R factor equation.

Table 3. Rainfall and runoff erosivity (R) factor models were tested in this study.

Method The Article Used within Iran–Iraq–Turkey Note Equation

R = 79 + 0.363 PA [25] (3)
R = 81.5 + 0.38 PA [23] 340 < PA < 3500 mm (4)

R = 95.77−6.081MIF+0.447MIF2

17.2 [34,35,46,48] F > 55 mm (5)
R = (4.17MIF)− 152 [29] (6)

R = 0.264MIF1.5 [50,83] (7)
R = 3.7628MIF− 3.532 [47,84,85] (8)

Where R is the runoff erosivity factor in MJ·mm·ha−1·h−1·y−1, PA is the average
annual precipitation in mm, and MIF is the Modified Fournier index (Equation (9)), which
was defined by Arnoldus [82]. The mean MIF was 80.79 mm, which is >55 mm.

MIF =
∑12

I = 1 Pm
2

PA
(9)

where PA is the average annual precipitation (mm), Pm is the average monthly precipitation
(mm), and R is the rainfall and runoff erosivity factor (MJ·mm·ha−1·h−1·y−1).

3.2.2. Soil Erodibility (K Factor)

The K factor expresses the potential soil vulnerability to erosion by the R factor [86]. In
addition to soil texture, coarse fragments, structure, permeability, and organic matter play
an effective role in the K factor value, where the increase in organic matter will decrease its
susceptibility to separation [87].

The K factor was estimated by using Equations (10) and (11) [15,73]. The widely
applied RUSLE was used to extract the K factor, and the HWSD dataset [88,89] was used
to obtain soil texture and soil organic carbon information. Soil organic matter could be
estimated from soil organic carbon using a conversion factor [90]. Based on the more
reliable hypothesis that carbon represents 58% of the soil OM, the conversion factor will be
1.724 [90].

K =

[
2.1× 10−4 M1.14 (12−OM) + 3.25(s− 2) + 2.5(p− 3)

100

]
∗ 0.1317 (10)

M = (msilt + mvfs) ∗ (100−mc) (11)

OM = 1.724·OC (12)

where mc is clay fraction content%; msilt silt fraction content%; mvfs very fine sand fraction
content%; OM is the organic matter content%; OC is the soil organic carbon; and s is the soil
structure class, and p is the permeability class, and they can be obtained in Tables 4 and 5,
respectively [15,73].
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Table 4. Soil structure classes derived from the European Soil Database.

Structure Class (s) Value Size Soil Database

Very fine granular 1 1–2 mm G (good)
Fine granular 2 2–5 mm N (normal)

Medium or coarse granular 3 5–10 mm P (poor)
Blocky, platy, or massive 4 N10 mm H (peaty topsoil)

Table 5. Soil permeability classes are estimated from major soil textural classes.

Permeability Class Value Texture

Fast and very fast 1 Sand
Moderate fast 2 Loamy sand, sandy loam

Moderate 3 Loam, silty loam
Moderate low 4 Sandy clay loam, clay loam

Slow 5 Silty clay loam, sand clay
Very slow 6 Silty clay, clay

3.2.3. Slope Length (L Factor) and Slope Steepness (S Factor)

The slope-length factor reflects the impact of the terrain on the SL. Several equations
have been suggested to estimate the L factor, such as [14,15,87]. Equations (13)–(15),
suggested by Moore and Burch [91], were applied. Accordingly, the slope map (in percent)
was extracted and classified into four groups, i.e., <1%, 1–3%, 3–5%, and ≥5%. Each group
of the slope has its constant (m) (Equation (15)). Meanwhile, the S factor is calculated by
using three slope (in percent) classes, which are <9%, 9–18%, and≥18% (Equation (16); [92]).

L = (
λ

22.12848
)

m
(13)

λ = FA ∗ Ps (14)

m =


0.2 θ < 1%
0.3 1% ≤ θ < 3%
0.4 3% ≤ θ < 5%
0.5 θ ≥ 5%

(15)

S =


10.8·sinθ+ 0.03 θ < 9%
16.8·sinθ− 0.05 9% ≤ θ < 18%

21.9·sinθ− 0.96 θ ≥ 18%
(16)

where L is the slope length, S is the slope steepness factor, λ is the horizontal projection
of slope length (m), m is a constant based on the value of slope gradient (Equation (15)),
FA is stream flow accumulation, Ps is the pixel size of DEM, and θ is the slope gradient
in percent.

3.2.4. Cover and Management (C Factor)

The C factor is the fraction of SL from an area with specific vegetation to the cor-
responding SL from a continuous fallow area [15]. It is one of the changeable erosion
factors affected by human action [86]. In this study, three models, which have been used
in the Zagros countries, were used to estimate the C factor. Equation (17) is the most
common model [93], which has been tested in most of the articles surrounding the DLB,
such as Iran [48,49], Turkey [27,33,94], and Iraq [23,26]. The second model to estimate the C
factor used the land-cover maps. The land-cover model is applied in Turkey [28,29,31,32],
Iran [25,46], and Iraq [25]. Nine land-cover classes of MCD12Q1 MODIS data exist in the
DLB, which have different C-factor values (Table 6). The MCD12Q1 MODIS was used to
estimate the C factor [77]. The third model was applied by using Equation (18) [95]. This
model has been tested in Zagros countries, as well [35,44]. Equations (17) and (18) depend
on MODIS NDVI to estimate the C factor, which has been widely applied [96–100].
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C = Exp
[
−α· NDVI

(β−NDVI)

]
(17)

C =
−NDVI + 1

2
(18)

where α and β are constants, which are 2 and 1, respectively [101].

Table 6. C factors weights for different land-cover classes in the DLB (Model 2).

Name C Factor References

Open Shrublands 0.10 [102]
Savannas 0.05 [102]

Grasslands 0.01 [102]
Permanent Wetlands 0 [13]

Croplands 0.3 [12,13,102]
Urban and Built-Up Lands 0 [13,102]

Cropland/Natural Vegetation Mosaics 0.3 [12,13,102]
Barren 0 [13,102]

Water Bodies 0 [12,13]

3.2.5. Support Practice (P Factor)

The P factor represents the fraction of the SL by an area with specific conservation soil
to the corresponding loss upslope and downslope [14]. In DLB, Equation (19) was used.
This equation was modified by Othman et al. [23] from the Wener Equation [103,104] to
estimate the P factor.

P = 0.2 + 0.03·θ (19)

where P is the support practice factor, and θ is the slope angle in percent.

3.3. Sediment Delivery Ratio (SDR)

The SDR is the amount of the SL that actually reaches the specific outline at a specific
time [6,20,105]. The range of the SDR is between 0 and 1 [106]. The SDR has been considered
for a long time to be a constant number [21]; however, several models have been suggested
to estimate the SDR. Most famous models are based on the nonlinear regression between the
SDR and the basin area (Equation (20)) [105,107]. The area of the basin is the most affecting
factor in determining the SDR for these models. This study considered the suggested
models that were only used for estimating the SDR in basins that have an area close to that
of DLB.

SDR = α·Ab
−β (20)

where the SDR is the sediment delivery ratio, the α and β are coefficients (Table 7), and the
Ab is the basin area in km2.

Borselli et al. [22] suggested a new approach to estimating the SDR (SDR1; Equation (21)),
which depends on calculating the IC (Equation (22)). The IC depends on the topographical
information and can be calculated in an ArcGIS environment [22]. Topographic surface
roughness (RI) was used to estimate the average weighting factor

(
W
)

(Equation (23)),
which was suggested by [69]. The RI can be estimated by using Equation (24) [108].

Table 7. The α and β coefficients used to estimate the SDR in the DLB.

α β References Unit of the Area Model No.

0.4724 0.125 [32,94,105] km2 SDR2
1.817 0.132 [23,107] km2 SRD3
2.945 0.205 [107] km2 SDR4
0.51 0.11 [77,109,110] mi2 SDR5
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SDR =
SDRmax

1 + e
(

IC0−ICi
kb

)
(21)

where SDR is the sediment delivery ratio; SDRmax is the maximum theoretical sediment
delivery ratio, which is suggested to be 0.8 [6,21]; and IC0 and Kb are calibration parameters
and equal to 0.5 and 2, respectively [12]. Both parameters can be determined by the S-shape
of the sigmoid function relationship between the sediment delivery ratio and the IC [6].
The ICi is the index of connectivity for a specific cell.

IC = log10

(
Dup

Ddn

)
= log10

(
WS
√

A

∑i
di

WiSi

)
(22)

where IC is the Index of Connectivity; Dup is the upslope components; Ddn is the downslope
components; W is the average weighting factor of the contributing area; S is the average
slope of the upslope contributing area (m/m); A is the area of the contribution (m2); and di,
Wi, and Si, are the flow path to the main downstream channel, the weighting factor, and
the slope gradient of the ith cell, respectively.

Wi = 1− (
RI

RImax
) (23)

RI =

√
∑mws2

i = 1 (xi − x)2

mws2 (24)

where Wi is the weighting factor, RI is the topographic surface roughness, mws is the
moving window size (normally 5-cells; [108]), xi is the one specific cell value of the residual
topography within the moving window, and x is the mean of the cells values within the
moving window.

3.4. Reservoir Sedimentation (RSed)

Equation (25) [15] was used to estimate the RSed reached to DL in t·ha−1·yr−1. The
absolute RSed for the six stages of the DLB areas were calculated in tons (Figure 2), where
the DLB was changed with time as a result of the dams constructed within the basin
(Table 2). Moreover, the amount of the RSed in tons was estimated until 2 May 2008, to
validate the result of each scenario (see Section 4.2)

RSed = RUSLE·SDR (25)

where RSed is reservoir sedimentation, RUSLE is the soil loss, and SDR is the sediment
delivery ratio.

3.5. Validation

For any model, validation is the most significant procedure to check the accuracy
of the results [111]. The information about the RSed volume within the DL (Table A2 in
Appendix B) offered by the ELC, Electroconsult; MED, Ingegneria; and SGI, Studio Galli
Ingegneria companies [112] was used to validate the results of the 90 estimated scenarios
of the RSed. Reference [112] used the historical topographic maps [113] produced before
building the dam and a recent sub-water topographic map created by the topo-bathymetric
survey by echo-sounding bathymetry data for the DL to estimate the amount of the RSed
for the period between November 1961 and 2 May 2008.

The survey for the DL was implemented by [112] in clear, calm weather and water
conditions. It was carried out between 25 April to 2 May 2008, at the dam sites, utilizing
two small boats; an Echo sounder (Single beam Sonar Bathy500 Dual Frequency-200 kHz
(10 degrees) Transducer) rod, and GPS (Positioning Trimble R6) antenna were mounted to
the vessel via a wooden board manufactured directly at the site [112].
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To convert the weight of the 90 scenarios (in tons) to size (in km3), three samples from
the siltation within the DL were collected to find the average density of the siltation. Since
the lake’s water level dropped as a result of the reduction in rainfall, the sediments exposed
in the lake became a typical location to sample the actual sedimentation of the lake. The
scenarios estimated the RSed in tons, while the siltation measured by the [112] is estimated
in a million cubic meters (MCM).

All the results of the RUSLE factors, RUSLE, SDR, and RSed were presented for the
periods between November 1961 to 2 May 2008. Finally, the RSed within the DL will be
predicted by the end of 2019 using the best scenario out of the ninety scenarios tested.
Moreover, the error rates were calculated using Equation (26):

Error% = |
(

in situ− RSed
in situ

)
·100| (26)

where in situ means the results obtained by the surveys by echo-sounding bathymetry, and
RSed is the outcome of the erosion model.

In addition, the only available survey for the DL, carried out between 25 April and 2
May 2008, is used indirectly to validate the estimation of the C and R factors, and the best
scenario resulted from the best RUSLE and SDR combination for estimating the RSed.

The error density plots display the relationship between the position and dispersion
of the estimations for the factors (R and C). For this target, 984,988 pixels (~5% of the
total pixels) were randomly selected and utilized. This test was repeated more than one
time. The uncertainty plots display two standard deviations (SDs) of these estimates in the
y-axis against their mean value in the x-axis, using the chosen pixels. The uncertainty plots
allow the interpreter to determine the locations of the dispersion values for the estimated
scenarios [80].

4. Results

The ninety scenarios of the RSed models for the DLB were estimated until 2 May
2008 and compared with the in situ surveys by echo-sounding bathymetry. The best RSed
scenario resulting from this comparison was Scenario #18 (Table A2 in Appendix B). This
scenario used Equation (5) to estimate the R factor, Equation (18) to estimate the C factor,
and the IC model to estimate the SDR. Therefore, Equations (5) and (18) were reported to
exhibit the result of the R factor and C factor, respectively, instead of other equations. In
this section, a brief of all scenarios that were tested is given, and the focus will be on the
optimum scenario result. The following subsections show the results of calculating RSed,
SDR, RUSLE, and its factors.

4.1. Estimation RUSLE and Its Factors

Table 8 shows six models of the R factor. The R factor resulting from Equation (5) varies
from 83.69 MJ·mm·ha−1·h−1·y−1 to 335.47 MJ·mm·ha−1·h−1·y−1, with an average value of
210.4 MJ·mm·ha−1·h−1·y−1. The R-factor map was sliced into five classes, which decrease
toward the east. The areas with very high class (>275 MJ·mm·ha−1·h−1·y−1) are located in
the northwest, which is almost all located within Iraqi areas. Meanwhile, the regions with
very low class are located in the eastern part of the DLB, within Iranian areas (Figure 4A).
Figure 5 shows the distributions of the ~5% random selected pixels from R-factor values
for the six equations. The R-factor distribution in Equation (8) has a higher performance
than the others, while the performance of the R factors for Equations (5), (7), and (6) looks
the same (Figure 5). Equations (3) and (4) have intermediate behavior between the two
groups (i.e., Equations (5), (7), and (6); and Equations (3) and (4)).

Similarly, four types of soil were exposed in the study area. The majority of the DLB
is loam texture, followed by clay and clay loam (Table 9). Figure 4B is the K-factor map,
where the K factor value is low (0.023007 t·ha·h·ha−1·MJ−1·mm−1) in the northwestern
part of the DLB, and the K factor value is high (0.063365 t·ha·h·ha−1·MJ−1·mm−1) in small
patches in the north and northeastern parts of the DLB (Figure 4B).
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Table 8. R-factor parameters of the used models.

R Factor Minimum Maximum Mean SD

Equation (3) 215.80 332.54 290.14 25.44
Equation (4) 224.71 346.92 302.53 26.64
Equation (5) 83.69 335.47 210.40 64.18
Equation (6) 106.75 347.05 242.71 60.30
Equation (7) 129.04 345.63 245.28 54.81
Equation (8) 229.95 446.79 352.64 54.39
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Calcic Xerosols Clay loam 40 37 23 0.063365
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The slope gradient in the DLB reaches 77.6◦, and the average is 16.2◦. The majority
of the high-slope areas are located in the central part of the DLB. This variation between
the slopes, coupled with the variation in the flow accumulation, is the cause of the high
fluctuation of the LS factor values. Likewise, the LS factor was sliced into five classes.
Approximately 41.2% of the study area has LS < 1; almost all of these areas are located in
the western part. The highest LS values (>100) cover 2.35% of the study area, while the
average of the LS factor is 6.84 t·ha−1·y−1 (Figure 6A).
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Similar to the R factor, the three calculated models of the C factor are stated in Table 10.
The C factor ranged between 0.21 and 0.58 for Equation (18), which is classified into five
classes (Figure 6B). The very high values (0.45–0.58) are located in the landslide and highly
eroded areas (Figure 7A), which are distributed in small patches within the DLB. In general,
the eastern part of the DLB has a C factor more than the western part (Figure 6B), while
the lower values (<0.3) were presented in the forest and the agricultural areas (Figure 7B).
Figure 8 shows the distributions of the ~5% random selected pixels from C-factor values
for the three models (i.e., two equations and land-cover based), which have significant
differences. The C-factor distribution in Equation (18) is higher than and the land-cover
based one, while Equation (17) is higher than both (i.e., Equation (18) and land-cover based;
Figure 8).
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Table 10. C-factor parameters of the used models.

C Factor Minimum Maximum Mean SD

Equation (17) 0.029 1 0. 618 0. 13
Land cover 0 0.3 0.091 0.127

Equation (18) 0.213 0.579 0. 396 0. 034
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Similarly, Figure 9A shows the P factor, which is subdivided into five classes and
ranges from 0.2 to 0.86. The very high P-factor values are located in the rough topography,
which is mostly in the central part of the DLB. At the same time, the northwestern part of
the study area shows low P-factor values.
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Figure 10 shows the distributions of one set of random selected pixels (~5% of the total
data of the study area) from RUSLE model values for the eighteen scenarios, where more
than one set was tested. More detailed information about the eighteen scenarios of RUSLE
models of the R- and C-factor combinations can be found in Table A1 in Appendix A. It
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shows that there are two main groups (i.e., Group 1, RUSLE 1 to 12; and Group 2, RUSLE
13 to 18). The SL or RUSLE map was classified into five groups, ranging from 0 t·ha−1·y−1

to 83,628.8 t·ha−1·y−1, with an average value of 8.3 t·ha−1·y−1 (Figure 9B). The areas with
very low and low SL (0–3 t·ha−1·y−1) represent >59% of the study area. They can be
observed in the northwestern (near Sulaymaniyah city) parts of the DLB, in addition to the
eastern parts (south of Muchesh and Sanandaj cities). Severe (12%) and very severe (15%)
SL areas are located in the central part of the DLB. The extremely severe SL areas (>1000
t·ha−1·y−1) cover 0.15 of the DLB.
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4.2. Sediment Delivery Ratio (DRr), Reservoir Sedimentation (RSed), and the Model Validation

The five SDR models (i.e., the IC model and Table 7) show fluctuation in their results.
Table 11 shows the statistical parameters of the SDR models. For the best scenario (IC
model), the SDR ranges from 0.013 to 0.147, with an average value of 0.0327. The IC model
map was classified into five classes (Figure 11A). The very high and high classes areas are
located within and near the main valleys. In contrast, the very low and low classes areas
can be observed in the northwestern (near Sulaymaniyah city) parts of the DLB, in addition
to the eastern parts (south of Muchesh and Sanandaj cities).

Table 11. SDR ranges for the five models used in the DLB for the period between 1961 and 2008.

Model No. Minimum Maximum Mean SD

1 0.125 0.128 0.126 0.0014
2 0.509 0.519 0.511 0.0059
3 0.402 0.420 0.410 0.0074
4 0.172 0.176 0.174 0.0017

IC (Equation (22)) 0.013 0. 147 0.0327 0.0076

The average density of the three samples collected from the field trip (1.631 kg/L) was
used to convert the RSed scenarios from tons to km3. Figure 12 shows the distribution of
part of the scenarios tested in this study (more than 20 km3·yr−1 and less than 50 km3·yr−1).
The amount of Scenario #18, the best scenario (22.294 km3), makes it the closest model to
the siltation measured by [112] within the DLB for the period from November 1961 to 2
May 2008, which is 22.223 km3. The average siltation per year is 0.46458 km3·yr−1. This
scenario is followed by Scenarios #66, #61, and #62.
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Figure 12. Evaluation of the reservoir sedimentation scenarios tested with the actual sedimentation
in the Darbandikhan Lake Basin.

Almost all of the study areas are provided by the DLB with the sedimentation of
<5 tons/year. Some of the areas, specifically in the central part of the DLB, provided the
DLB with sedimentation between 5 and 50 tons/year. Very few areas (could be considered
outliers) supplied the DLB with sedimentation >50 tons/year, which is normally located in
the main streams (Figure 11B).

4.3. RUSLE, Its Factors, and Reservoir Sedimentation in the Present Day

The RUSLE for the DLB and the RSed within the DL were estimated by the end of
2019, using Scenario #18 (the best scenario out of the ninety scenarios tested). The RUSLE
map was classified into five groups, ranging from 0 t·ha−1·y−1 to 82,725.2 t·ha−1·y−1, with
an average value of 8.2 t·ha−1·y−1 (Figure 13A). The classes within the RUSLE maps show
the same distribution for the old (2008) and new (2019) maps.
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The average RSed within the DLB for the period from 2 May 2008 to 2 December 2019
is 0.3836 km3.yr−1 (Figure 13B). The total amount of the RSed within the DL for the period
from November 1961 to the end of 2019 is 27.05 km3. The prediction of the RSed to the end
of 2022 will be 28.201 km3.

5. Discussion
5.1. RUSLE-SDR and Its Factors

Two main insights must be considered when comparing predictions with in situ
data. First, the model is valid to be applied to a specific area, which has its own circum-
stances. Therefore, almost all of the available Zagros literature was reviewed in the Scopus
dataset [23,25–29,31–35,44,46–50,83–85,94]. Second, the successful prediction scenario must
have an acceptable correlation with the in situ measurement. In this study, the final output
of the 90 RSed scenarios was verified by using the bathymetry survey of the DL, which
mirrors the verification of RUSLE factors and the SDR. When the bathymetry survey is
compared with obtained RSed, Scenarios #18 and #66 give approximately similar results
(the best; error < 1%), followed by Scenarios #61 and #62 (better; error < 10%), and then
Scenarios #13 and #14 (good; error < 20%).

Among the six equations of the R factor, the equations that used MIF [82] give better
results than other models, particularly Equations (5), (7), and (6), best, better, and good,
respectively. Scenarios #18 and #66 used Equation (5) to estimate the R factor, while
Scenarios #61 and #62 used Equations (7) and (6), respectively. Meanwhile Equation (8),
which also depends on MIF, did not show a promising result (Table A3 in Appendix C,
Table 12, and Figure 5). Moreover, the standard deviations of the R factor in the study
area are lower than those of Azari et al. [47]. The results of the equations of the R factor
are located within the range stated by Azari et al. [47]. Therefore, this study agrees with
them to use the MIF models because of the impossibility of extracting the R factors in more
suitable equations.

Table 12. The results of the best scenarios, which have error rates less than 20% in the Darbandikhan
Lake for the period between November 1961 and May 02, 2022.

Scenarios C Factor R Factor SDR RSed (km3) Error %

18 Equation (18) Equation (5) SDR1 22.29 0.32
66 Land cover Equation (5) SDR4 22.445 1.01
61 Land cover Equation (7) SDR4 24.97 12.34
62 Land cover Equation (6) SDR4 25.09 12.89
13 Equation (18) Equation (7) SDR1 26.50 19.24
14 Equation (18) Equation (6) SDR1 26.57 19.54
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Scenario #18 used Equation (18), while Scenarios #66, #61, and #62 used the land-cover
map to estimate the C factor. Scenario #18 used the IC model to estimate the SDR, while
Scenarios #66, #61, and #62 used Equation (18), with α = 2.945 and β = 0.205 (Table A3 in
Appendix C). This study shows that almost all (68 scenarios) of the prediction models are
higher than the in situ measurement conducted by [112]. Eighteen scenarios are less than
the in situ measurement.

This study recommends using SDR1 (IC) because it is changeable and can be applied
for different area sizes and depends on the influence of topography on sediment connec-
tivity [69], in contrast to SDR4, which depends on the area size and is affected by the
change in landform. Moreover, the Zagros region is a mountainous area, varies in rock
types and strengths, and has high tectonic activities [114], with medium to high erosional
risk [115–117], confirming that this area suffers from severe erosion with low delivery for
the soil. In addition, the results of RUSLE 3 correspond with the results of the research
reported in the literature [25,31,32,45,48].

The scenarios of RSed, which have high accuracy, can be classified into two groups:
scenarios with high SDR and low RUSLE and scenarios with low SDR and high RUSLE.
The best SDRs are SDR1 and SDR4 because they comes three times for the best six scenarios
(present of 50%), which has an accuracy >80 (Table 12). These two SDRs show variation
in the delivery rate, as SDR1 ranges between 1.3% and 14.7%, while the mean SDR4 is
40.2%. Therefore, the SDR models can integrate these RUSLE models to obtain suitable
results for the RSed, especially in inaccessible areas or areas with no verification. However,
RUSLE 3 (includes C-factor Equation (18)) works better if it is coupled with SDR1 (Scenario
#18), while RUSLE 15 (includes land-cover-based model) works better with SDR4 (Scenario
#66; Table A3 in Appendix C and Table 12). In other words, the best combinations are
represented by Scenario #18 (the best) and then Scenario #66 (better).

5.2. R Factor, C Factors, and RUSLE Uncertainties

Despite the variations and high uncertainty between the three models of the C factor, it
appears that two models are valid in DLB: Equation (18) and land-cover models. Therefore,
this study confirms that the selection of the C factor must consider the SDR model because
of the high variation in the C-factor models (Figure 14B). This appears clearly in Figure 10,
where the land-cover-based models (RUSLE 13-RUSLE18) have fewer distributions (low
C-factor values) than the other RUSLE models. Moreover, increasing the number of NDVI
scenes from one to three scenes per month will decrease the uncertainty of the C factor.
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Figure 14. Uncertainty plots show the mean value of the factors estimates (x-axis) against two
standard deviations of the factors estimates (y-axis) for (A) R factor and (B) C factor models.

Table 12 emphasizes that the R factor does not play a big role in the discrepancy
in the obtained results, especially for the six best scenarios of the RSed, where the same
equation (i.e., Equation (5)) was used for Scenarios #18 and #66; Scenario #66 comes from
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land-cover-based models, and Scenario #18 comes from Equation (18). This is confirmed by
Figure 14A, which displays that the variation between the six models is small, contrary to
what appears in Figure 14B. However, the SDR models can be integrated with these RUSLE
models to obtain suitable results for the RSed, especially in inaccessible areas or areas with
no verification. Equation (18) works better if it is coupled with SDR1 (Scenario #18), while
the land-cover model works better with SDR4 (Scenario #66; Table A3 in Appendix C and
Table 12). In other words, the best combinations are represented by Scenario #18 (the best)
and then Scenario #66 (better).

One of the variabilities of the results of the SRed is the uncertainty in the RUSLE
models (Figure 15), which represents the distributions of the ~1% and ~5% randomly
selected pixels from RUSLE model values for the eighteen scenarios. In both tests, i.e.,
Figure 15A,B, the pixels have low variation for the SL with high values, while the areas
with low values have high variation. In other words, the uncertainty decreased with the
SL values. The uncertainty of the RUSLE factors and SDR models is migrated to the RSed
scenarios. The accuracy of the RUSLE factors and SDR models is significant; however, this
requires field data for verification to evaluate these items [118], which requires carefully
dealing with the local precipitation patterns and vegetation density [2], which is not an
easy task [119].
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5.3. Implications of This Study

Although 13 dams have been built within the DLB since 1978, the risk of RSed is present,
as there was a decrease in the RSed amount from 0.46458 km3·yr−1 to 0.3836 km3·yr−1, i.e.,
17.43% from the total amount. In comparison, the present catchment area for the DLB is
decreasing to 36.2% of the original catchment (Table 1). It means that almost all of the
areas (rugged Zagros mountains), which suffer from high and very high SL, are within the
remaining catchments of the DL. Therefore, this study highly recommends keeping moni-
toring the RSed amounts in DLB and doing another bathymetry survey for this purpose.
As a result, the new survey will emphasize our obtained findings, whose methodology can
be applied and modified for other related and similar environments, worldwide, .
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6. Conclusions

This study used the Revised Universal Soil Loss Equation (RUSLE)–Sediment Delivery
Ratio (SDR) approach supported by multiple remote-sensing data sources to estimate
the annual soil loss (SL) and reservoir sedimentation (RSed) in the Darbandikhan Lake
Basin (DLB). For this purpose, eighteen RUSLE models coupled with five SDR models
were used to estimate ninety scenarios of the RSed. The Digital Elevation Model (DEM),
Tropical Rainfall Measuring Mission (TRMM), Harmonized World Soil Database (HWSD),
and AQUA eMODIS NDVI V6 data were implemented for this end. The echo-sounding
bathymetry survey was used to validate the results.

The research considered error factors, such as gravel and sand quarries, which may
have a probable effect on decreasing the actual RSed. To check the scenario’s uncertainty,
~5% of the total pixels was used to investigate the relationship between the potion and the
dispersion of the R and C factors estimation as a density plot.

The most proper model for the R and C factors and SDR was proposed in this research.
Consequently, the most proper RUSLE-SDR model suitable for RSed modeling in the
Zagros area was chosen based on the results from this research. Typical RUSLE (average of
8.3 t·ha−1·y−1) and RSed (average of 0.46458 km3·yr−1) for the Zagros region were proved
by the results of this research. In addition, this research recommended avoiding the use of
the Index of Connectivity (IC) model for calculating SDR and land cover for calculating the
C Factor.

This study recommended using the Modified Fournier index (MIF) equations for
estimating the R factor. It can be concluded that the scenarios of RSed, which have high
accuracy, can be classified into two groups: scenarios with high SDR and low RUSLE and
scenarios with low SDR and high RUSLE. For future work, we recommended increasing
the number of scenes (three scenes per month) when calculating the C factor to reduce
the uncertainty.
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Appendix A

Table A1. The eighteen RUSLE scenarios of the R and C factors combinations were examined in
Darbandikhan Lake for the period between November 1961 and 2 May 2022.

Scenarios C-Equation R-Equation Scenarios C-Equation R-Equation

1 18 3 10 17 6
2 18 4 11 17 7
3 18 5 12 17 8
4 18 6 13 LC 3
5 18 7 14 LC 4
6 18 8 15 LC 5
7 17 3 16 LC 6
8 17 4 17 LC 7
9 17 5 18 LC 8

Appendix B

Table A2. The amount of the reservoir sedimentation gained for the period between November 1961
and 2 May 2008, within the Darbandikhan [112].

Elevation VOLUME
DIFF (MCM) Elevation VOLUME

DIFF (MCM) Elevation VOLUME
DIFF (MCM) Elevation VOLUME

DIFF (MCM)

434 186.5196177 449 368.2601237 464 454.2837 479 444.557
435 202.4116618 450 376.7507805 465 460.0191 480 454.4112
436 217.8700461 451 383.6461686 466 462.8374 481 446.2946
437 232.2080715 452 390.8162663 467 464.5166 482 434.6787
438 246.3789168 453 397.2368461 468 465.7219 483 435.0195
439 259.793523 454 402.6708382 469 467.6152 484 434.0626
440 273.5651565 455 408.1217914 470 468.8454 485 423.8966
441 285.4514375 456 412.3380251 471 469.2708 486 404.414
442 297.1203966 457 416.9450171 472 469.4618 487 368.7144
443 308.6056451 458 422.0896716 473 471.0426 488 323.7879
444 319.7122029 459 427.3771193 474 472.0941 489 267.4594
445 330.0812299 460 433.8615028 475 474.5954 490 209.1261
446 340.4472993 461 438.4430503 476 471.8698 491 145.1009
447 349.8499081 462 443.3719036 477 467.5566 492 59.9097
448 359.4951166 463 448.2591828 478 451.6446 493 0

Appendix C

Table A3. The results of the scenarios examined in the Darbandikhan Lake for the period between
November 1961 and 2 May 2022.

Scenarios C Factor R Factor SDR RSed
(km3) Error% Scenarios C Factor R Factor SDR RSed

(km3) Error %

1 Equation (17) Equation (7) SDR1 36.96916 66.3554 46 Land cover Equation (3) SDR5 5.181852 76.68248
2 Equation (17) Equation (6) SDR1 37.03418 66.64798 47 Land cover Equation (4) SDR5 5.417935 75.62015
3 Equation (17) Equation (8) SDR1 52.05412 134.2353 48 Land cover Equation (5) SDR5 4.169816 81.23648
4 Equation (17) Equation (3) SDR1 42.38818 90.74013 49 Equation (18) Equation (7) SDR5 34.57858 55.59816
5 Equation (17) Equation (4) SDR1 47.80158 115.0996 50 Equation (18) Equation (6) SDR5 34.63592 55.85619
6 Equation (17) Equation (5) SDR1 32.41343 45.85533 51 Equation (18) Equation (8) SDR5 48.8311 119.7323
7 Land cover Equation (7) SDR1 3.045926 86.29381 52 Equation (18) Equation (3) SDR5 39.88271 79.46591
8 Land cover Equation (6) SDR1 3.062053 86.22124 53 Equation (18) Equation (4) SDR5 41.76512 87.93646
9 Land cover Equation (8) SDR1 4.221344 81.00462 54 Equation (18) Equation (5) SDR5 30.20864 35.93412
10 Land cover Equation (3) SDR1 3.415393 84.63127 55 Equation (17) Equation (7) SDR4 287.1974 1192.343
11 Land cover Equation (4) SDR1 3.575052 83.91283 56 Equation (17) Equation (6) SDR4 287.0661 1191.752
12 Land cover Equation (5) SDR1 2.718805 87.76581 57 Equation (17) Equation (8) SDR4 409.8523 1744.271
13 Equation (18) Equation (7) SDR1 26.49843 19.23876 58 Equation (17) Equation (3) SDR4 336.9121 1416.051
14 Equation (18) Equation (6) SDR1 26.56477 19.53728 59 Equation (17) Equation (4) SDR4 352.692 1487.058
15 Equation (18) Equation (8) SDR1 37.20219 67.404 60 Equation (17) Equation (5) SDR4 248.1158 1016.482
16 Equation (18) Equation (3) SDR1 30.24063 36.07807 61 Land cover Equation (7) SDR4 24.96615 12.34374
17 Equation (18) Equation (4) SDR1 31.67841 42.54786 62 Land cover Equation (6) SDR4 25.08741 12.88939
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Table A3. Cont.

Scenarios C Factor R Factor SDR RSed
(km3) Error% Scenarios C Factor R Factor SDR RSed

(km3) Error %

18 Equation (18) Equation (5) SDR1 22.29416 0.320209 63 Land cover Equation (8) SDR4 34.49158 55.20668
19 Equation (17) Equation (7) SDR3 358.5325 1513.34 64 Land cover Equation (3) SDR4 27.89489 25.52261
20 Equation (17) Equation (6) SDR3 358.3681 1512.6 65 Land cover Equation (4) SDR4 29.16574 31.24124
21 Equation (17) Equation (8) SDR3 511.6561 2202.372 66 Land cover Equation (5) SDR4 22.44697 1.00783
22 Equation (17) Equation (3) SDR3 420.5986 1792.627 67 Equation (18) Equation (7) SDR4 186.1391 737.5966
23 Equation (17) Equation (4) SDR3 440.2978 1881.271 68 Equation (18) Equation (6) SDR4 186.4481 738.9871
24 Equation (17) Equation (5) SDR3 309.742 1293.79 69 Equation (18) Equation (8) SDR4 262.8601 1082.829
25 Land cover Equation (7) SDR3 31.16664 40.24497 70 Equation (18) Equation (3) SDR4 214.6905 866.0734
26 Land cover Equation (6) SDR3 31.31803 40.9262 71 Equation (18) Equation (4) SDR4 224.8236 911.6708
27 Land cover Equation (8) SDR3 43.05787 93.75363 72 Equation (18) Equation (5) SDR4 162.6163 631.7477
28 Land cover Equation (3) SDR3 34.82278 56.69703 73 Equation (17) Equation (7) SDR2 99.73186 348.7777
29 Land cover Equation (4) SDR3 36.40928 63.83603 74 Equation (17) Equation (6) SDR2 99.6861 348.5717
30 Land cover Equation (5) SDR3 28.02177 26.09355 75 Equation (17) Equation (8) SDR2 142.3258 540.4437
31 Equation (18) Equation (7) SDR3 232.3718 945.6365 76 Equation (17) Equation (3) SDR2 116.9967 426.4667
32 Equation (18) Equation (6) SDR3 232.7572 947.3707 77 Equation (17) Equation (4) SDR2 122.4763 451.1241
33 Equation (18) Equation (8) SDR3 328.1499 1376.623 78 Equation (17) Equation (5) SDR2 86.1599 287.706
34 Equation (18) Equation (3) SDR3 268.0158 1106.029 79 Land cover Equation (7) SDR2 8.669506 60.98859
35 Equation (18) Equation (4) SDR3 280.6658 1162.952 80 Land cover Equation (6) SDR2 8.711617 60.7991
36 Equation (18) Equation (5) SDR3 203.0056 813.4932 81 Land cover Equation (8) SDR2 11.97725 46.10426
37 Equation (17) Equation (7) SDR5 53.35229 140.0769 82 Land cover Equation (3) SDR2 9.686521 56.41218
38 Equation (17) Equation (6) SDR5 53.3278 139.9667 83 Land cover Equation (4) SDR2 10.12783 54.42636
39 Equation (17) Equation (8) SDR5 76.13834 242.6105 84 Land cover Equation (5) SDR2 7.794709 64.92504
40 Equation (17) Equation (3) SDR5 62.58831 181.6375 85 Equation (18) Equation (7) SDR2 64.63809 190.8612
41 Equation (17) Equation (4) SDR5 65.5197 194.8283 86 Equation (18) Equation (6) SDR2 64.74529 191.3436
42 Equation (17) Equation (5) SDR5 46.09182 107.4059 87 Equation (18) Equation (8) SDR2 91.28039 310.7474
43 Land cover Equation (7) SDR5 4.637795 79.13065 88 Equation (18) Equation (3) SDR2 74.55308 235.4771
44 Land cover Equation (6) SDR5 4.660323 79.02928 89 Equation (18) Equation (4) SDR2 78.07189 251.3112
45 Land cover Equation (8) SDR5 6.40729 71.1682 90 Equation (18) Equation (5) SDR2 56.46937 154.1033
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31. Irvem, A.; Topaloğlu, F.; Uygur, V. Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. J. Hydrol. 2007,
336, 30–37. [CrossRef]

32. Ozsoy, G.; Aksoy, E.; Dirim, M.S.; Tumsavas, Z. Determination of Soil Erosion Risk in the Mustafakemalpasa River Basin, Turkey,
Using the Revised Universal Soil Loss Equation, Geographic Information System, and Remote Sensing. Environ. Manag. 2012, 50,
679–694. [CrossRef]

33. Ozsoy, G.; Aksoy, E. Estimation of soil erosion risk within an important agricultural sub-watershed in Bursa, Turkey, in relation to
rapid urbanization. Environ. Monit. Assess. 2015, 187, 419. [CrossRef]

34. Akbarzadeh, A.; Ghorbani-Dashtaki, S.; Naderi-Khorasgani, M.; Kerry, R.; Taghizadeh-Mehrjardi, R. Monitoring and assessment of
soil erosion at micro-scale and macro-scale in forests affected by fire damage in northern Iran. Environ. Monit. Assess. 2016, 188, 699.
[CrossRef]

35. Arekhi, S.; Niazi, Y.; Kalteh, A.M. Soil erosion and sediment yield modeling using RS and GIS techniques: A case study, Iran.
Arab. J. Geosci. 2012, 5, 285–296. [CrossRef]

36. Fallah, M.; Kavian, A.; Omidvar, E. Watershed prioritization in order to implement soil and water conservation practices. Environ.
Earth Sci. 2016, 75, 1248. [CrossRef]

37. Vaezi, A.R.; Sadeghi, S.H.R. Evaluating the RUSLE model and developing an empirical equation for estimating soil erodibility
factor in a semi-arid region. Span. J. Agric. Res. 2011, 9, 912. [CrossRef]

38. Mirghaed, F.A.; Souri, B.; Mohammadzadeh, M.; Salmanmahiny, A.; Mirkarimi, S.H. Evaluation of the relationship between soil
erosion and landscape metrics across Gorgan Watershed in northern Iran. Environ. Monit. Assess. 2018, 190, 643. [CrossRef]

39. Mirakhorlo, M.S.; Rahimzadegan, M. Evaluating estimated sediment delivery by Revised Universal Soil Loss Equation (RUSLE)
and Sediment Delivery Distributed (SEDD) in the Talar Watershed, Iran. Front. Earth Sci. 2020, 14, 50–62. [CrossRef]

40. Zare, M.; Samani, A.A.N.; Mohammady, M.; Salmani, H.; Bazrafshan, J. Investigating effects of land use change scenarios on soil
erosion using CLUE-s and RUSLE models. Int. J. Environ. Sci. Technol. 2017, 14, 1905–1918. [CrossRef]

41. Zare, M.; Samani, A.A.N.; Mohammady, M.; Teimurian, T.; Bazrafshan, J. Simulation of soil erosion under the influence of climate
change scenarios. Environ. Earth Sci. 2016, 75, 1405. [CrossRef]

42. Ebrahimzadeh, S.; Motagh, M.; Mahboub, V.; Harijani, F.M. An improved RUSLE/SDR model for the evaluation of soil erosion.
Environ. Earth Sci. 2018, 77, 454. [CrossRef]

43. Avand, M.; Mohammadi, M.; Mirchooli, F.; Kavian, A.; Tiefenbacher, J.P. A New Approach for Smart Soil Erosion Modeling:
Integration of Empirical and Machine-Learning Models. Environ. Model. Assess. 2022, 28, 145–160. [CrossRef]

http://doi.org/10.1016/j.catena.2019.104144
http://doi.org/10.1016/S0341-8162(02)00150-9
http://doi.org/10.1016/j.catena.2022.106509
http://doi.org/10.1016/j.envsoft.2005.04.021
http://doi.org/10.1016/j.geomorph.2011.08.026
http://doi.org/10.1016/j.catena.2008.07.006
http://doi.org/10.3390/ijgi10020059
http://doi.org/10.3390/app12157776
http://doi.org/10.1007/s10668-022-02624-9
http://doi.org/10.1007/s12210-016-0556-0
http://doi.org/10.1007/s40995-020-01053-5
http://doi.org/10.1007/s12517-020-5240-0
http://doi.org/10.1016/j.jhydrol.2006.12.009
http://doi.org/10.1007/s00267-012-9904-8
http://doi.org/10.1007/s10661-015-4653-9
http://doi.org/10.1007/s10661-016-5712-6
http://doi.org/10.1007/s12517-010-0220-4
http://doi.org/10.1007/s12665-016-6035-1
http://doi.org/10.5424/sjar/20110903-229-10
http://doi.org/10.1007/s10661-018-7040-5
http://doi.org/10.1007/s11707-019-0774-8
http://doi.org/10.1007/s13762-017-1288-0
http://doi.org/10.1007/s12665-016-6180-6
http://doi.org/10.1007/s12665-018-7635-8
http://doi.org/10.1007/s10666-022-09858-x


Remote Sens. 2023, 15, 697 24 of 26

44. Damaneh, H.E.; Khosravi, H.; Habashi, K.; Tiefenbacher, J.P. The impact of land use and land cover changes on soil erosion in
western Iran. Nat. Hazards 2022, 110, 2185–2205. [CrossRef]

45. Zakeri, E.; Mousavi, S.A.; Karimzadeh, H. Scenario-based modelling of soil conservation function by rangeland vegetation cover
in northeastern Iran. Environ. Earth Sci. 2020, 79, 107. [CrossRef]

46. Mehri, A.; Salmanmahiny, A.; Tabrizi, A.R.M.; Mirkarimi, S.H.; Sadoddin, A. Investigation of likely effects of land use planning
on reduction of soil erosion rate in river basins: Case study of the Gharesoo River Basin. Catena 2018, 167, 116–129. [CrossRef]

47. Azari, M.; Oliaye, A.; Nearing, M.A. Expected climate change impacts on rainfall erosivity over Iran based on CMIP5 climate
models. J. Hydrol. 2021, 593, 125826. [CrossRef]

48. Derakhshan-Babaei, F.; Nosrati, K.; Mirghaed, F.A.; Egli, M. The interrelation between landform, land-use, erosion and soil quality
in the Kan catchment of the Tehran province, central Iran. Catena 2021, 204, 105412. [CrossRef]

49. Doulabian, S.; Toosi, A.S.; Calbimonte, G.H.; Tousi, E.G.; Alaghmand, S. Projected climate change impacts on soil erosion over
Iran. J. Hydrol. 2021, 598, 126432. [CrossRef]

50. Ostovari, Y.; Ghorbani-Dashtaki, S.; Kumar, L.; Shabani, F. Soil erodibility and its prediction in semi-arid regions. Arch. Agron.
Soil Sci. 2019, 65, 1688–1703. [CrossRef]

51. General Directorate of Research Agricultural Extension. Climate Data; Ministry of Agriculture of the Kurdistan Regional:
Sulaimaniyah, Iraq, 2020.

52. Yousif, O.S.Q.; Zaidn, K.; Alshkane, Y.; Khani, A.; Hama, S. Performance of Darbandikhan Dam during a Major Earthquake
on November 12, 2017. In Proceedings of the EWG2019, 3rd Meeting of Dams and Earthquakes, An International Symposium,
Lisbon, Portugal, 6–8 May 2019; pp. 295–308.

53. Strahler, A.N. Quantitative analysis of watershed geomorphology. Eos Trans. Am. Geophys. Union 1957, 38, 913–920. [CrossRef]
54. Saleh, D.K. Stream Gage Descriptions and Streamflow Statistics for Sites in the Tigris River and Euphrates River Basins, Iraq; U.S.

Geological Survey: Reston, VA, USA, 2010. [CrossRef]
55. Amini, A.; Bahrami, J.; Miraki, A. Effects of dam break on downstream dam and lands using GIS and Hec Ras: A decision basis

for the safe operation of two successive dams. Int. J. River Basin Manag. 2021, 20, 487–498. [CrossRef]
56. Rashidi, M.; Haeri, S.M. Evaluation of behaviors of earth and rockfill dams during construction and initial impounding using

instrumentation data and numerical modeling. J. Rock Mech. Geotech. Eng. 2017, 9, 709–725. [CrossRef]
57. Faraj, D.M.; Zaidan, K. The Impact of the Tropical Water Project on Darbandikhan Dam and Diyala River Basin. Iraqi J. Civ. Eng.

2022, 14, 1–6.
58. Hosseini, S.P.; Jafari, R.; Esfahani, M.T.; Senn, J.; Hemami, M.-R.; Amiri, M. Investigating habitat degradation of Ursus arctos

using species distribution modelling and remote sensing in Zagros Mountains of Iran. Arab. J. Geosci. 2021, 14, 2179. [CrossRef]
59. Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models

acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [CrossRef]
60. GSFC_DAAC. Tropical Rainfall Measurement Mission Project (TRMM; 3B43 V7). Available online: https://disc.gsfc.nasa.gov/

datasets/TRMM_3B43_7/summary (accessed on 14 January 2023).
61. Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J.

Atmos. Ocean. Technol. 1998, 15, 809–817. [CrossRef]
62. Nachtergaele, F.; van Velthuizen, H.; van Engelen, V.; Fischer, G.; Jones, A.; Montanarella, L.; Petri, M.; Prieler, S.; Teixeira, E.; Shi,

X. Harmonized World Soil Database, version 1.2; FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2012; pp. 1–50.
63. Jenkerson, C.; Maiersperger, T.; Schmidt, G. EMODIS: A User-Friendly Data Source; U.S. Geological Survey: Reston, VA, USA, 2010.
64. Almagro, A.; Thomé, T.C.; Colman, C.B.; Pereira, R.B.; Junior, J.M.; Rodrigues, D.B.B.; Oliveira, P.T.S. Improving cover and

management factor (C-factor) estimation using remote sensing approaches for tropical regions. Int. Soil Water Conserv. Res. 2019,
7, 325–334. [CrossRef]

65. NASA. User Guide for the MODIS Land Cover Type Product (MCD12Q1). 2013. Available online: https://lpdaac.usgs.gov/
documents/438/MCD12Q1_User_Guide_V51.pdf (accessed on 14 January 2023).

66. Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.L. Validation of the land-surface temperature products retrieved from Terra Moderate
Resolution Imaging Spectroradiometer data. Remote Sens. Environ. 2002, 83, 163–180. [CrossRef]

67. Lina, H.; Wanga, J.; Jia, X.; Bo, Y.; Wang, D.; Wang, Z. Evaluation of Modis Land Cover Product of East China. In Proceedings
of the International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA, 8–11 July 2008; Volume 4,
pp. IV762–IV765.

68. ESRI. ArcGIS Desktop: Release 10.8; ESRI: Redlands, CA, USA, 2021.
69. Cavalli, M.; Trevisani, S.; Comiti, F.; Marchi, L. Geomorphometric assessment of spatial sediment connectivity in small Alpine

catchments. Geomorphology 2013, 188, 31–41. [CrossRef]
70. Shahzad, F.; Gloaguen, R. TecDEM: A MATLAB based toolbox for tectonic geomorphology, Part 1: Drainage network preprocess-

ing and stream profile analysis. Comput. Geosci. 2011, 37, 250–260. [CrossRef]
71. R_Core_Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022.
72. da Cunha, E.R.; Santos, C.A.G.; da Silva, R.M.; Panachuki, E.; de Oliveira, P.T.S.; Oliveira, N.D.S.; Falcão, K.D.S. Assessment of

current and future land use/cover changes in soil erosion in the Rio da Prata basin (Brazil). Sci. Total. Environ. 2022, 818, 151811.
[CrossRef]

http://doi.org/10.1007/s11069-021-05032-w
http://doi.org/10.1007/s12665-020-8846-3
http://doi.org/10.1016/j.catena.2018.04.026
http://doi.org/10.1016/j.jhydrol.2020.125826
http://doi.org/10.1016/j.catena.2021.105412
http://doi.org/10.1016/j.jhydrol.2021.126432
http://doi.org/10.1080/03650340.2019.1575509
http://doi.org/10.1029/tr038i006p00913
http://doi.org/10.3133/ds540
http://doi.org/10.1080/15715124.2021.1901728
http://doi.org/10.1016/j.jrmge.2016.12.003
http://doi.org/10.1007/s12517-021-08490-5
http://doi.org/10.1016/S0924-2716(02)00124-7
https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary
https://disc.gsfc.nasa.gov/datasets/TRMM_3B43_7/summary
http://doi.org/10.1175/1520-0426(1998)015&lt;0809:TTRMMT&gt;2.0.CO;2
http://doi.org/10.1016/j.iswcr.2019.08.005
https://lpdaac.usgs.gov/documents/438/MCD12Q1_User_Guide_V51.pdf
https://lpdaac.usgs.gov/documents/438/MCD12Q1_User_Guide_V51.pdf
http://doi.org/10.1016/S0034-4257(02)00093-7
http://doi.org/10.1016/j.geomorph.2012.05.007
http://doi.org/10.1016/j.cageo.2010.06.008
http://doi.org/10.1016/j.scitotenv.2021.151811


Remote Sens. 2023, 15, 697 25 of 26

73. Panagos, P.; Meusburger, K.; Ballabio, C.; Borrelli, P.; Alewell, C. Soil erodibility in Europe: A high-resolution dataset based on
LUCAS. Sci. Total Environ. 2014, 479–480, 189–200. [CrossRef]

74. Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised Universal Soil Loss Equation. J. Soil Water Conserv. 1991, 46, 30–33.
75. Sun, W.; Shao, Q.; Liu, J.; Zhai, J. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China.

Catena 2014, 121, 151–163. [CrossRef]
76. Kayet, N.; Pathak, K.; Chakrabarty, A.; Sahoo, S. Evaluation of soil loss estimation using the RUSLE model and SCS-CN method

in hillslope mining areas. Int. Soil Water Conserv. Res. 2018, 6, 31–42. [CrossRef]
77. Rosas, M.A.; Gutierrez, R.R. Assessing soil erosion risk at national scale in developing countries: The technical challenges, a

proposed methodology, and a case history. Sci. Total. Environ. 2020, 703, 135474. [CrossRef] [PubMed]
78. Salar, S.G.; Othman, A.A.; Rasooli, S.; Ali, S.S.; Al-Attar, Z.T.; Liesenberg, V. GIS-Based Modeling for Vegetated Land Fire

Prediction in Qaradagh Area, Kurdistan Region, Iraq. Sustainability 2022, 14, 6194. [CrossRef]
79. Othman, A.A.; Al-Maamar, A.F.; Al-Manmi, D.A.M.; Veraldo, L.; Hasan, S.E.; Obaid, A.K.; Al-Quraishi, A.M.F. GIS-Based

Modeling for Selection of Dam Sites in the Kurdistan Region, Iraq. ISPRS Int. J. Geo-Inf. 2020, 9, 244. [CrossRef]
80. Salar, S.G.; Othman, A.A.; Hasan, S.E. Identification of suitable sites for groundwater recharge in Awaspi watershed using GIS

and remote sensing techniques. Environ. Earth Sci. 2018, 77, 701. [CrossRef]
81. Renard, K.G.; Freimund, J.R. Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol. 1994, 157,

287–306. [CrossRef]
82. Arnoldus, H.M.J. An Approximation of the Rainfall Factor in the Universal Soil Loss Equation. In Assessment of Erosion; John

Wiley and Sons: New York, NY, USA, 1980; pp. 127–132.
83. Ostovari, Y.; Ghorbani-Dashtaki, S.; Bahrami, H.-A.; Naderi, M.; Dematte, J.A.M. Soil loss estimation using RUSLE model, GIS and

remote sensing techniques: A case study from the Dembecha Watershed, Northwestern Ethiopia. Geoderma Reg. 2017, 11, 28–36.
[CrossRef]

84. Sadeghi, S.H.R.; Moatamednia, M.; Behzadfar, M. Spatial and Temporal Variations in the Rainfall Erosivity Factor in Iran TT.
Journal of Agricultural Science and Technology 2011, 13, 451–464.

85. Zabihi, M.; Sadeghi, S.H.; Vafakhah, M. Spatial Analysis of Rainfall Erosivity Index Patterns at Different Time Scales in Iran.
Watershed Eng. Manag. 2015, 7, 442–457.

86. Phinzi, K.; Ngetar, N.S. The assessment of water-borne erosion at catchment level using GIS-based RUSLE and remote sensing: A
review. Int. Soil Water Conserv. Res. 2019, 7, 27–46. [CrossRef]

87. Zerihun, M.; Mohammedyasin, M.S.; Sewnet, D.; Adem, A.A.; Lakew, M. Assessment of soil erosion using RUSLE, GIS and
remote sensing in NW Ethiopia. Geoderma Reg. 2018, 12, 83–90. [CrossRef]

88. Ijaz, M.A.; Ashraf, M.; Hamid, S.; Niaz, Y.; Waqas, M.M.; Tariq, M.A.U.R.; Saifullah, M.; Bhatti, M.T.; Tahir, A.A.; Ikram, K.; et al.
Prediction of Sediment Yield in a Data-Scarce River Catchment at the Sub-Basin Scale Using Gridded Precipitation Datasets.
Water 2022, 14, 1480. [CrossRef]

89. Ali, M.G.; Ali, S.; Arshad, R.H.; Nazeer, A.; Waqas, M.M.; Waseem, M.; Aslam, R.A.; Cheema, M.J.M.; Leta, M.K.; Shauket, I.
Estimation of Potential Soil Erosion and Sediment Yield: A Case Study of the Transboundary Chenab River Catchment. Water
2021, 13, 3647. [CrossRef]

90. Kerven, G.L.; Menzies, N.; Geyer, M.D. Analytical methods and quality assurance. Commun. Soil Sci. Plant Anal. 2000, 31,
1935–1939. [CrossRef]

91. Moore, I.D.; Burch, G.J. Physical Basis of the Length-slope Factor in the Universal Soil Loss Equation. Soil Sci. Soc. Am. J. 1986, 50,
1294–1298. [CrossRef]

92. Li, Y.; Qi, S.; Liang, B.; Ma, J.; Cheng, B.; Ma, C.; Qiu, Y.; Chen, Q. Dangerous degree forecast of soil loss on highway slopes in
mountainous areas of the Yunnan–Guizhou Plateau (China) using the Revised Universal Soil Loss Equation. Nat. Hazards Earth
Syst. Sci. 2019, 19, 757–774. [CrossRef]

93. Van der Knijff, J.M.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk: Assessment in Europe; European Commission: Brussels,
Belgium, 2000.

94. Ozsoy, G.; Aksoy, E. Prediction of soil loss differences and sediment accumulation at the Nilufer creek watershed, Turkey, using
multiyear satellite data in a GIS. Geocarto Int. 2015, 30, 843–857. [CrossRef]

95. Lin, C.-Y. A Study on the Width and Placement of Vegetated Buffer Strips in a Mudstone-Distributed Watershed. J. China Soil
Water Conserv. 1997, 29, 250–266.

96. Woznicki, S.A.; Cada, P.; Wickham, J.; Schmidt, M.; Baynes, J.; Mehaffey, M.; Neale, A. Sediment retention by natural landscapes
in the conterminous United States. Sci. Total Environ. 2020, 745, 140972. [CrossRef]

97. Xu, Z.; Zhang, S.; Zhou, Y.; Hou, X.; Yang, X. Characteristics of watershed dynamic sediment delivery based on improved RUSLE
model. Catena 2022, 219, 106602. [CrossRef]

98. Chuenchum, P.; Xu, M.; Tang, W. Estimation of Soil Erosion and Sediment Yield in the Lancang–Mekong River Using the Modified
Revised Universal Soil Loss Equation and GIS Techniques. Water 2020, 12, 135. [CrossRef]

99. Benavidez, R.; Jackson, B.; Maxwell, D.; Norton, K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view
to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci. 2018, 22, 6059–6086. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2014.02.010
http://doi.org/10.1016/j.catena.2014.05.009
http://doi.org/10.1016/j.iswcr.2017.11.002
http://doi.org/10.1016/j.scitotenv.2019.135474
http://www.ncbi.nlm.nih.gov/pubmed/31759712
http://doi.org/10.3390/su14106194
http://doi.org/10.3390/ijgi9040244
http://doi.org/10.1007/s12665-018-7887-3
http://doi.org/10.1016/0022-1694(94)90110-4
http://doi.org/10.1016/j.geodrs.2017.06.003
http://doi.org/10.1016/j.iswcr.2018.12.002
http://doi.org/10.1016/j.geodrs.2018.01.002
http://doi.org/10.3390/w14091480
http://doi.org/10.3390/w13243647
http://doi.org/10.1080/00103620009370551
http://doi.org/10.2136/sssaj1986.03615995005000050042x
http://doi.org/10.5194/nhess-19-757-2019
http://doi.org/10.1080/10106049.2014.997307
http://doi.org/10.1016/j.scitotenv.2020.140972
http://doi.org/10.1016/j.catena.2022.106602
http://doi.org/10.3390/w12010135
http://doi.org/10.5194/hess-22-6059-2018


Remote Sens. 2023, 15, 697 26 of 26

100. Yigez, B.; Xiong, D.; Zhang, B.; Yuan, Y.; Baig, M.A.; Dahal, N.M.; Guadie, A.; Zhao, W.; Wu, Y. Spatial distribution of soil erosion
and sediment yield in the Koshi River Basin, Nepal: A case study of Triyuga watershed. J. Soils Sediments 2021, 21, 3888–3905.
[CrossRef]

101. Durigon, V.L.; de Carvalho, D.F.; Antunes, M.A.H.; Oliveira, P.T.; Fernandes, M.M. NDVI time series for monitoring RUSLE cover
management factor in a tropical watershed. Int. J. Remote Sens. 2014, 35, 441–453. [CrossRef]

102. Bakker, M.M.; Govers, G.; van Doorn, A.; Quetier, F.; Chouvardas, D.; Rounsevell, M. The response of soil erosion and sediment
export to land-use change in four areas of Europe: The importance of landscape pattern. Geomorphology 2008, 98, 213–226.
[CrossRef]

103. Terranova, O.; Antronico, L.; Coscarelli, R.; Iaquinta, P. Soil erosion risk scenarios in the Mediterranean environment using RUSLE
and GIS: An application model for Calabria (southern Italy). Geomorphology 2009, 112, 228–245. [CrossRef]

104. Fu, B.J.; Zhao, W.W.; Chen, L.D.; Zhang, Q.J.; Lü, Y.H.; Gulinck, H.; Poesen, J. Assessment of soil erosion at large watershed scale
using RUSLE and GIS: A case study in the Loess Plateau of China. Land Degrad. Dev. 2005, 16, 73–85. [CrossRef]

105. Vanoni Vito, A. Sedimentation Engineering, Manual and Reports on Engineering; Books; American Society of Civil Engineers: New
York, NY, USA, 1975.

106. Azizian, A.; Koohi, S. The effects of applying different DEM resolutions, DEM sources and flow tracing algorithms on LS factor
and sediment yield estimation using USLE in Barajin river basin (BRB), Iran. Paddy Water Environ. 2021, 19, 453–468. [CrossRef]

107. Sharda, V.N.; Ojasvi, P.R. A revised soil erosion budget for India: Role of reservoir sedimentation and land-use protection
measures. Earth Surf. Process. Landf. 2016, 41, 2007–2023. [CrossRef]

108. Cavalli, M.; Tarolli, P.; Marchi, L.; Fontana, G.D. The effectiveness of airborne LiDAR data in the recognition of channel-bed
morphology. Catena 2008, 73, 249–260. [CrossRef]

109. Ouyang, D.; Bartholic, J. Predicting Sediment Delivery Ratio in Saginaw Bay Watershed. In Proceedings of the 22nd National
Association of Environmental Professionals Conference Orlando, Orlando, FL, USA, 19–23 May 1997.

110. Behera, M.; Sena, D.R.; Mandal, U.; Kashyap, P.S.; Dash, S.S. Integrated GIS-based RUSLE approach for quantification of potential
soil erosion under future climate change scenarios. Environ. Monit. Assess. 2020, 192, 733. [CrossRef]

111. Chung, C.-J.F.; Fabbri, A.G. Validation of Spatial Prediction Models for Landslide Hazard Mapping. Nat. Hazards 2003, 30,
451–472. [CrossRef]

112. ELC-Electroconsult; MED-Ingegneria; SGI—Studio Galli Ingegneria Dokan and Derbandikhan Emergency Hydropower Project, Final
Reservoirs Topo-Bathymetric Report; Kurdistan Regional Government: Erbil, Iraq, 2009.

113. General Authority of Survey Topographic Map Scale of 1:20000; Ministry of Water Resources, Water Control Center: Baghdad, Iraq, 1956.
114. Othman, A.A.; Gloaguen, R.; Andreani, L.; Rahnama, M. Improving landslide susceptibility mapping using morphometric

features in the Mawat area, Kurdistan Region, NE Iraq: Comparison of different statistical models. Geomorphology 2018, 319,
147–160. [CrossRef]

115. CHRR; CIESIN; NGI. Global Landslide Hazard Distribution 2005; NASA Socioeconomic Data and Applications Center (SEDAC):
Palisades, NY, USA, 2005.

116. Othman, A.A.; Gloaguen, R. River Courses Affected by Landslides and Implications for Hazard Assessment: A High Resolution
Remote Sensing Case Study in NE Iraq–W Iran. Remote Sens. 2013, 5, 1024–1044. [CrossRef]

117. Othman, A.A.; Gloaguen, R. Automatic Extraction and Size Distribution of Landslides in Kurdistan Region, NE Iraq. Remote Sens.
2013, 5, 2389–2410. [CrossRef]
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