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Abstract: Changes in glacier zones (e.g., firn, superimposed ice, ice) are good indicators of glacier
response to climate change. There are few studies of glacier zone detection by SAR that are focused
on more than one ice body and validated by terrestrial data. This study is unique in terms of the
dataset collected—four C- and L-band quad-pol satellite SAR images, Ground Penetrating Radar
data, shallow glacier cores—and the number of land ice bodies analyzed, namely, three tidewater
glaciers in Svalbard and one ice cap in Iceland. The main aim is to assess how well popular methods
of SAR analysis perform in distinguishing glacier zones, regardless of factors such as the morphologic
differences of the ice bodies, or differences in SAR data. We test and validate three methods of glacier
zone detection: (1) Gaussian Mixture Model–Expectation Maximization (GMM-EM) clustering of
dual-pol backscattering coefficient (sigma0); (2) GMM-EM of quad-pol Pauli decomposition; and
(3) quad-pol H/α Wishart segmentation. The main findings are that the unsupervised classification
of both sigma0 and Pauli decomposition are promising methods for distinguishing glacier zones. The
former performs better at detecting the firn zone on SAR images, and the latter in the superimposed
ice zone. Additionally, C-band SAR data perform better than L-band at detecting firn, but the latter
can potentially separate crevasses via the classification of sigma0 or Pauli decomposition. H/α
Wishart segmentation resulted in inconsistent results across the tested cases and did not detect
crevasses on L-band SAR data.

Keywords: glacier facies; polarimetry; PolSAR; sigma0; Pauli; H/alpha Wishart; ground penetrating
radar; Hornsund; Langjökull

1. Introduction

A growing number of satellites dedicated to Earth observations [1], as well as computa-
tional capabilities, offer the possibilities, data and tools to implement high-quality monitoring
of the state of the Earth (e.g., [2,3]), including glacier response to climate change. During a
time of climate warming, with its strong impact on the Arctic [4,5], glacier monitoring plays
an important role in understanding the processes taking place in the cryosphere. In addition,
satellite data may be a valuable asset in case of events, such as worldwide lockdowns, when
travel restrictions cause gaps in the long time series of glacier measurements [6].

One way of studying a glacier´s condition is by monitoring glacier facies. Glacier
facies (e.g., bare ice, superimposed ice, firn) [7,8], also called glacier zones, are parts of
a glacier that differ in characteristics such as structure, density, percolation properties or
albedo. Together, they form either the accumulation or ablation zone of a glacier (i.e., a zone
where a glacier either gains or loses mass in a given time span) [9]. Therefore, changes in
the extent of a glacier zone at the end of an ablation season (late summer and autumn) are
one of the indicators of glaciers’ state and their response to climate change. Moreover, due
to physical differences between glacier zones, information about their extents can support
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studies of glacier mass balance, hydrology, and other components of the surrounding
environment (e.g., [8,10,11]).

Especially valuable for monitoring glacier zones in polar regions are Synthetic Aper-
ture Radar (SAR) satellite data. SAR imagery is insensitive to cloudiness or sunlight.
Therefore, unlike multispectral imagery, SAR imagery can be acquired in bad weather
conditions and polar night. Additionally, SAR microwaves can penetrate through dry snow,
providing information about the glacier’s surface and subsurface [12,13]. As a result, SAR
imagery acquired during the accumulation season (winter and spring months) presents
the state of a glacier from the end of the ablation season—which is preserved under snow
cover due to generally negative air temperatures during the accumulation season.

Several properties of SAR sensors as well as the mode of SAR data acquisition may
influence the information provided by SAR imagery, and thus, the results of glacier zone
detection. For example, the penetration level of the glacier surface and subsurface depends
on the wavelength of the SAR microwave, where longer waves (e.g., L-band SAR sensors)
penetrate deeper than shorter waves (e.g., C-band SAR sensors) [14]. Another factor which
may lead to differences in the information provided by SAR data is the polarization mode.
SAR polarization mode usually varies from one (single-pol), via two (dual-pol), to four
SAR channels (quad-pol). With the higher level of polarization mode (e.g., quad-pol),
more information on the characteristics of the medium can be retrieved [15,16] and more
advanced methods of SAR processing can be applied than in the case of, for example, single-
pol SAR imageries. SAR imagery can also be acquired from ascending or descending orbits
and under different incidence angles. As a result, the areas of interest can be illuminated
differently by SAR sensors if, for instance, the orbit, the incidence angle or the wavelength,
differs for the acquisitions.

Information about SAR microwave scattering can be described by different means. One
of the most popular coefficients in the analysis of SAR data is the backscattering coefficient
(sigma0), which corresponds to the microwave reflectance from the scatterers [17]. In
addition, a scattering mechanism can be characterized by using, for example, Pauli or
H/A/α decompositions. Pauli decomposition describes contributions of odd-bounce, even-
bounce and volume-scattering mechanisms [18], whereas H/A/α represents contributions
of entropy, anisotropy and mean alpha angle [19]. Based on the H/A/α, Cloude and
Pottier [19] proposed an H/α segmentation—a method of unsupervised classification of
the H–α plane into zones that represent different scattering mechanisms (e.g., High Entropy
Multiple Scattering or Low Entropy Surface Scatter). Lee et al. [20] improved the method
of H/α segmentation by combining a maximum likelihood classifier to the H–α Wishart
plane segmentation.

Some successful studies on glacier zone detection and monitoring in polar regions have
been carried out, using analysis of sigma0 and comparison to terrestrial data (e.g., [21–25]).
These studies are limited to only a few glaciers and to a single- or dual-pol SAR mode of
C-band SAR data. Barzycka et al. [25], in a study of changes in glacier zones on Hornsund
glaciers (Spitsbergen, Svalbard), recognized limitations in the K-means unsupervised
classification of sigma0 of both single- and dual-polarization SAR images in distinguishing
glacier zones. The limitations are related to the thickness of glacier facies, heterogeneity
of the ice body, and the local character of a structure. Although the classification of
glacier zones in that study yielded generally good results, the limitations influenced the
classification of, for instance, the superimposed ice (SI) zone in a few of the analyzed
cases. On the other hand, a few studies have focused on distinguishing glacier zones
using quad-pol SAR data and PolSAR methods, with the assessment based on terrestrial
data. For example, Parrella et al. [26,27], and Sharma et al. [28], presented new scattering
models validated with airborne PolSAR data from either K-transect (West Greenland) or
Austfonna (Nordaustlandet, Svalbard). Doulgeris et al. [29] distinguished glacier zones in
Holtedahlsfonna (Spitsbergen, Svalbard) using L-band SAR data from single-, dual- and
quad-pol mode and using Wishart and K-Wishart classifiers. Błaszczyk [22] analyzed the
possibility of distinguishing glacier zones in Vestfonna (Nordaustlandet, Svalbard) by using
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both dual-pol C-band SAR data and quad-pol L-band SAR data. The methods used for
distinguishing or describing glacier facies in the Błaszczyk [22] study included K-means
classification, polarimetric Pauli decomposition, H/A/α and H/α Wishart segmentation.
Barzycka et al. [30] expanded the study of Błaszczyk [22] via additional analysis of the
backscattering coefficient and a novel application of the objective method of Internal
Reflection Energy (IRE) for Ground Penetrating Radar (GPR) data analysis.

The European Space Agency provides free and open SAR data acquired by dual-pol C-
band Sentinel-1 satellites with a minimum 6 day revisit time. However, more polarimetric
information can be provided by commercial and licensed quad-pol SAR, such as L-band
ALOS-2 PALSAR or C-band RADARSAT-2. In commercial solutions, SAR acquisition can
be scheduled and the commercial SAR data can have smaller pixel spacing and higher
resolution than Sentinel-1. Although commercial SAR data are paid, one high-quality SAR
imagery per accumulation season can be sufficient to apply a long-term monitoring of
glacier zones [25]. Nevertheless, in this study, we would like to examine if quad-pol SAR
data outperforms dual-pol SAR data, or if the results are comparable. If the latter, then
the analysis of dual-pol SAR data may be sufficient—and cheaper—for studies related to
glacier zones detection.

In this study, we investigate the potential of PolSAR methods for distinguishing glacier
zones. We analyze four different land ice bodies, using four satellite quad-pol SAR imageries
of either C-band or L-band. The methodology of Błaszczyk [22] and Barzycka et al. [30] is
further developed and tested: for quad-pol SAR images, both Wishart H/α segmentation and
Pauli decomposition are used. In addition, the results of Pauli decomposition are classified by
an unsupervised method of Gaussian Mixture Model–Expectation Maximization (GMM-EM).
In order to examine if quad-pol SAR data and PolSAR methods outperform the more popular
dual-pol SAR data and sigma0 analysis, similarly to Callegari et al. [31], the dual-pol SAR data
are mimicked from quad-pol SAR. The GMM-EM algorithm is used for sigma0 clustering. The
quality of the SAR results is assessed based on terrestrial data, namely, GPR measurements
and shallow glacier cores. In the case of GPR measurements, two interpretation methods
are applied, whose results are compared; namely, a visual interpretation of GPR profiles
provided by an expert, and an objective method of unsupervised classification of the Internal
Reflection Power (IRP) coefficient.

This study of the effectiveness of PolSAR methods in distinguishing glacier zones
is unique in terms of the dataset compiled (four quad-pol satellite SAR images, GPR
measurements, shallow glacier cores) and the number of land ice bodies analyzed; namely,
three tidewater glaciers located in Hornsund fjord basin (South Spitsbergen, Svalbard) and
a land-based ice cap, Langjökull (Iceland). The dataset, as well as the study sites, allows
us to assess the potential of the three different methods for distinguishing glacier zones in
previous-summer surfaces. We analyze both PolSAR (Pauli decomposition, H/α Wishart
segmentation) and backscattering coefficient methods to determine if less accessible quad-
pol SAR data outperforms dual-pol SAR in distinguishing glacier zones. We also discuss
the potential influence of polarization mode and terrain illumination by SAR on glacier
zone detection. Having analyzed glaciers with different characteristics, the results obtained
seem to be more generally applicable than those of previous studies of glaciers with similar
morphology or climate conditions.

2. Study Sites

In this study, we analyze the glacier zones of three polythermal tidewater glaciers and
one temperate land-based ice cap. The tidewater glaciers are Hansbreen, Storbreen and
Hornbreen, located in the Hornsund fjord basin (South Spitsbergen, Svalbard), whereas
Langjökull, Iceland’s second largest ice cap, is situated in the central western part of the
island (Figure 1). Due to the lack of full coverage of Hornbreen by the analyzed SAR image,
the area of interest of this glacier is an intersection of SAR area coverage and an ice body
outline. In the case of Langjökull, the area of interest is limited both by the footprint area of
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the SAR imagery and by computational limitations; analysis is therefore provided only for
the western part of the ice cap, where terrestrial data were also obtained.
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Figure 1. Study sites: Hansbreen, Storbreen, Hornbreen and Langjökull with their outlines and SAR
data footprints. Abbreviations: Tuv.: Tuvbreen; Deil.: Deileggbreen; Flos.: Flosajökull; Geit.: Geit-
landsjökull. Ice bodies’ outlines provided by Błaszczyk et al. [32] and Pálsson et al. [33]. Background
Landsat 8 images courtesy of the U.S. Geological Survey. Overview maps are based on data from the
Norwegian Polar Institute and the National Land Survey of Iceland.

The Icelandic ice cap differs from the Svalbard glaciers in its morphologic form and
in its location, being at a lower latitude (Figure 1; Table 1), affecting the angle of sunshine
radiation and the length of insolation. Moreover, as Hornsund and Iceland are located in
a polar and subpolar zone, respectively, their climate conditions are different. The mean
long-term (1979–2018) annual air temperature in Hornsund is −3.7 ◦C [34], whilst for the
west highlands of Iceland, where Langjökull is located, it is −0.9 ◦C for the time period
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1971−2000 (0.3 ◦C for 2004−2019) [35]. Mean long-term (1979–2018) annual precipitation in
the Hornsund region is 477 mm [34], whereas in the vicinity of Langjökull, it is 727 mm for
the period 1971–2000 (724 mm for 2004–2019) [35]. The above-described differences between
Hornsund and Langjökull differentially shape their glacier zone state and Equilibrium Line
Altitude (ELA [9]; Table 1). Analyzing land ice masses whose morphologic and climatic
conditions differ makes this study more generally applicable than studies of glaciers of a
single region.

Table 1. Main characteristics of analyzed land ice bodies.

Ice Body Type Slope Inclination
[◦]

Area
[km2]

ELA
[m a.s.l.]

Velocity
[m a−1]

Hansbreen tidewater glacier 1.7 1 49.4 2 342 3 177 4

Storbreen tidewater glacier 1.3 1 188.6 2 383 3 132 4

Hornbreen tidewater glacier 1.3 1 169.4 2 398 3 287 4

Langjökull ice cap 3.4 5 835 6 1000 5 ~75 7

1 During 2010 [32]. 2 During 2017 [25]. 3 During 2014 [36]. 4 Average frontal velocity, during 2014 [37]. 5 During
2007 [38]. 6 During 2019 [39]. 7 Maximum horizontal velocity, during 2012 [40].

3. Materials and Methods
3.1. Materials

In this section, we describe the satellite and terrestrial data used for distinguishing the
glacier zones of Hansbreen, Storbreen, Hornbreen and Langjökull. This includes SAR satellite
data (Section 3.1.1), GPR data (Section 3.1.2), and shallow glacier cores (Section 3.1.3).

3.1.1. SAR Data

The presence of water in the snowpack (after e.g., a rain-on-snow event) reduces the
SAR penetration depth and influences the scattering mechanism [41,42]. Therefore, we
analyzed the quad-pol SAR images acquired by either Advanced Land Observing Satellite-2
Phased Array type L-band Synthetic Aperture Radar-2 (ALOS-2 PALSAR-2) or RADARSAT-
2 only during dry snow conditions (Table 2). Assessment of the snow conditions was based
on either an on-site inspection or the daily maximum air temperature from the closest
weather stations, namely, Hveravellir in Iceland or the Polish Polar Station in Hornsund [43].
As a result, two SAR images of Langjökull (16 March 2018—RADARSAT-2; 17 March 2018—
ALOS-2 PALSAR-2) are excluded from the analysis due to a rain-on-snow event shortly
before the SAR image acquisition. All SAR data were acquired with ascending orbit and
are of the Single Look Complex (SLC) type.

Table 2. Details of SAR images analyzed in this study. Abbreviations: A2—ALOS-2 PALSAR-
2 (L-band); SHS QP—Stripmap high-sensitive, Quad Polarization; RS2—RADARSAT-2 (C-band);
FQP—Fine Quad Polarization.

Previous
Summer
Surface

Date of
Acquisition Glacier

Mission;
Acquisition

Mode

Near
Incidence
Angle [◦]

Far
Incidence
Angle [◦]

Last Positive
Temp. Day Reference Name

2016 10 April 2017 Hansbreen A2; SHS QP 32.37 35.34 15 March 2017 2016_Hansbreen_A2

2017 12 March 2018 Langjökull RS2; FQP 38.37 39.84 28 February 2018 2017_Langjökull_RS2

2017
Hansbreen

RS2;
Wide FQP 31.72 34.71 28 February 2018

2017_Hansbreen_RS2
12 March 2018 Storbreen 2017_Storbreen_RS2

Hornbreen 2017_Hornbreen_RS2

2017 3 April 2018 Hansbreen A2; SHS QP 17.37 21.90 17 March 2018 2017_Hansbreen_A2

As SAR imagery during the cold season generally presents glacier zone extents from
the end of the previous ablation season, in this paper, we refer to the SAR data using the
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year of the previous summer surface, not the year of acquisition. In addition, we provide the
glacier name and SAR mission of the source SAR image; for example, 2017_Langjökull_RS2
is a reference to SAR data for Langjökull’s 2017 summer surface, acquired by RADARSAT-2
in spring 2018. Reference names, as well as details of available SAR quad-pol data, are
presented in Table 2.

3.1.2. GPR Data

All GPR data used in this study (Table 3) were collected with the 800 MHz shielded
antenna during dry snow conditions, which were assessed as described in Section 3.1.1.
Dry snow conditions were also present between the SAR and GPR data acquisitions. The
measurements were collected with the GPR antennas fixed to a sledge, which was pulled
behind a snowmobile at a speed of ~20 km h−1. The total length of the GPR profiles and
the coverage of the land ice masses by GPR measurements varied depending on safety
considerations, the accessibility of the glacier by snowmobiles, and the size of the glacier.
Nevertheless, even under the challenging logistics of the GPR surveys, GPR profiles were
collected that covered both the accumulation and ablation zones, and that crossed potential
glacier facies. The processing of GPR data is described in detail in Barzycka et al. [25].

Table 3. Details of GPR measurements used in this study.

Previous
Summer
Surface

Glacier Date
Total

Length
[km]

Sampling
Frequency

[MHz]
Stacks

Average
Distance
between

Traces [m]

2016 Hansbreen 22 April 2017 100.2 12,791.6 8 1.7

2017 Langjökull 13, 14 March 2018 58.6 12,763.5 4 1.1

2017 Hansbreen 18 April 2018 104.8 16,410.2 4 1.2

2017 Storbreen 26 April 2018 19.7 12,763.5 4 1.2

2017 Hornbreen 26 April 2018 22.8 16,410.2 2 1.1

3.1.3. Shallow Glacier Cores

Shallow glacier cores were collected for snow depth as well as visual analysis of the
structure and properties of the glacier surface. The coring was performed on 18 April
2017 (Hansbreen), 22 April 2018 (Hansbreen), 14 March 2018 (Langjökull) and 26 April
2018 (Storbreen and Hornbreen) using a 9 cm diameter corer. Dry snow conditions were
preserved between the SAR data acquisition and glacier cores collection. Each of the cores
consisted of seasonal snow cover and an underlying structure representing the previous
summer’s surface (e.g., ice, SI, firn). The core lengths varied due to differences in snow
depth but, in all cases, were sufficient for interpreting the underlying structure. The
interpretation was based on the size of the grains, textures, and patterns. Similarly to
the SAR and GPR data, we refer to the glacier cores data using the year of the previous
summer’s surface, not the year of their collection.

3.2. Methods

Three methods for distinguishing glacier zones, based on SAR satellite data, are
studied and compared to the glacier cores and the results of the GPR data analysis (Figure 2).
GPR data analysis includes GPR visual interpretation (GPR VI), which is validated by the
results of the IRP natural breaks classification. The SAR data analysis methods used in this
study are GMM-EM classification of HH/HV sigma0 values, GMM-EM classification of
quad-pol SAR, Pauli decomposition, and the H/α Wishart segmentation of quad-pol SAR
data. The methods are described, in detail, in Sections 3.2.1–3.2.4.
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3.2.1. GPR VI and IRP Natural Breaks Classification

GPR VI was used to identify the glacier zones for further accuracy assessment of the
SAR analysis results (Figure 2). The snow cover was identified [44,45] and excluded both
from the GPR VI and the calculation of the IRP coefficient. The glacier structure underlying
the snow cover was identified based on the reflection characteristics, and classified into the
representation of three glacier zones, namely, ice, SI and firn. In this paper, the classes from
the terrestrial data analysis (i.e., GPR and shallow glacier cores) are denoted as iceg, SIg and
firng, and represent ice, SI and firn, respectively. The methodology and the results of GPR VI
for most of the GPR measurements used in this study are discussed in Barzycka et al. [25].

As a supportive method for GPR VI, the unsupervised natural breaks classification
of an IRP coefficient was used to assess the correctness of GPR VI (Figure 2). IRP is
an arithmetic mean of reflected energy for a sample within a defined GPR trace time
window [46]. This coefficient has been used in glaciological studies of, for example, liquid
water presence in glacier systems (e.g., [47–50]), whereas Barzycka et al. [25] successfully
applied the unsupervised classification of IRP in distinguishing glacier zones. Previous
studies applying similar coefficients, i.e., the GPR backscatter coefficient [21,51] and Internal
Reflection Energy [24,30], to distinguish glacier zones, also yielded good results.

Barzycka et al. [25] recommended the natural breaks classification of the IRP as an
alternative to, or a supportive method for, GPR visual interpretation. As the methodology
and the results of IRP natural breaks classification, for most of the GPR measurements used
in this study, are discussed at length in Barzycka et al. [25], here, we present the accuracy
assessment of IRP natural breaks classification as a measure of agreement with the GPR VI
results. The accuracy assessment consists of precision (user’s accuracy), recall (producer’s
accuracy), F-score, and Kappa metrics [52]. The high values of those scores indicate that
the objective IPR natural breaks classification supports the results of GPR VI.

3.2.2. GMM-EM Classification of Dual-Pol SAR Sigma0

Sigma0 is a quantity that corresponds to the microwave reflectance from the scatterers
that was recorded by the SAR sensor [17]. In studies by Błaszczyk [22] and Barzycka et al. [30],
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one of the tested methods for distinguishing glacier zones is based on the sigma0 coefficient
of dual-pol SAR data. In this study, however, we assess the possible underperformance of
the sigma0 dual-pol SAR data compared to the quad-pol PolSAR methods. To enable such
a comparison, sigma0 is retrieved from two channels of quad-pol SAR data [31]. Therefore,
unlike Błaszczyk [22] and Barzycka et al. [30], the unsupervised classification of dual-pol SAR
sigma0 should be comparable to quad-pol SAR methods, as all sets of SAR data have common
orbits or incidence angles of SAR acquisition. The polarization channels retrieved from quad-
pol SAR data are HH and HV. This choice is based on the dual-pol SAR polarization modes
that were available for the Hornsund area in the Barzycka et al. [25] study.

The algorithm of the unsupervised classification of sigma0, which is used in this
study, is GMM-EM [53]. GMM-EM has been successfully applied in many different studies
(e.g., [54–57]). In this study, GMM-EM is chosen as an alternative to a popular K-means
unsupervised classification, which was also used in the studies of Błaszczyk [22] and
Barzycka et al. [25,30]. GMM-EM was chosen in preference to K-means because the decision
boundaries of the GMM-EM clustering depend on the mean and variance of the data,
whereas in K-means, they are shaped based on the distance metric from the cluster’s
centroids [53]. Therefore, GMM-EM is more flexible than K-means and can be applied
to clusters of more complex patterns in data [58], and that are, possibly, also areas of
heterogeneity of ice or SI of a local character, which were not detected by the K-means
method in [25].

As a pre-processing step for sigma0 retrieval (Figure 2), the SAR data was calibrated [59,60]
and filtered using a Refined Lee filter with a 11 × 11 window size, a 3 × 3 target window size,
and a single number of looks [18]. A terrain correction algorithm was then applied [59,61] using
ArcticDEM-based Digital Elevation Models [33,62]. In order to mimic dual-pol SAR satellite
data, only sigma0 values for HH and HV polarization were chosen and scaled to decibels. All
SAR pre-processing steps were performed in SNAP 8.0 software [63].

As an input for the GMM-EM clustering, only sigma0 values within glacier outlines
(Figure 1) were considered. The algorithm used for the clustering was GMM-EM, with
a general covariance matrix for each component, 50 initializations, and 1000 maximum
iterations with a default early stopping of a 0.001 convergence threshold [64]. In order
to avoid subjectivism, a number of clusters (components) for each dataset were chosen
based on Silhouette [65], Davies–Bouldin [66] and Calinski–Harabasz [67] scores, as well
as clustergams [68,69]. For computational reasons, up to 10 components were scored by
the above algorithms. Similarly to Barzycka et al. [25], the components were later carefully
grouped to represent glacier zones (referred to as iceSAR, SISAR, firnSAR) based on terrestrial
data, UAV flights, and satellite optical imageries.

For the accuracy assessment of the sigma0 method, categorical values of iceSAR, SISAR
and firnSAR were retrieved and compared to the results of GPR VI. Metrics used for the
accuracy assessment were precision, recall and F-score. The resulting scores are described
in detail, as even a few hundredths of difference may impact the detection of glacier zone
boundaries and the assessment of, for instance, the glacier zone areas. In the rest of the text,
we refer to the GMM-EM classification of dual-pol SAR sigma0 also as sigma0+GMM-EM.

The Geopandas 0.8.1 Python package [70] was used to retrieve input data for the
clustering within glacier outlines. The GMM-EM, metrics calculation, and scoring were
performed using the ScikitLearn 0.23 [64] and Clustergram 0.5.0 [68,69] Python packages.

3.2.3. GMM-EM Classification of Quad-Pol SAR Pauli Decomposition

Pauli decomposition [18] of quad-polarimetric SAR data is one of the most pop-
ular methods for analyzing scattering mechanisms, also used in cryospheric studies
(e.g., [22,30,71–74]). It provides information on the contribution of odd-, even-bounce
and volume-scattering mechanisms for each pixel, which can be related to different glacier
zones. Błaszczyk [22] and Barzycka et al. [30] are examples of the successful application
of Pauli decomposition in the description of glacier zones compared to GPR VI. In those
studies, however, Pauli decomposition was not classified in any manner (supervised or
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unsupervised). Therefore, clear extents of the glacier zones were not presented, and an ac-
curacy assessment based on terrestrial data was not performed. In this study, the results of
Pauli decomposition are classified in an unsupervised way by GMM-EM (see Section 3.2.2.)
to retrieve the extents of the glacier zones and perform an accuracy assessment based on
GPR VI. GMM-EM classification of quad-pol SAR Pauli decomposition is referred to here
as Pauli+GMM-EM.

As a pre-processing step for Pauli decomposition, all SAR images were calibrated [59,60]
(Figure 2). A T3 polarimetric matrix was then generated [18] and filtered using the Refined Lee
filter [18], as described in Section 3.2.2. Based on this, Pauli decomposition was performed [18]
and the data were geometrically corrected [59,61] using the DEMs described in Section 3.2.2.
Results were scaled to decibels. All described steps were performed in SNAP 8.0 software [63].
In the next step, the pixels for all Pauli decompositions were retrieved within each glacier
outline (Figure 1) and classified into firnSAR, SISAR or iceSAR, using GMM-EM in the same
manner as described in Section 3.2.2. Results were assessed based on the GPR VI results using
precision, recall and F-score metrics.

3.2.4. H/α Wishart Segmentation of Quad-Pol SAR Data

H/α Wishart segmentation is a method of unsupervised classification based on the
H–α plane and the Complex Wishart Classifier [19,20,75]. The H-α plane is divided into
nine zones, eight of which are associated with a different scattering mechanism (one is
a non-feasible region) [19]. Due to fixed boundaries of the H–α plane and the locations
of the final class centers therein, this method is particularly suitable for application as
an unsupervised method for distinguishing glacier zones, where each glacier zone could
potentially be represented by one, or a few, particular H–α scattering mechanisms. Studies
such as Błaszczyk [22] and Barzycka et al. [30] show that glacier zones can be distinguished
with H–α Wishart segmentation. However, there is no previous study that applies this
method for several SAR images or glaciers and assesses the accuracy of the results based
on terrestrial data. In this study, we applied H/α Wishart segmentation to distinguish the
glacier zones of four land ice masses and assessed its performance based on terrestrial data.

To achieve H/α Wishart segmentation, each of the SAR data was multilooked (number
1 and 2 of the range and azimuth looks, respectively) and a T3 polarimetric matrix was
generated [18] (Figure 2). Next, based on the T3 matrix, H/α decomposition [75] was
performed, followed by H/α Wishart segmentation [20] with 100 maximum iterations and
a 5 × 5 window size for the Boxcar filter parameter. Due to software limitations, the H/α
Wishart segmentation was applied to a full SAR imagery, not an AOI subset (Figure 1). As
a final step, a terrain correction was applied [59,61]. The described process was performed
in PolSARPro 6.0 software [76], and the workflow is based on [77]. The results of the H/α
Wishart segmentation were grouped into SAR glacier zones, and the accuracy assessment
was performed as described in Section 3.2.2.

4. Results

The results of this study are focused on the analysis of terrestrial data (Section 4.1)
and on distinguishing glacier zones based on SAR data (Section 4.2). The outcomes of the
tested SAR methods, i.e., the GMM-EM classification of sigma0 and of Pauli decomposition
as well as H/α Wishart segmentation, are reported separately in Sections 4.2.1–4.2.3.

4.1. Analysis of Terrestrial Data

Results of the GPR VI show that the profile analyses are spatially consistent in all
study sites (Figures 3 and 4). Iceg and firng are generally identified in the glaciers’ lower
and upper altitudes, respectively. SIg—if present—is identified either between the iceg
and firng classes or in short sections between the iceg. The above is in good agreement
with what is known about glacier facies present in the glacier system [7,8], whereas short
sections of SIg between iceg are formed locally due to glacier topography [25].
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Figure 3. Glacier zone detection results of GPR VI, glacier cores, sigma0+GMM-EM, Pauli+GMM-EM and
H/α Wishart for Hansbreen cases. Background Landsat 8 image courtesy of the U.S. Geological Survey.

The metrics of IRP natural breaks classification for iceIRP and firnIRP are generally
high (Table 4). The exception is the precision score for firnIRP in both the Hansbreen 2016
summer surface (0.85) and the Hornbreen 2017 summer surface (0.86). The former is mainly
due to a strong noise in the GPR data collected with a low battery voltage, which influenced
the natural breaks thresholds [25]. The latter is due to the misclassification of a shallow firng
as iceIRP, as shallow firng is characterized by lower values of IRP [25]. SIIRP was classified
only in the case of the Storbreen 2017 summer surface, with generally good results. The
lack of representation of SIg in the IRP results for Hansbreen and Hornbreen for the 2017
summer surface is most likely due to the local character of this glacier’s structure [25]. Thus,
the number of samples of SIg was not enough to distinguish it as a separate SIIRP class but,
at the same time, it did not influence the overall accuracy of the IRP classification (Kappa
score of 0.96 for both Hornbreen 2017 and Hansbreen 2017). Overall, the good results of the
IRP accuracy assessment show a strong agreement of the subjective method of GPR VI with
the objective method of IRP, which at the same time, indicates a high quality of GPR VI.
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Figure 4. Glacier zone detection results of GPR VI, glacier cores, sigma0+GMM-EM, Pauli+GMM-EM
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courtesy of the U.S. Geological Survey.
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Table 4. Results of the accuracy assessment of the IRP natural breaks classification [25].

Previous
Summer
Surface

Glacier Class Precision Recall F-Score Kappa

2016 Hansbreen
iceIRP 1.00 0.95 0.97

0.96
firnIRP 0.85 0.99 0.91

2017 Langjökull
iceIRP 0.99 0.93 0.96

0.96
firnIRP 0.94 0.99 0.97

iceIRP 0.98 0.98 0.98
2017 Hansbreen SIIRP - 0.00 - 0.96

firnIRP 0.92 0.99 0.95

iceIRP 0.98 0.94 0.96
2017 Storbreen SIIRP 0.89 0.98 0.93 0.96

firnIRP 1.00 0.98 0.99

iceIRP 0.99 0.99 0.99
2017 Hornbreen SIIRP - 0.00 - 0.96

firnIRP 0.86 1.00 0.92

In general, the information retrieved from the shallow glacier cores was in good
agreement with the results of the GPR VI (Figures 3 and 4). Therefore, iceg and firng
were identified in shallow glacier cores in the glaciers’ lower and upper parts, respectively.
Glacier cores retrieved close to the firn line of Hansbreen for the 2016 and 2017 summer
surface consisted of polycrystalline glacier ice with firn inclusions [25]. In the same area,
a relatively high number of scattering elements were identified in the GPR profiles. Due
to the predominance of glacier ice, this was classified as iceg; however, the occurrence of
incompletely developed polycrystalline glacier ice is noted and referred to as a “transition
area” (or as ice + firng). Two shallow glacier cores in Hornbreen are in disagreement with
the GPR VI of the nearest profiles. This, however, can be explained by local depressions in
the glacier topography, and a possible influence of positioning error for a handheld GNSS
device used during glacier core drilling [25].

4.2. Distinguishing Glacier Zones Based on SAR Data

In Sections 4.2.1–4.2.3, we describe, in detail, the results of distinguishing glacier zones
based on SAR data using the GMM-EM classification of sigma0, GMM-EM classification of
Pauli decomposition, and the H/α Wishart segmentation methods. We refer to the spatial
characteristics of the distinguished zones (Figures 3 and 4) as well as to scores for recall,
precision, and the F-score metrics (Figure 5) for each analyzed ice body and method.

4.2.1. GMM-EM Classification of Dual-Pol SAR Sigma0

GMM-EM clustering of sigma0 based on HH and HV generally yields good results for
glacier zone detection on Hansbreen (Figure 3). In the case of the detection of firng at this
glacier in the ALOS-2 PALSAR-2 imageries (2016_Hansbreen_A2, 2017_Hansbreen_A2),
misclassification occurs especially in the area of firnSAR and iceSAR boundaries, where
shallow firn occurs and this is classified as iceSAR. Such a pattern is less visible in
the 2017_Hansbreen_RS2 case. This is reflected in the recall values for firnSAR, where
2016_Hansbreen_A2 and 2017_Hansbreen_A2 received 0.82 and 0.84 recall scores, respec-
tively, whereas 2017_Hansbreen_RS2 was scored at a 0.88 level of recall (Figure 5). In
addition, and in contrast to the ALOS-2 PALSAR-2 results, in 2017_Hansbreen_RS2, the
transition area is represented by firnSAR patches below the firn line. Firng in Tuvbreen (Hans-
breen’s tributary glacier, Figure 1) is detected in the ALOS-2 PALSAR-2 and RADARSAT-2
imagery. However, the area of this class at Tuvbreen is greater in clustering results of



Remote Sens. 2023, 15, 690 13 of 22

RADARSAT-2 than in ALOS-2 PALSAR-2 imagery; this difference could also impact the
classification’s metrics. SIg, labelled for the 2017 summer surface at Deileggbreen (Hans-
breen’s tributary glacier, Figure 1), was not detected by the sigma0+GMM-EM method, and
the algorithm classified it as iceSAR at both 2017_Hansbreen_A2 and 2017_Hansbreen_RS2.
In addition, the area of iceSAR in the upper part of Hansbreen (at ~77◦8′ N) is larger for
the ALOS-2 PALSAR-2 results than for RADARSAT-2. In addition, sigma0+GMM-EM of
ALOS-2 PALSAR-2 imageries made it possible to distinguish a separate class for highly
crevassed areas, such as at the front of Hansbreen.
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FirnSAR at Storbreen is in good agreement with firng labels (Figure 4). This is reflected
in the high recall and precision scores for firn detection (0.96 and 0.99, respectively, Figure 5).
The SISAR class was distinguished at Storbreen with a relatively high score for precision
(0.91) and a moderate result for recall (0.71). The latter is mainly due to the misclassification
of SIg in the area between Glimseen and Drevbreen (tributary glaciers of Storbreen, Figure 1).
SISAR is also detected in the lower parts of the ablation area in the shape of patches. GPR
measurements, however, do not cover those areas; therefore, it has neither positive nor
negative influence on the scores and the final assessment of the method. The iceSAR class
for Storbreen has one of the lowest scores for precision (0.84), which may be a result
of the classification of SIg as iceSAR in the area between Glimseen and Drevbreen. The
sigma0+GMM-EM of 2017_Storbreen_RS2 does not result in a separate class for crevasses.

The boundary of firnSAR for the Hornbreen glacier (Figure 4) is located higher than
in the case of firng (recall score at 0.76 level, Figure 5). Similarly to the Hansbreen cases, a
relatively small class of SIg is not detected for Hornbreen by the sigma0+GMM-EM method.
The precision score of 0.90 for iceSAR at Hornbreen is most likely due to the misclassification
of the glacier zones (firng, SIg) in favor of iceSAR in the vicinity of the firnSAR–iceSAR
boundary. The clustering of 2017_Hornbreen_RS2 does not result in a separate class,
which could represent the glacier’s crevasses; instead, there is a relatively large area of
frontal crevasses classified as firnSAR. The misclassification of this heterogeneity of the
ice body does not influence the classification scores, as this area was not covered by GPR
measurements, for safety reasons.

In the case of Langjökull, the firng class is misclassified in the vicinity of the firnSAR line
in favor of the iceSAR class (Figure 4). This pattern is especially visible on the southern slopes
of the ice cap, where the firnSAR boundary is higher than the firng labels. On the northwest
slope, such a pattern is not present: firnSAR and firng are in good agreement. Furthermore, a
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small patch of firng (~64◦38′N, 20◦30′W) is correctly classified as firnSAR on the northwest
slope of the ice cap. There is, however, misclassification of iceg on the northwest slope as
firnSAR in the ablation area (~ 64◦38′–64◦40′N, 20◦30′–20◦33′W). In addition, singular pixels of
iceSAR within the main firnSAR area are dominant on the slopes facing south. As a result, the
overall scores for precision and recall for firnSAR at Langjökull are 0.97 and 0.84, respectively,
whereas for iceSAR, they are 0.83 and 0.97, respectively (Figure 5). The firnSAR area, which
does not influence the metrics (no terrain data collected) but is worth noting, is located south
of Flosajökull (outlet glacier of Langjökull, Figure 1). This firnSAR, which is discontinuous
from the firnSAR covering the ice cap dome, is formed due to local depressions as well as the
presence of narrow steep valley outlet glaciers. Sigma0+GMM-EM for Langjökull does not
result in a separate class that could represent crevasses.

4.2.2. GMM-EM Classification of Quad-Pol SAR Pauli Decomposition

The firnSAR line at both 2016_Hansbreen_A2 and 2017_Hansbreen_A2 (Figure 3) is
detected higher than indicated by firng (recall score is 0.73 for both cases of firn detection,
Figure 5) using the Pauli+GMM-EM method, whereas in the case of 2017_Hansbreen_RS2,
the firnSAR line is in good agreement with the terrestrial data results (recall score: 0.82)
and a few patches of firnSAR below the firnSAR line are also distinguished, indicating
glacier ice that is not fully developed (transition area). FirnSAR at Tuvbreen is detected on
2016_Hansbreen_A2, 2017_Hansbreen_A2 and 2017_Hansbreen_RS2 with good agreement
with firng. A rather local patch of SIg at Deileggbreen is not distinguished as a separate class
in either 2017_Hansbreen_A2 or 2017_Hansbreen_RS2. Similarly to the sigma0+GMM-EM
results, the iceg patch in the upper part of Hansbreen is distinguished in the Pauli+GMM-
EM results of both the ALOS-2 PALSAR-2 and RADARSAT-2 images; the patch, however,
covers a larger area in the ALOS-2 PALSAR-2 than RADARSAT-2 results. By applying
Pauli+GMM-EM onto the ALOS-2 PALSAR-2 images, it is possible to distinguish a separate
class of highly crevassed areas.

The extent of firnSAR in the results of Pauli+GMM-EM for 2017_Storbreen_RS2 (Figure 4)
is in good agreement with firng (recall score: 0.97, Figure 5). SISAR is also detected in this glacier,
including the area between Glimseen and Drevbreen. Therefore, the SISAR recall score (0.86) of
Pauli decomposition and clustering is higher than for the sigma0+GMM-EM method by 0.15.
Similarly to the sigma0+GMM-EM, this method also distinguished SISAR patches in the ablation
area, which are difficult to assess due to the lack of terrestrial data in those parts of the glacier.
In the case of iceSAR, the precision and recall scores for 2017_Storbreen_RS2 are relatively high
(0.93 and 0.98, respectively). However, there is no separate class for crevasse representation.

Similar to the sigma0+GMM-EM results, the boundary between firnSAR and iceSAR at
2017_Hornbreen_RS2, classified by the Pauli+GMM-EM method, is higher than indicated
by the terrestrial data (Figure 4). As a result, the recall score of firnSAR is at a 0.72 level
(Figure 5). In addition, no SISAR is detected, and the small area covered by SIg is classified
as iceSAR (therefore, the precision score of iceSAR is 0.90). The Pauli+GMM-EM method of
the RADARSAT-2 image for the Hornbreen 2017 summer surface did not allow a separate
class to be distinguished for vast areas of frontal crevasses at this tidewater glacier. Instead,
the area of Hornbreen that is of heterogeneous character was classified as firnSAR.

The firnSAR line at Langjökull’s southern slopes is detected higher in the Pauli+GMM-
EM results than indicated by the terrestrial data (Figure 4). Additionally, in the firnSAR
class, singular pixels of iceSAR are present, mainly on the southern slopes. In the northwest
part of the ice cap, the extent of firnSAR is in good agreement with firng; however, a small
patch of firng (~ 64◦38′N, 20◦30′W) is not detected. The firng area between Langjökull
dome and Geitlandsjökull (lateral glacier of Langjökull, Figure 1) is classified as a mix of
firnSAR and iceSAR. Overall, due to the misclassification of firng as iceSAR, the recall score
for firnSAR and the precision score for iceSAR for 2017_Langjökull_RS2 are both at a level of
0.79. The score of one for both the precision of firnSAR and the recall of iceSAR indicates that
the misclassification of iceg as firnSAR, in this case, is rare. This is supported by the lack of
firnSAR in the northwest ablation area (~ 64◦38′–64◦40′N, 20◦30′–20◦33′W), in contrast to
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the sigma0+GMM-EM results, for example. The firnSAR area in the south of Flosajökull is
not present.

4.2.3. H/α Wishart Segmentation of Quad-Pol SAR Data

The firnSAR line of 2016_Hansbreen_A2 is detected lower when using the H/α Wishart
method than indicated by the terrestrial data (Figure 3). Additionally, large areas in the
ablation area where crevasses are present are classified as firnSAR, not iceSAR. The iceg patch
in the upper part of Hansbreen is detected in the form of a few pixels, not a patch. All of
this produces a 0.89 precision score for firnSAR of 2016_Hansbreen_A2 (Figure 5). Contrary
to the results of 2016_Hansbreen_A2, the firnSAR line of 2017_Hansbreen_A2 is detected
higher than indicated by the terrestrial data. Several distinct iceSAR patches are visible in
the accumulation area, and crevassed areas close to the front of the glacier are classified
as firnSAR. Those misclassifications are reflected in the clustering scores, where firnSAR of
2017_Hansbreen_A2 with the H/α Wishart method had a 0.73 score for precision for firnSAR
and 0.83 for recall, whereas iceSAR scored 0.93 for precision and 0.91 for recall. Neither the
SIg patch at Deileggbreen nor highly crevassed areas are classified as a separate class in
2017_Hansbreen_A2. In the case of the results of H/α Wishart for 2017_Hansbreen_RS2, the
firnSAR line is generally detected in good agreement with the terrestrial data. In addition,
both the iceg patch in the upper part of the glacier and the firng patch at Tuvbreen are
well detected in this case. However, neither the SIg patch at Deileggbreen nor the frontal
crevasses are distinguished as a separate class in 2017_Hansbreen_RS2. Overall, the firnSAR
recall and precision scores of 2017_Hansbreen_RS2 are 0.84 and 0.95, respectively.

In the case of 2017_Storbreen_RS2 classified by the H/α Wishart method, the firnSAR
line is higher than indicated by the terrestrial data (Figure 4), which could influence the
firnSAR recall score (0.94, lower than for sigma0+GMM-EM and Pauli+GMM-EM, Figure 5).
SISAR is represented by a separate class; however, the recall score of SISAR (0.56) indicates
that a significant part of this area is misclassified as iceSAR (precision of iceSAR: 0.77). Part
of this misclassification occurs in the area between Glimseen and Drevbreen. Moreover, the
SISAR patches in the lower part of the glacier in the ablation area, which are detected by the
sigma0+GMM-EM and Pauli+GMM-EM methods, are less distinct in the case of the H/α
Wishart classification. Frontal crevasses are not classified as a separate class but as a firnSAR.

H/α Wishart distinguishes the firnSAR line of 2017_Hornbreen_RS2 higher than in-
dicated by the terrestrial data and higher than the results of the other analyzed methods
(Figure 4). This misclassification of the firnSAR as iceSAR in the vicinity of the firn line
is reflected in the firnSAR recall score, 0.69 (Figure 5). Moreover, similarly to other meth-
ods, SIg is not detected at 2017_Hornbreen_RS2. Vast, crevassed areas of Hornbreen’s
ablation zone are, similarly to other methods, classified as firnSAR. However, this misclassi-
fied area of firnSAR at the front of the glacier is smaller compared to the results of either
sigma0+GMM-EM or Pauli+GMM-EM for 2017_Hornbreen_RS2.

As in the results of previous methods, the firn line in the southern slopes of 2017_
Langjökull_RS2 is located higher than in the northwest part of the ice cap compared to the
terrestrial data (Figure 4). The H/α Wishart method also distinguishes a small patch of firng
~ 64◦38′N, 20◦30′W, and there is a distinct firnSAR between Geitlandsjökull and Langjökull
dome. In general, the firnSAR line is in better agreement with the GPR VI at both the south
and northwest slopes than sigma0+GMM-EM or Pauli+GMM-EM; and thus, the firnSAR recall
score for 2017_Langjökull_RS2 is 0.91. Similar to the sigma0+GMM-EM clustering results, in
the ablation area of the ice cap (~64◦38′–64◦40′N, 20◦30′–20◦33′W), a misclassification of iceg
as firnSAR occurs. In the area south of Flosajökull, the firnSAR area is detected.

5. Discussion

This is the first study of the possibility of glacier zone detection based on more than one
quad-pol SAR image (including both C-band RADARSAT-2 and L-band ALOS-2 PALSAR-
2), with the quality assessment based on terrestrial data. The results of the tested methods
are generally similar for both Hornsund glaciers and Langjökull, despite the differences in
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morphology and climate conditions of the regions. However, the results also show that the
performance of each method, or type of SAR data, varied across all of the studied cases.
Therefore, in studies focused on the assessment of various data or methodologies (e.g., [30]),
it is important to test performance in distinguishing glacier zones on more than one SAR
imagery of a particular type. Additionally, good-quality terrestrial data are an important
asset in methodological studies and allow performance to be compared.

Because of the deeper penetration of L-band (ALOS-2 PALSAR-2) compared to C-
band (RADARSAT-2) in the glacier’s body [14,78], we observed the higher location of the
firnSAR line, or larger area of the iceSAR patch at ~77◦80′N, in both sigma0+GMM-EM and
Pauli+GMM-EM results of 2016_Hansbreen_A2 and 2017_Hansbreen_A2 in comparison to
the 2017_Hansbreen_RS2 results. This is also reflected in the lower recall scores of firnSAR
for the above-mentioned ALOS-2 PALSAR-2 cases.

The firnSAR of all tested methods was in better agreement with the terrestrial data
results on the northwest slope than the southern slopes of Langjökull. Additionally, singu-
lar pixels of iceSAR within the firnSAR classes were present, mainly on the southern slopes
of Langjökull. This could be due to, e.g., differences in morphological or environmental
conditions between the slopes that shape the ice cap structure, an influence of SAR speckle
filtering, or a difference in terrain illumination by microwaves during the SAR image
acquisition [74,79,80]. More SAR and terrestrial data are needed to define the origin of
the differences in glacier zone detection on the slopes of Langjökull. However, in order to
reduce the potential influence of the SAR acquisition on how well glacier zones are distin-
guished in the future, solutions suggested by Callegari et al. [31] could be implemented,
i.e., either a classification based on SAR data acquired from both ascending and descending
orbits or implementation of the local incidence angle information on non-topographic
corrected SAR data classification.

Barzycka et al. [25] found problems in distinguishing SIg based on dual-pol data. Here,
despite more polarimetric information being provided by quad-pol than dual-pol SAR images,
the SIg of Hansbreen and Hornbreen was not recognized as a separate class by any of the
methods in this study, or by using different SAR band lengths. This can be due to (1) the thin
layer of SIg [25], which does not have a large influence on overall SAR reflectance in either
C- or L-band; (2) low representation, or poor separation, of data representing the local SIg,
so it is not recognized by the GMM-EM algorithm [81]; or (3) too strong a speckle filtering
algorithm [82,83], so that the local SIg is averaged with other zones.

Another issue of SIg distinction is related to the unknown origin of SISAR patches in
the low ablation zone of Storbreen. The SISAR patches occur in the results of all tested
methods. Laska et al. [36] indicate that the low slopes, low number of crevasses, and poor
englacial drainage system of Storbreen promoted the formation of meltwater ponds in
the 2014 ablation season. This could explain the pattern of SISAR patches, whose origin
could be a frozen meltwater pond from the ablation season, which was not drained out
from the glacial system before the accumulation season. In the Barzycka et al. [25] study,
such patches were reclassified as iceSAR. From the perspective of the monitoring of glacial
state or mass balance assessment, the reclassification of such patches can still be a good
choice—depending on whether the structure was present throughout the glaciological
year. Additional GPR measurements or shallow glacier core drilling in the ablation zone of
Storbreen would be beneficial to confirm the potential origin of the SISAR patches as frozen
meltwater ponds.

Barzycka et al. [25] reported another issue in distinguishing glacier zones, namely, the
misclassification of highly crevassed areas of glacier ice as firnSAR. This was especially prob-
lematic in the case of Hornbreen glacier zone detection. This glacier is characterized by a
higher frontal velocity than the other analyzed glaciers (Table 1) and the high heterogeneity
of glacier ice (caused by a crevassed surface), which—as a result of the K-means classifica-
tion of sigma0 of Sentinel-1 (C-band) —was misclassified as firnSAR in Barzycka et al. [25].
In this study, a separate class for crevassed areas, resulting from ALOS-2 PALSAR-2 data
and the sigma0+GMM-EM and Pauli+GMM-EM methods, indicates that SAR data from
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longer-wavelength sensors (e.g., L-band) could potentially resolve the issue of the misclas-
sification of high heterogeneity glacier ice. This, however, should be tested by glacier zone
detection on, for example, Hornbreen using L-band SAR data. As the H/α Wishart method
did not result in a separate class for the crevassed areas, the method of SAR data processing
and classification should be carefully chosen. The possibility of distinguishing, for instance,
crevassed areas using L-band SAR data was also noticed by König et al. [84]. Alternatively,
supervised methods of crevasse detection can be applied to differentiate between firnSAR
and crevasses [85].

Although there is no clear winner when it comes to comparing performance, regarding
distinguishing glacier zones by either the sigma0+GMM-EM, Pauli+GMM-EM or H/α
Wishart methods, the results indicate that some of the methods perform better at firn or SI
detection than the others. For example, recall scores for firn detection based on Pauli+GMM-
EM are generally lower than by other methods, which means that firng is generally more
often misclassified in Pauli+GMM-EM than in sigma0+GMM-EM, for example. That
firnSAR received generally higher recall scores in sigma0+GMM-EM than Pauli+GMM-EM
indicates that the scattering characteristics described by Pauli polarimetric decomposition
are less distinct for shallow firn than its backscattering coefficient. On the other hand, SIg on
Storbreen was best represented by the Pauli+GMM-EM method in this study, possibly due
to the distinct scattering characteristic of this medium represented by Pauli decomposition,
which was then well separated by GMM-EM. However, additional analysis of the different
glaciers where SISAR was detected would be needed to support recommending this method
for SI detection. Finally, the H/α Wishart method gave inconsistent results across the tested
cases, so it is difficult to assess the performance of this method. For example, the overall
scores for the 2016_Hansbreen_A2 case are very good compared to other methods, but
this is not the case for 2017_Hansbreen_A2. Moreover, the results of H/α Wishart for both
2016_Hansbreen_A2 and 2017_Hansbreen_A2 (Figure 3) suggest a rather significant change
in the firnSAR zone after one season; this, however, is not supported by the terrestrial
data results. The reason for these different results may be (1) the fixed boundaries of the
H–α plane in which the cluster centers are located, whereas GMM-EM classifies the data
based on means and variations; (2) the applied workflow (Figure 2), where H/α Wishart is
not limited to AOIs, so the segmentation is performed on full SAR imagery, not only on
glacier extent. Potentially, the different results of H/α Wishart for 2016_Hansbreen_A2
and 2017_Hansbreen_A2 could also be related to the influence of the incidence angle of the
SAR data acquisition, as the incidence angle of 2016_Hansbreen_A2 data is in the range
32.37◦–35.34◦, whereas for 2017_Hansbreen_A2 it is 17.37◦–21.90◦ (Table 2). This would
mean that either H/α Wishart is more sensitive to the image acquisition settings than the
other tested methods, or that the differences in the overall processing of H/α Wishart
(different software and workflow than sigma0+GMM-EM or Pauli+GMM-EM, Figure 2)
influenced the results. H/α Wishart is also the only method with which large crevasses are
not detected as a separate class in L-band SAR data—this could also be due to either the
location of the cluster centers within the fixed boundaries of the H–α plane or the lack of
an AOI subset in the applied workflow. Nevertheless, despite either the fixed boundaries
of the H–α plane or the differences in data acquisition or processing, the overall results of
H/α Wishart are generally satisfactory for glacier zone detection.

The comparable performance of sigma0+GMM-EM to quad-pol Pauli+GMM-EM or
H/α Wishart shows that, in the analyzed cases, polarimetric methods—based on less acces-
sible quad-pol SAR data—do not outperform an unsupervised classification of a popular
backscattering coefficient. This is especially promising for the application of free and open
Sentinel-1 data in distinguishing glacier zones [25]. Nevertheless, the potential of quad-pol
SAR satellites in distinguishing glacier zones can be further studied by, e.g., the classifica-
tion of multiple polarimetric decompositions as a single dataset [74], or by the classification
of higher resolution commercial SAR datasets [86] in comparison to lower resolution open
SAR data [87]. Based on the results of this study, we recommend that further analyses are
performed based on several SAR imageries and with good-quality terrestrial data.
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6. Conclusions

This study compared the performance of glacier zone detection methods for four dif-
ferent land ice masses using quad-pol SAR imageries of C- and L-band. The methods tested
were (1) Gaussian Mixture Model–Expectation Maximization unsupervised classification
of HH/HV sigma0; (2) Gaussian Mixture Model–Expectation Maximization unsupervised
classification of quad-pol Pauli decomposition; and (3) quad-pol H/α Wishart SAR seg-
mentation. The land ice masses analyzed were three glaciers of the Hornsund fjord basin
in Svalbard (Hansbeeen, Storbreen, Hornbreen) and one ice cap in Iceland (Langjökull),
which differ both in morphologic and climatic conditions, making this study more generally
applicable than studies focused on the glaciers of a single region. The results of glacier
zone distinction by SAR analysis were validated by terrestrial data (shallow glacier cores,
Ground Penetrating Radar). The main conclusions are:

• The results of the unsupervised classification (Gaussian Mixture Model–Expectation
Maximization algorithm) of both HH/HV sigma0 and Pauli decomposition are the
most promising for distinguishing glacier zones.

• Firn on analyzed SAR images is better represented by the classification results of
dual-pol sigma0 than by quad-pol Pauli decomposition and classification.

• Better results for the detection of the SI of Storbreen were obtained by the unsupervised
classification of quad-pol Pauli decomposition than of dual-pol sigma0. However, to
confirm that the unsupervised classification of Pauli decomposition performs better
than other methods in distinguishing SI, more tests on different glaciers are needed.

• The H/α Wishart method gave less satisfactory results than the unsupervised classifi-
cation of either sigma0 or Pauli decomposition. This is due to inconsistent results with
regard to distinguishing glacier zones on Hansbreen, which were assessed based on
terrestrial data and accuracy metrics. The inconsistency in the H/α Wishart results
is probably determined by either the fixed boundaries of the H–α plane where the
cluster centers are located or by differences in the processing workflow in comparison
to the unsupervised classification of sigma0 or Pauli.

• To detect a firn zone on SAR images, shallower-penetrating C-band RADARSAT-
2 data give better results than L-band ALOS-2 PALSAR-2 when the unsupervised
classification of either sigma0 or Pauli decomposition is used.

• The unsupervised classification of dual-pol sigma0 is not outperformed by the results
of the classification of quad-pol SAR data and polarimetric methods. This is especially
promising in terms of the better availability of dual-pol than quad-pol SAR data.

• The heterogeneity of the glacier ice body could potentially be distinguished by L-band
SAR data and the application of the unsupervised classification of either sigma0 or
Pauli decomposition. To support this, more tests are needed, especially for glaciers
with highly crevassed areas.

• Despite the differences in morphology or climate conditions of the land ice masses of Sval-
bard and Iceland, the assessed quality of the results of the tested methods are comparable.
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